
LECTURE 19: EXTERIOR PRODUCTS II

We ended last time looking at a basis for the exterior powers. Today we will
finish with that and describe the symmetric power. First we want a generalization
of the Reisz representation theorem.

Proposition. If f : U ⊗ V → W is bilinear, then we have canonical maps U →
L(V,W ) and V → L(U,W ) given by

~u 7→ f(~u,−) and ~v 7→ f(−, ~v).

Now if W is 1-dimensional, then L(V,W ) ∼= V ∗. Additionally, if for all 0 6= ~u ∈
U , we have a ~v ∈ V such that f(~u,~v) 6= 0, then our map is actually an injection
U → V ∗. Similarly, if for every 0 6= ~v ∈ V we have a ~u ∈ U such that f(~u,~v) 6= 0,
then V → U∗ is an injection. Thus if both conditions are satisfied, and if everything
in sight is finite dimensional, then our bilinear function f establishes isomorphisms
U → V ∗ and V → U∗. This is the case with exterior products, as we shall soon
see.

If f establishes an isomorphism U → V ∗ and V → U∗, then we say that f is a
perfect pairing.

Let’s assume for now that Λm(V ) is one dimensional. Our earlier argument shows
that it is at most 1-dimensional. In fact, if we know that this is 1-dimensional, then
we can prove that the listed elements are all linearly independent, as we’ll soon see.

Proposition. The canonical map

Λi(V )⊗ Λn−i(V )→ Λn(V )

given by ~v ⊗ ~w 7→ ~v ∧ ~w, is a perfect paring.

Before continuing, we spend a little time describing the map. Let Ii denote the
subspace of V ⊗i spanned by vectors of the form ~v1 ⊗ . . . ~vi ⊗ . . . ~vi ⊗ . . . ~vn. We’ll
use the canonical identification V ⊗i ⊗ V ⊗(n−i) with V ⊗n and henceforth blur the
distinction between the two. This gives us subspaces Ii ⊗ V ⊗(n−i) and V ⊗i ⊗ In−i
of V ⊗n. It is immediate that

Λi(V )⊗ Λn−i(V ) ∼= V ⊗n/(Ii ⊗ V ⊗(n−i) + V ⊗i ⊗ In−i),

and the map realizing this is the tensor product of the two projection maps

V ⊗i → Λi(V ) and V ⊗(n−i) → Λn−i(V ).

Since (Ii ⊗ V ⊗(n−i) + V ⊗i ⊗ In−i) is visibly a subspace of In, we conclude from
the defining property of the quotient that there is a map

Λi(V )⊗ Λn−i(V )→ Λn(V ).

This is our map above.
We can spell out a little more what this means and why we would expect such

a thing. The object Λi(V ) represents “alternating, multilinear maps from V i”:

L(Λi(V ),W ) = {f : V ×i →W |f is alternating, multilinear}.
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Tensor product has a similar property. Thus L(Λi(V )⊗ Λn−i(V ),W ) is the set of
multilinear maps V ×i × V ×(n−i) ∼= V ×n to W that are alternating in the first i
variables and alternating in the last (n − i)-variables. On the other hand, if we
are given a function V ×n → W that is multilinear and alternating in all variables,
then in particular, it is multilinear and alternating in the first i and last (n − i)
variables. Thus we see that for all W ,

L(Λn(V ),W ) ⊂ L(Λi(V )⊗ Λn−i(V ),W ).

We actually know more. This is “natural” in W . If you give a map W →W ′, then
composing with this map gives a natural square with inclusions. That alone tells
us for purely formal reasons that we have a linear map

Λi(V )⊗ Λn−i(V )→ Λn(V ),

precomposition by which is realizes the inclusions (and in fact, the “inclusions”
part guarantees that this map is a surjection). Where does it come from? If we let
W = Λn(V ), then we have the identity map in

L
(
Λn(V ),Λn(V )

)
⊂ L

(
Λi(V )⊗ Λn−i(V ),Λn(V )

)
.

The image of the identity map is again our map.
Now back to the proof.

Proof. We must show that for each ~v ∈ Λi(V ), there is a ~v′ ∈ Λn−i(V ) such that
~v ∧~v′ 6= 0. Interchanging the roles of i and n− i will then show the other direction
too. We start with our spanning set, and make a few minidefinitions.

A small bit of notation. Let I ⊂ [n] = {1, . . . , n} be a set of cardinality i, and
let Ic denote the complement. For a subset J of [n], let

~vJ =
∧
j∈J

~vj .

Then the following is an easy exercise in alternatingness: If |I|+ |J | = n, then

~vI ∧ ~vJ =

{
0 J 6= Ic

±~vM J = Ic.

Now since ~vI spans where I ranges over the subsets of cardinality i, we know
that any ~v can be written as a linear combination

~v = aI1~vI1 + · · ·+ aIm~vIm ,

where without loss of generality, we may assume aI1 6= 0. Then by the previous
result, if we let ~v′ = ~vIc

1
, then

~v ∧ ~v′ = ±aI1~v[n] 6= 0,

as required. �

As an easy corollary, we conclude that our spanning sets are also linearly inde-
pendent.

Proposition. If we assume dim Λm(V ) = 1, then

{~vi1 ∧ · · · ∧ ~vin |i1 < · · · < in}

is a basis for Λn(V ).
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Proof. Now consider a linear dependence relation

aI1~vI1 + · · ·+ aIk~vIk = 0.

If we wedge this with ~vIc
1
, then the above observation shows us that all terms except

the first drop out. Now since ~vM spans Λm(V ) and since this is a 1-dimensional

space, we know ~vM 6= ~0. Thus our dependence relation becomes

aI1~vM = 0,

which means aI1 = 0. Induction on k gives the result. �

As a consequence, we see that wedge product map Λn(V )⊗Λm−n(V )→ Λm(V )
establishes an isomorphism between Λm(V ) and Λn−m(V ) as described above. In
fact, we have an even better result: the basis dual to {~vI} is the basis {~vIc}. Thus
we recover a very classical result:(

m

n

)
= dim Λn(V ) = dim Λm−n(V ) =

(
m

m− n

)
.

To complete the proof in the exterior case, we have to produce a single non-zero,
alternating, multilinear function on m-tuples of vectors in V . This will show that
Λm(V ) 6= 0, since if it were zero, we’d know that all such functions are zero (as
they factor through the zero space). V is an m-dimensional space, so our choice of
basis identifies this with Fm. Now we will be done if we can find a single non-zero
alternating multilinear function on m-tuples on column vectors. Of course, an m-
tuple of m-dimensional column vectors is the same thing as an m×m-matrix, and
this gives us a great example.

Proposition. The determinant, viewed as a function from m-tuples of m-dimensional
column vectors, is alternating, multilinear, and non-zero.

Corollary. The vector space Λm(V ) is one dimensional.


