LECTURE : BILINEAR FORMS

Today we will focus on extra structure we can put on a vector space that render
certain constructions more natural.

Definition. A bilinear form (—,—) on V is a function
(=, =): VXV =>TF
that is bilinear:
(a¥ + bil, W) = a({¥, W) + b(u, W) and

(#, ail + bi) = (¥, @) + b(v,@).

It is important to note that (—, —) is a function on V' x V as a set and not a
linear map on the direct sum V @ V. This makes this definition a little unsettling:
we consider structure on vector spaces that does not stay in the category of vector
spaces.

We have a few types of special bilinear forms.

Definition. (1) (=, —) is symmetric if (¥, @) = (w0, v) for all ¥,d € V.
(2) (—,—) is skew-symmetric if (¥, W) = —(u, ) for all 7, € V.
(3) (—,—) is alternating if (¢,7) =0 for all ¥ € V.

These are not unrelated concepts, and for the first time, specific properties of
the field F appear.

Proposition. Alternating always implies skew-symmetric. If char(F) = 2, then
skew-symmetric is the same as symmetric. If char(F) # 2, then skew-symmetric
implies alternating.

Proof. If (—, —) is alternating, then we know
0= (T4, 0+ @) = (¥,7) + (¥,d) + (@, V) + (¥, W) = (V,0) + (W, V).
Thus (—, —) is skew-symmetric. If the characteristic is 2, then 1 = —1, so symmetric

is clearly the same as skew-symmetric. Assume that the characteristic is not 2 and
(=, —) is skew-symmetric. Then

(7.9 = —(@.9),
=0.

—

and so we conclude that (7, ) O

We should think of (—, —) as a generalization of the dot product on R™. This
provides a fantastic example.

Example. (1) The dot product on R™ is a bilinear form.
(2) The generalization of the dot product on F” is a bilinear form.
(3) If ay,...,ay, are elements of R (or F), then (¥, W) = ajviwy + - - - + apvywy,

is a bilinear form.

The last part is very helpful, and it helps us tie bilinear forms to matrices.
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Proposition. Choose a basis B Uy,...,0, for V, and let [v]g € F™ denote the
column vector that represents U with respect to B. Let B denote the matriz with

Bi,j = <17Z,177>
Then
[0 Blw]s = (7,9).

Proof. This is an exercise in bilinearity. Both sides are clearly bilinear (the left
one is so since multiplication distributes over addition). By linearity in the first
factor, to know (¥, ) (or the column vector form), it suffices to know (#;, @) for
all 4. Similarly, by linearity in the second factor, to know (@, @), it suffices to know
(¥, 7;) for all j. Thus we are reduced to showing

[@:]5 B0l = (4, 7).
However, by definition, [0;]g = €;. Matrix multiplication tells us that
[@:]5Bl7j]s = Bi,; = (U;,7;),
as required. [

Thus when we have a basis B, we have a connection between matrices and bilinear
forms.

Proposition. A choice of basis B of V provides a 1 — 1 correspondence between
bilinear forms and the associated matrices.

What happens then if we change basis? Let C = {wy,...,w,} be another basis,
and let P = ¢Pg be the change-of-basis matrix. Then we know

[Vle = ¢ Ps[v]s.

Let C be the matrix associated to (—, —) in the C-basis, and similarly for B. Then
we have

[leClile = (7,4) = [0 B[w]s.

Combining these two equations, we see that for all ¥ and w, we have

— — 1\t — — — -

[0]eClwle = (P[t]s) C(Plw]s) = [0]5(P'CP)[w]s = [0]Blis.
We’ve therefore shown the following.
Proposition. If P is the change-of-basis matriz from B to C, and if B (resp C)
represents (—, —) in the B-basis (resp C-basis), then

P'CP = B.

Thus we’ll say that two matrices are transpose equivalent if there is an invertible
matrix P such that P!CP = B. This is not standard.

Row vectors showed up in another context: dual spaces. This is one of the most
powerful aspects of bilinear forms: they provide a natural way to connect a vector
space and its dual.

Theorem. Let ¥ € V, and let Rz denote (U, —). Then

(1) For all U, Ry is a linear transformation V- — F.
(2) The assignment R: V — V* given by U — Rg is linear.
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Proof. Both of these are given by linearity in their respective factors. The bilinear
form (—, —) is linear in the second factor, so for all ¥, (¥, —) is a linear map. Thus
we have the first part, and we learn that R is a function from V to V*.

For the second, we need to know that for all @ € V,
Rugrvs (@) = aRz(@) + bRz ().
This will show that V' — V* is a linear map. So we check:
Roztpw () = (al + bW, @) = a(¥, @) + b{w,¥) = aRz(wW) + bRz(W),
since (—, —) is linear in the first factor. O

To fully understand the map R, we have to determine ker(R) and the image of
R.

Definition. The radical of V, Rad(V) is defined by
Rad(V)={v e VIVw €V, (¥,4)=0}.

Proposition. We have
ker(R) = Rad(V).

Proof. This is immediate. The zero functional is the one that assigns the value 0
to all W € V. So R(¥) = 0 iff for all @ € V, (¢, @) = 0. This is the same thing as
U € Rad(V). O

To make this more useful, we tether this to the matrix form. If ¥ € V is in the
radical, then we have
[ Blw]s = 0
for all « € V. This is the same condition as [#]4B = 0%, or [#]p is in the null-space
of Bt.

Definition. A bilinear form (—, —) is singular if B is singular.
A bilinear form (—, —) is non-singular if B is invertible.

Corollary (Reisz Representation Theorem). If (—, —) is non-singular, then
R:V -V
is an injection. If V is finite dimensional, then R is an isomorphism.

Thus in the finite dimensional case, for any f € V*, we have a vector ¥y € V
such that f(@) = (Uf, W) for all @ € V. This is the Reisz vector for f.

Now if S is a subspace of V, then S inherits a bilinear form by restriction. It
can be the case that S is singular even if V' is not. If V' is non-singular and S is a
singular subspace, then the Reisz vector for f € S* need not be a vector in S. In
fact, it could be just a vector in V. S is non-singular exactly when the Reisz vector
is back in S.



