
LECTURE : BILINEAR FORMS

Today we will focus on extra structure we can put on a vector space that render
certain constructions more natural.

Definition. A bilinear form 〈−,−〉 on V is a function

〈−,−〉 : V × V → F

that is bilinear:

〈a~v + b~u, ~w〉 = a〈~v, ~w〉+ b〈~u, ~w〉 and

〈~v, a~u + b~w〉 = a〈~v, ~u〉+ b〈~v, ~w〉.

It is important to note that 〈−,−〉 is a function on V × V as a set and not a
linear map on the direct sum V ⊕ V . This makes this definition a little unsettling:
we consider structure on vector spaces that does not stay in the category of vector
spaces.

We have a few types of special bilinear forms.

Definition. (1) 〈−,−〉 is symmetric if 〈~v, ~w〉 = 〈~w,~v〉 for all ~v, ~w ∈ V .
(2) 〈−,−〉 is skew-symmetric if 〈~v, ~w〉 = −〈~w,~v〉 for all ~v, ~w ∈ V .
(3) 〈−,−〉 is alternating if 〈~v,~v〉 = 0 for all ~v ∈ V .

These are not unrelated concepts, and for the first time, specific properties of
the field F appear.

Proposition. Alternating always implies skew-symmetric. If char(F) = 2, then
skew-symmetric is the same as symmetric. If char(F) 6= 2, then skew-symmetric
implies alternating.

Proof. If 〈−,−〉 is alternating, then we know

0 = 〈~v + ~w,~v + ~w〉 = 〈~v,~v〉+ 〈~v, ~w〉+ 〈~w,~v〉+ 〈~w, ~w〉 = 〈~v, ~w〉+ 〈~w,~v〉.

Thus 〈−,−〉 is skew-symmetric. If the characteristic is 2, then 1 = −1, so symmetric
is clearly the same as skew-symmetric. Assume that the characteristic is not 2 and
〈−,−〉 is skew-symmetric. Then

〈~v,~v〉 = −〈~v,~v〉,

and so we conclude that 〈~v,~v〉 = 0. �

We should think of 〈−,−〉 as a generalization of the dot product on Rn. This
provides a fantastic example.

Example. (1) The dot product on Rn is a bilinear form.
(2) The generalization of the dot product on Fn is a bilinear form.
(3) If a1, . . . , an are elements of R (or F), then 〈~v, ~w〉 = a1v1w1 + · · ·+ anvnwn

is a bilinear form.

The last part is very helpful, and it helps us tie bilinear forms to matrices.
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Proposition. Choose a basis B ~v1, . . . , ~vn for V , and let [~v]B ∈ Fn denote the
column vector that represents ~v with respect to B. Let B denote the matrix with

Bi,j = 〈~vi, ~vj〉.

Then

[~v]tBB[~w]B = 〈~v, ~w〉.

Proof. This is an exercise in bilinearity. Both sides are clearly bilinear (the left
one is so since multiplication distributes over addition). By linearity in the first
factor, to know 〈~v, ~w〉 (or the column vector form), it suffices to know 〈~vi, ~w〉 for
all i. Similarly, by linearity in the second factor, to know 〈~v, ~w〉, it suffices to know
〈~v,~vj〉 for all j. Thus we are reduced to showing

[~vi]
t
BB[~vj ]B = 〈~vi, ~vj〉.

However, by definition, [~vi]B = ~ei. Matrix multiplication tells us that

[~vi]
t
BB[~vj ]B = Bi,j = 〈~vi, ~vj〉,

as required. �

Thus when we have a basis B, we have a connection between matrices and bilinear
forms.

Proposition. A choice of basis B of V provides a 1 − 1 correspondence between
bilinear forms and the associated matrices.

What happens then if we change basis? Let C = {~w1, . . . , ~wn} be another basis,
and let P = CPB be the change-of-basis matrix. Then we know

[~v]C = CPB[~v]B.

Let C be the matrix associated to 〈−,−〉 in the C-basis, and similarly for B. Then
we have

[~v]tCC[~w]C = 〈~v, ~w〉 = [~v]tBB[~w]B.

Combining these two equations, we see that for all ~v and ~w, we have

[~v]tCC[~w]C =
(
P [~v]B

)t
C
(
P [~w]B

)
= [~v]tB

(
P tCP

)
[~w]B = [~v]BB[~wB.

We’ve therefore shown the following.

Proposition. If P is the change-of-basis matrix from B to C, and if B (resp C)
represents 〈−,−〉 in the B-basis (resp C-basis), then

P tCP = B.

Thus we’ll say that two matrices are transpose equivalent if there is an invertible
matrix P such that P tCP = B. This is not standard.

Row vectors showed up in another context: dual spaces. This is one of the most
powerful aspects of bilinear forms: they provide a natural way to connect a vector
space and its dual.

Theorem. Let ~v ∈ V , and let R~v denote 〈~v,−〉. Then

(1) For all ~v, R~v is a linear transformation V → F.
(2) The assignment R : V → V ∗ given by ~v 7→ R~v is linear.
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Proof. Both of these are given by linearity in their respective factors. The bilinear
form 〈−,−〉 is linear in the second factor, so for all ~v, 〈~v,−〉 is a linear map. Thus
we have the first part, and we learn that R is a function from V to V ∗.

For the second, we need to know that for all ~u ∈ V ,

Ra~v+b~w(~u) = aR~v(~u) + bR~w(~u).

This will show that V → V ∗ is a linear map. So we check:

Ra~v+b~w(~u) = 〈a~v + b~w, ~u〉 = a〈~v, ~u〉+ b〈~w, ~u〉 = aR~v(~u) + bR~w(~u),

since 〈−,−〉 is linear in the first factor. �

To fully understand the map R, we have to determine ker(R) and the image of
R.

Definition. The radical of V , Rad(V ) is defined by

Rad(V ) = {~v ∈ V |∀~w ∈ V, 〈~v, ~w〉 = 0}.

Proposition. We have
ker(R) = Rad(V ).

Proof. This is immediate. The zero functional is the one that assigns the value 0
to all ~w ∈ V . So R(~v) = 0 iff for all ~w ∈ V , 〈~v, ~w〉 = 0. This is the same thing as
~v ∈ Rad(V ). �

To make this more useful, we tether this to the matrix form. If ~v ∈ V is in the
radical, then we have

[~v]tBB[~w]B = 0

for all ~w ∈ V . This is the same condition as [~v]tBB = ~0t, or [~v]B is in the null-space
of Bt.

Definition. A bilinear form 〈−,−〉 is singular if B is singular.
A bilinear form 〈−,−〉 is non-singular if B is invertible.

Corollary (Reisz Representation Theorem). If 〈−,−〉 is non-singular, then

R : V → V ∗

is an injection. If V is finite dimensional, then R is an isomorphism.

Thus in the finite dimensional case, for any f ∈ V ∗, we have a vector ~vf ∈ V
such that f(~w) = 〈~vf , ~w〉 for all ~w ∈ V . This is the Reisz vector for f .

Now if S is a subspace of V , then S inherits a bilinear form by restriction. It
can be the case that S is singular even if V is not. If V is non-singular and S is a
singular subspace, then the Reisz vector for f ∈ S∗ need not be a vector in S. In
fact, it could be just a vector in V . S is non-singular exactly when the Reisz vector
is back in S.


