LECTURE : BILINEAR FORMS

Today we will focus on extra structure we can put on a vector space that render certain constructions more natural.

Definition. A <u>bilinear form</u> $\langle -, - \rangle$ on V is a function

$$\langle -, - \rangle \colon V \times V \to \mathbb{F}$$

that is <u>bilinear</u>:

$$\begin{split} \langle a\vec{v} + b\vec{u}, \vec{w} \rangle &= a \langle \vec{v}, \vec{w} \rangle + b \langle \vec{u}, \vec{w} \rangle \text{ and } \\ \langle \vec{v}, a\vec{u} + b\vec{w} \rangle &= a \langle \vec{v}, \vec{u} \rangle + b \langle \vec{v}, \vec{w} \rangle. \end{split}$$

It is important to note that $\langle -, - \rangle$ is a function on $V \times V$ as a set and *not* a linear map on the direct sum $V \oplus V$. This makes this definition a little unsettling: we consider structure on vector spaces that does not stay in the category of vector spaces.

We have a few types of special bilinear forms.

Definition. (1) $\langle -, - \rangle$ is symmetric if $\langle \vec{v}, \vec{w} \rangle = \langle \vec{w}, \vec{v} \rangle$ for all $\vec{v}, \vec{w} \in V$. (2) $\langle -, - \rangle$ is skew-symmetric if $\langle \vec{v}, \vec{w} \rangle = -\langle \vec{w}, \vec{v} \rangle$ for all $\vec{v}, \vec{w} \in V$.

(3) $\langle -, - \rangle$ is alternating if $\langle \vec{v}, \vec{v} \rangle = 0$ for all $\vec{v} \in V$.

These are not unrelated concepts, and for the first time, specific properties of the field \mathbb{F} appear.

Proposition. Alternating always implies skew-symmetric. If $char(\mathbb{F}) = 2$, then skew-symmetric is the same as symmetric. If $char(\mathbb{F}) \neq 2$, then skew-symmetric implies alternating.

Proof. If $\langle -, - \rangle$ is alternating, then we know

$$0 = \langle \vec{v} + \vec{w}, \vec{v} + \vec{w} \rangle = \langle \vec{v}, \vec{v} \rangle + \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{v} \rangle + \langle \vec{w}, \vec{w} \rangle = \langle \vec{v}, \vec{w} \rangle + \langle \vec{w}, \vec{v} \rangle.$$

Thus $\langle -, - \rangle$ is skew-symmetric. If the characteristic is 2, then 1 = -1, so symmetric is clearly the same as skew-symmetric. Assume that the characteristic is not 2 and $\langle -, - \rangle$ is skew-symmetric. Then

$$\langle \vec{v}, \vec{v} \rangle = -\langle \vec{v}, \vec{v} \rangle,$$

and so we conclude that $\langle \vec{v}, \vec{v} \rangle = 0$.

We should think of $\langle -, - \rangle$ as a generalization of the dot product on \mathbb{R}^n . This provides a fantastic example.

Example. (1) The dot product on \mathbb{R}^n is a bilinear form.

- (2) The generalization of the dot product on \mathbb{F}^n is a bilinear form.
- (3) If a_1, \ldots, a_n are elements of \mathbb{R} (or \mathbb{F}), then $\langle \vec{v}, \vec{w} \rangle = a_1 v_1 w_1 + \cdots + a_n v_n w_n$ is a bilinear form.

The last part is very helpful, and it helps us tie bilinear forms to matrices.

Proposition. Choose a basis \mathcal{B} $\vec{v}_1, \ldots, \vec{v}_n$ for V, and let $[\vec{v}]_{\mathcal{B}} \in \mathbb{F}^n$ denote the column vector that represents \vec{v} with respect to \mathcal{B} . Let \mathcal{B} denote the matrix with

$$B_{i,j} = \langle \vec{v}_i, \vec{v}_j \rangle$$

Then

$$[\vec{v}]^t_{\mathcal{B}} B[\vec{w}]_{\mathcal{B}} = \langle \vec{v}, \vec{w} \rangle.$$

Proof. This is an exercise in bilinearity. Both sides are clearly bilinear (the left one is so since multiplication distributes over addition). By linearity in the first factor, to know $\langle \vec{v}, \vec{w} \rangle$ (or the column vector form), it suffices to know $\langle \vec{v}, \vec{w} \rangle$ for all *i*. Similarly, by linearity in the second factor, to know $\langle \vec{v}, \vec{w} \rangle$, it suffices to know $\langle \vec{v}, \vec{v}_i \rangle$ for all *j*. Thus we are reduced to showing

$$[\vec{v}_i]^t_{\mathcal{B}} B[\vec{v}_j]_{\mathcal{B}} = \langle \vec{v}_i, \vec{v}_j \rangle$$

However, by definition, $[\vec{v}_i]_{\mathcal{B}} = \vec{e}_i$. Matrix multiplication tells us that

$$[\vec{v}_i]^t_{\mathcal{B}} B[\vec{v}_j]_{\mathcal{B}} = B_{i,j} = \langle \vec{v}_i, \vec{v}_j \rangle$$

as required.

Thus when we have a basis \mathcal{B} , we have a connection between matrices and bilinear forms.

Proposition. A choice of basis \mathcal{B} of V provides a 1-1 correspondence between bilinear forms and the associated matrices.

