LECTURE 19: EXTERIOR PRODUCTS II

We ended last time looking at a basis for the exterior powers. Today we will
finish with that and describe the symmetric power. First we want a generalization
of the Reisz representation theorem.

Proposition. If f: U®V — W is bilinear, then we have canonical maps U —
LV,W) and V — L(U,W) given by

@ f(@,—) and v — f(—, 7).

Now if W is 1-dimensional, then £(V, W) = V*. Additionally, if for all 0 # 4 €
U, we have a ¢ € V such that f(@,?) # 0, then our map is actually an injection
U — V*. Similarly, if for every 0 # ¢ € V we have a @ € U such that f(u,?) # 0,
then V' — U™ is an injection. Thus if both conditions are satisfied, and if everything
in sight is finite dimensional, then our bilinear function f establishes isomorphisms
U — V*and V — U*. This is the case with exterior products, as we shall soon
see.

If f establishes an isomorphism U — Vx and V' — U*, then we say that f is a
perfect pairing.

Let’s assume for now that A™ (V') is one dimensional. Our earlier argument shows
that it is at most 1-dimensional. In fact, if we know that this is 1-dimensional, then
we can prove that the listed elements are all linearly independent, as we’ll soon see.

Proposition. The canonical map
A(V) @ A"H(V) — A™(V)
giwen by U@ W — U AW, is a perfect paring.
Before continuing, we spend a little time describing the map. Let I; denote the
subspace of V®¢ spanned by vectors of the form 71 ® ... 7 ® ... 7 ® ... 7,. We'll
use the canonical identification V® @ V®(=9) with V®" and henceforth blur the

distinction between the two. This gives us subspaces I; @ V(=) and V¥ @ I,,_;
of V&, It is immediate that

ANV)@ A (V)2 Ve (L V) L Vi e T, ),
and the map realizing this is the tensor product of the two projection maps
VO — AY(V) and VOO AP,
Since (I; @ V=9 L V®i @ I, ;) is visibly a subspace of I,,, we conclude from
the defining property of the quotient that there is a map
A (V)@ A" H (V) = A™(V).

This is our map above.
We can spell out a little more what this means and why we would expect such
a thing. The object A*(V') represents “alternating, multilinear maps from V*”:

LAN(V),W) = {f: V*! » W|f is alternating, multilinear}.
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Tensor product has a similar property. Thus L(A*(V) @ A"~4(V), W) is the set of
multilinear maps V> x VX(n=%) = /X" to T that are alternating in the first 4
variables and alternating in the last (n — 4)-variables. On the other hand, if we
are given a function V*" — W that is multilinear and alternating in all variables,
then in particular, it is multilinear and alternating in the first ¢ and last (n — 9)
variables. Thus we see that for all W,

LA"(V), W) C LA(V) @ A""HV), W).

We actually know more. This is “natural” in W. If you give a map W — W’, then
composing with this map gives a natural square with inclusions. That alone tells
us for purely formal reasons that we have a linear map

ANV)Y@ A"H(V) = A™(V),

precomposition by which is realizes the inclusions (and in fact, the “inclusions”
part guarantees that this map is a surjection). Where does it come from? If we let
W = A™(V), then we have the identity map in

L(A™(V),A™(V)) C L(AY(V) @ A" (V),A™(V)).

The image of the identity map is again our map.
Now back to the proof.

Proof. We must show that for each @ € A*(V), there is a @ € A""*(V) such that
UAT # 0. Interchanging the roles of ¢ and n — ¢ will then show the other direction
too. We start with our spanning set, and make a few minidefinitions.

A small bit of notation. Let I C [n] = {1,...,n} be a set of cardinality 4, and
let I¢ denote the complement. For a subset J of [n], let

iy =)\ .
jeJ
Then the following is an easy exercise in alternatingness: If |I| 4+ |J| = n, then
(o gzre
Uy AUy = N
+vy J=1I°

Now since ¢ spans where I ranges over the subsets of cardinality i, we know
that any ¢ can be written as a linear combination

U=apvn +---+ar,vr,,

where without loss of generality, we may assume ay, # 0. Then by the previous
result, if we let v = ¥7¢, then

TAY = iahﬁ[n] #0,
as required. O

As an easy corollary, we conclude that our spanning sets are also linearly inde-
pendent.

Proposition. If we assume dim A™(V) =1, then

{Ui, Ao AT,

i <-o-<lip}
is a basis for A"(V).
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Proof. Now consider a linear dependence relation
ajlﬁjl —+ -4 afkﬁ}k =0.
If we wedge this with ¥7¢, then the above observation shows us that all terms except

the first drop out. Now since ¥y spans A" (V) and since this is a 1-dimensional
space, we know ¥ # 0. Thus our dependence relation becomes

aIl 17]\/[ = O7
which means a7, = 0. Induction on k gives the result. ]

As a consequence, we see that wedge product map A"(V) @A™~ ™(V) — A"™(V)
establishes an isomorphism between A™ (V) and A"~ (V) as described above. In
fact, we have an even better result: the basis dual to {o;} is the basis {¥;c}. Thus
we recover a very classical result:

(m> = dim A"(V) = dim A™ (V) = ( " )
n m-—n

To complete the proof in the exterior case, we have to produce a single non-zero,
alternating, multilinear function on m-tuples of vectors in V. This will show that
A™(V) # 0, since if it were zero, we’d know that all such functions are zero (as
they factor through the zero space). V is an m-dimensional space, so our choice of
basis identifies this with F™. Now we will be done if we can find a single non-zero
alternating multilinear function on m-tuples on column vectors. Of course, an m-
tuple of m-dimensional column vectors is the same thing as an m x m-matrix, and
this gives us a great example.

Proposition. The determinant, viewed as a function from m-tuples of m-dimensional
column vectors, is alternating, multilinear, and non-zero.

Corollary. The vector space A" (V') is one dimensional.



