
LECTURE 9 - EIGENVALUES

Having spent some time looking at the general properties of vector spaces and
the generic interplay with linear transformations, we turn our attention now to best
understanding a given linear operator on a given vector space. Thus we will assume
we are given a finite dimensional vector space V and an operator L : V → V . We
do not assume we are given a basis! In fact, we’ll spend a good bit of time finding
a basis.

That being said, we’ll begin with some results that will appear as homework
problems that help us test whether a linear transformation has a kernel based on a
matrix for it. Let B be any basis for V , and let A = B[L]B.

Defintion. Let Σn denote the set of all bijections of {1, . . . , n} with itself. This
acts on {1, . . . , n}, and under composition, this is a group. For an n×n-matrix A,
we define the determinant to be

det(A) = |A| =
∑
σ∈Σn

(−1)sgn(σ)a1,σ(1) . . . an,σ(n) ∈ F,

where sgn(σ) is the number of pairs of “out of order” elements in σ((1, . . . , n)).

This definition is for us now, horribly clunky. We will spend more time talking
about determinants in general, and then we will see that this is the most natural
definition. Instead, let’s look at a standard inductive one.

Defintion. For a matrix A and for a pair (i, j) indexing a position in A, we can
define the minor associated to (i, j), Mi,j(A), by deleting the ith row and jth column
(resulting in an (n − 1) × (n − 1)-matrix). We define a new matrix cof(A) (the
matrix of cofactors) by

cof(A)i,j = (−1)i+j det(Mi,j).

Thus while the determinant is very hard to apply, the matrix of cofactors is the
matrix we get by taking determinants of smaller matrices.

Proposition. For any matrix A,

det(A) =

n∑
i=1

ai,jcof(A)i,j ,

for any fixed j, and also

det(A) =

n∑
j=1

ai,jcof(A)i,j ,

for any fixed i.

This is the usual “expansion by minors”: pick a row or column and march along
it, scaling the determinant of the associated minors by the deleted element. Though
we normally do this over R or C, it in fact works over any field. Sketching this out
is a homework problem. The same holds for the following.
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Proposition. Let adj(A) denote the transpose of cof(A). Then

det(A) · In = A · adj(A) = adj(A) ·A.

Thus just like for matrices over R or C, the determinant detects invertibility.
If det(A) is a unit (so in a field, non-zero), then we have an explicit formula for
the inverse of a matrix A: (1/|A|) · adj(A). This is actually beautiful for a very
different reason that touches on some very deep mathematics. The entries in the
(i, j)th position of A−1 are rational functions in the coefficients of A! Finally, as
always, determinant has the usual properties:

Theorem. If A and B are n× n-matrices, then

det(A ·B) = det(A) det(B).

Back to the matter at hand, we learn the following.

Theorem. Let A be the matrix associated to L for any basis. The following are
equivalent.

(1) det(A) 6= 0
(2) L is an isomorphism
(3) ker(L) = {0̄}
(4) Im(L) = V .

Here the finiteness of the dimension of V was extra essential.

Proof. We saw above that det(A) 6= 0 is the same as A being invertible. The inverse
to A is the matrix for the inverse to L, so this is the same as L being invertible.
Since we have a finite dimensional vector space, the rank-nullity theorem establishes
the equivalence of points 2, 3, and 4. �

We’ll be most interested in looking at particular linear maps that have a kernel.

Defintion. A vector ~v ∈ V is an eigenvector for L if L(~v) = λ · ~v for some λ ∈ F.
The number λ is call the eigenvalue associated to ~v.

It’s immediately clear why we would like such a thing: if ~v is an eigenvector
for L, then we know exactly how to apply L to any multiple of ~v: we just scale.
That’s it! These vectors are just one tiny step more complicated than elements in
the kernel, but not a lot more.

In fact, these are vectors in the kernel of a different operator.

Proposition. The set of eigenvectors associated to an eigenvalue λ is

Vλ = ker(L− λI).

Thus the collection of all eigenvectors associated to an eigenvalue forms a subspace.

Proof. If L(~v) = λ · ~v = λI(~v), then

(L− λI)(~v) = L(~v)− λI(~v) = ~0.

The reverse inclusion follows by reversing the steps. �

Thus eigenvectors of L with eigenvalue λ are the same thing as vectors in the
kernel of L − λI. Our work with matrices tells us about how to find eigenvalues
then. Using our randomly chosen basis B, we switch to matrices and continue the
story there.
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Defintion. Let A be an n × n matrix. Then ~v ∈ Fn is an eigenvector of A with
eigenvalue λ if

A · ~v = λ~v.

We again know this means that ~v ∈ ker(A − λI), and coupling this with our
discussion of the determinant, we learn the following.

Theorem. A number λ is an eigenvalue with a non-zero eigenvector if and only if
det(A− λI) = 0.

Defintion. The characteristic polynomial of A is the polynomial in λ given by

pA(λ) = det(A− λI).

Thus a restatement of the previous theorem is that the eigenvalues of A are
precisely the roots of the polynomial pA(λ). Since the elements λ occur in precisely
n positions along the diagonal, either our inductive result about determinants or
our definition show that pA(λ) is a degree n polynomial.

Before continuing with this line of reasoning, we can ask how sensitive pA(λ) is
to change-of-basis. Recall that for matrices, change of basis amounts to conjugating
by an invertible element: A 7→ B = QAQ−1. So we check

pB(λ) = det(QAQ−1 − λI) = det(Q(A− λI)Q−1) =

det(Q) det(A− λI) det(Q−1) = det(Q)pA(λ) det(Q)−1 = pA(λ).

Thus we have an actual invariant of A that doesn’t depend at all on the choice of
basis. In particular, the coefficients of pA(λ) don’t depend on the choice of basis.
This gives a very nice family of invariants of matrices.

We finish today with the issue of roots of pA(λ). For a general field F, we are
guaranteed that there are at most n roots of pA(λ). What we aren’t guaranteed is
that there are any roots in F.

Example: Let

A =

[
0 1
−1 0

]
,

and let F = R. Then

pA(λ) =

∣∣∣∣−λ 1
−1 −λ

∣∣∣∣ = λ2 + 1.

This has no real roots, so we know that this has no eigenvalues over R. It does
have complex roots. If we extend scalars, passing from R2 to C2, then we get two
complex eigenvalues: ±i. This is true much more generally:

Theorem. If F is any field, then F is a subfield of a field F̄ with the property
that any polynomial with coefficients in F̄ has a root in F̄. Such a field is called
algebraically closed.

It’s possible to do much of what we’ll be talking now about over a non-algebraically
closed field (for instance, over R). The results are slightly harder to state (and sig-
nificantly harder to prove). For now, for us, all of our fields can be assumed to be
algebraically closed. Thus we learn

Theorem. The polynomial pA(λ) has n roots, counted with multiplicity.

The roots and the multiplicities will be increasingly important to us as we study
the form of A.