What happens then if we change basis? Let $C = \{\vec{w}_1, \ldots, \vec{w}_n\}$ be another basis, and let $P = {}_{\mathcal{C}}P_{\mathcal{B}}$ be the change-of-basis matrix. Then we know

$$[\vec{v}]_{\mathcal{C}} = {}_{\mathcal{C}} P_{\mathcal{B}}[\vec{v}]_{\mathcal{B}}.$$

Let C be the matrix associated to $\langle -,-\rangle$ in the $\mathcal C\text{-basis,}$ and similarly for B. Then we have

$$[\vec{v}]^t_{\mathcal{C}}C[\vec{w}]_{\mathcal{C}} = \langle \vec{v}, \vec{w} \rangle = [\vec{v}]^t_{\mathcal{B}}B[\vec{w}]_{\mathcal{B}}.$$

Combining these two equations, we see that for all \vec{v} and \vec{w} , we have

$$[\vec{v}]^t_{\mathcal{C}}C[\vec{w}]_{\mathcal{C}} = \left(P[\vec{v}]_{\mathcal{B}}\right)^t C\left(P[\vec{w}]_{\mathcal{B}}\right) = [\vec{v}]^t_{\mathcal{B}}\left(P^tCP\right)[\vec{w}]_{\mathcal{B}} = [\vec{v}]_{\mathcal{B}}B[\vec{w}_{\mathcal{B}}$$

We've therefore shown the following.

Proposition. If P is the change-of-basis matrix from \mathcal{B} to C, and if B (resp C) represents $\langle -, - \rangle$ in the \mathcal{B} -basis (resp C-basis), then

$$P^t CP = B.$$

Thus we'll say that two matrices are transpose equivalent if there is an invertible matrix P such that $P^tCP = B$. This is not standard.

Row vectors showed up in another context: dual spaces. This is one of the most powerful aspects of bilinear forms: they provide a *natural* way to connect a vector space and its dual.

Theorem. Let $\vec{v} \in V$, and let $R_{\vec{v}}$ denote $\langle \vec{v}, - \rangle$. Then

- (1) For all \vec{v} , $R_{\vec{v}}$ is a linear transformation $V \to \mathbb{F}$.
- (2) The assignment $R: V \to V^*$ given by $\vec{v} \mapsto R_{\vec{v}}$ is linear.

Proof. Both of these are given by linearity in their respective factors. The bilinear form $\langle -, - \rangle$ is linear in the second factor, so for all $\vec{v}, \langle \vec{v}, - \rangle$ is a linear map. Thus we have the first part, and we learn that R is a function from V to V^* .

For the second, we need to know that for all $\vec{u} \in V$,

$$R_{a\vec{v}+b\vec{w}}(\vec{u}) = aR_{\vec{v}}(\vec{u}) + bR_{\vec{w}}(\vec{u}).$$

This will show that $V \to V^*$ is a linear map. So we check:

 $R_{a\vec{v}+b\vec{w}}(\vec{u}) = \langle a\vec{v}+b\vec{w},\vec{u}\rangle = a\langle\vec{v},\vec{u}\rangle + b\langle\vec{w},\vec{u}\rangle = aR_{\vec{v}}(\vec{u}) + bR_{\vec{w}}(\vec{u}),$

since $\langle -, - \rangle$ is linear in the first factor.

To fully understand the map R, we have to determine $\ker(R)$ and the image of R.

Definition. The <u>radical</u> of V, Rad(V) is defined by

$$Rad(V) = \{ \vec{v} \in V | \forall \vec{w} \in V, \quad \langle \vec{v}, \vec{w} \rangle = 0 \}.$$

Proposition. We have

$$\ker(R) = Rad(V).$$

Proof. This is immediate. The zero functional is the one that assigns the value 0 to all $\vec{w} \in V$. So $R(\vec{v}) = 0$ iff for all $\vec{w} \in V$, $\langle \vec{v}, \vec{w} \rangle = 0$. This is the same thing as $\vec{v} \in Rad(V)$.

To make this more useful, we tether this to the matrix form. If $\vec{v} \in V$ is in the radical, then we have

$$[\vec{v}]^t_{\mathcal{B}} B[\vec{w}]_{\mathcal{B}} = 0$$

for all $\vec{w} \in V$. This is the same condition as $[\vec{v}]^t_{\mathcal{B}} B = \vec{0}^t$, or $[\vec{v}]_{\mathcal{B}}$ is in the null-space of B^t .

Definition. A bilinear form $\langle -, - \rangle$ is singular if *B* is singular. A bilinear form $\langle -, - \rangle$ is non-singular if *B* is invertible.

Corollary (Reisz Representation Theorem). If $\langle -, - \rangle$ is non-singular, then

$$R\colon V\to V^*$$

is an injection. If V is finite dimensional, then R is an isomorphism.

Thus in the finite dimensional case, for any $f \in V^*$, we have a vector $\vec{v}_f \in V$ such that $f(\vec{w}) = \langle \vec{v}_f, \vec{w} \rangle$ for all $\vec{w} \in V$. This is the Reisz vector for f.

Now if S is a subspace of V, then S inherits a bilinear form by restriction. It can be the case that S is singular even if V is not. If V is non-singular and S is a singular subspace, then the Reisz vector for $f \in S^*$ need not be a vector in S. In fact, it could be just a vector in V. S is non-singular exactly when the Reisz vector is back in S.