
LECTURE 18: SYMMETRIC AND EXTERIOR PRODUCTS

We established in the last two lectures ways to identify bilinear maps from V ×W
to U with linear maps V ⊗W to U and ways to better understand the construction
of the tensor product. If we have extra properties of our bilinear map, then we can
push these through to the tensor product. In this class, we will focus on those cases
where V = W , so our bilinear maps are direct generalizations of bilinear forms. We
therefore use the same language.

Definition. A bilinear map f : V × V →W is...

symmetric if f(~v, ~w) = f(~w,~v)
skew-symmetric if f(~v, ~w) = −f(~w,~v)
alternating if f(~v,~v) = 0.

We can then look at all symmetric, skew-symmetric, or alternating functions
on V × V . Rewriting our expressions which define these properties, we learn that
these forms are close related to particular families of elements in V ⊗ V which are
automatically in the kernel.

Proposition. Let F : V ⊗ V → W be a linear map corresponding to a bilinear
function f (which makes F essentially f). Then

f is symmetric if and only if ~v ⊗ ~w − ~w ⊗ ~v ∈ kerF
f is skew-symmetric if and only if ~v ⊗ ~w + ~w ⊗ ~v ∈ kerF
f is alternating if and only if ~v ⊗ ~v ∈ kerF .

In fact, this proposition is obvious. We simply recall that F (~v ⊗ ~w) = f(~v, ~w),
so the proposition is immediate.

Just as with bilinear forms, alternating implies skew-symmetric (and conversely
in characteristic not 2), so we will only focus on symmetric and alternating. Since
the two things are somewhat unrelated, we will also focus today on alternating
forms. Next time, we will talk about symmetric forms.

Just as with the tensor product, we have a universal vector space that realizes
all of these kinds of structures.

Definition. Let V be a vector space. The exterior square of V , Λ2(V ), is the
quotient of the tensor square by the subspace generated by ~v ⊗ ~v.

Proposition. For any W , L(Λ2(V ),W ) is the same as the set of alternating bi-
linear functions V × V →W .

Proof. We saw in the above proposition that any element of the form ~v⊗~v is in the
kernel of the linear transformation associated to an alternating bilinear function.
Thus by the universal property of the quotient, this linear transformation factors
through the quotient space, Λ2(V ). Conversely, if L is a linear transformation from
Λ2(V )→ W , then composing with the canonical projecting V ⊗ V → Λ2(V ) gives
a linear transformation from V ⊗ V to W , and thus a bilinear function. Since the
necessary elements are in the kernel, we learn that this is an alternating bilinear
function. These two identifications are clearly inverses to each other. �
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Some notation is in order. For the exterior product, we normally replace the
symbol ⊗ between vectors with ∧. Thus elements in Λ2(V ) are linear combinations
of the form ~v∧ ~w, and we remember that ~v∧ ~w = −~w∧~v. There are two important
and beautiful things which arise from this circle of ideas, but first we must slightly
generalize to an arbitrary number of variables.

Definition. A multilinear function f : U × · · · × U → W (with n copies of U) is
alternating if f(~u1, . . . , ~un) = 0 whenever ~ui = ~uj for some i 6= j.

Just as before, we an obvious relationship between these and elements in the nth

tensor power. This lets us make the following definitions.

Definition. The nth exterior power of V , Λn(V ) is the quotient of V ⊗n by the
subspace generated by all elements of the form

~u1 ⊗ · · · ⊗ ~uj ⊗ · · · ⊗ ~ui ⊗ · · · ⊗ ~un

where ~ui = ~uj.

Just as before, we normally replace ⊗ in Λn(V ) with ∧. In Sn(V ), we have forms
for which the order doesn’t matter at all. In Λn(V ), if we swap any two vectors
then the sign changes.

What do these spaces look like? In particular, if we have an ordered basis for V ,
say {~v1, . . . , ~vm}, how do we produce a basis for Λn(V ).

Theorem. The set
{~vi1 ∧ · · · ∧ ~vin |i1 < · · · < in}

forms a basis for Λn(V ).

Proof. We will show that this set spans. We note that as before, the set

{~vi1 ⊗ · · · ⊗ ~vin}
with no restrictions on the subscripts forms a basis for V ⊗n. Since alternating
implies skew-symmetric, we know that any element ~vi1 ⊗ . . . ~vin maps to the same
element (possibly with a sign) in Λn(V ) as the element with the indices in non-
decreasing order. Thus

~vi1 ∧ · · · ∧ ~vin
with i1 ≤ · · · ≤ in span Λn(V ). However, if any index is repeated, then we know
that vector is zero. Thus we can restrict to those with a strictly increasing sequence
of indices.

Linear independence is MUCH trickier. We will postpone the argument for a
time. �

Assuming linear independence, then we have the following consequence.

Corollary. If V has dimension m, then we have

(1) dimV ⊗n = mn

(2) dim Λn(V ) =
(
m
n

)
,

where
(
i
j

)
= i!

(i−j)!j! is the binomial coefficient.

This is a simple counting argument. You will prove these statements as an
exercise.


