
LECTURE 3

(TYPED!)

Defintion. A basis is a linearly independent spanning set.

Theorem. Every vector space has a basis.

We won’t prove this; it’s actually essentially equivalent in the infinite dimensional
case to one of the axioms of set theory: the axiom of choice. Instead, we’ll accept
this as given.

Things are slightly easier if we assume that V has a finite basis.

Theorem. If V has a finite basis, then if I is a linearly independent set and S is
a spanning one, then |I| ≤ |S|. In particular, all linearly independent sets in V are
finite.

Proof. Since V has a finite basis, when we show that |I| is at most the cardinality of
that basis, then we will have shown that I is a finite set. We may therefore assume
that everything in sight is finite. Enumerate the elements of I as v̄1, . . . , v̄n and
those of S as w̄1, . . . , w̄m. Since S spans, we can express v̄1 as a linear combination
of elements of S, and since v̄1 6= 0̄, we know some w̄i has a non-zero coefficient.
By reordering, we may assume it’s w̄1. However, this means that 〈v̄1, w̄2, . . . 〉 =
〈S〉, since we could just solve for w̄1 in the linear combination expressing v̄1 as
an element of the span. Iterating this, we express v̄k as a linear combination of
v̄1, . . . , v̄k−1, w̄k, . . . , and since I is independent, we know that for some j, the
coefficient of w̄j is non-zero. Again, we may assume that j = k, and we can replace
w̄k with v̄k. If there are few w̄s than v̄s, then we eventually have a spanning set
v̄1, . . . , v̄m. However, v̄m+1 is not an element of the span, since I was independent,
and this provides a contradiction. ¤

Corollary. Every basis has the same cardinality.

Proof. Each is a linearly independent, spanning set, and we can just have them
alternate roles for the previous theorem. ¤

We remark that this theorem is also equally true in the infinite case.

Defintion. The dimension of a vector space is the cardinality of any basis.

This is a complete invariant of a vector space. To specify the dimension is to
specify the isomorphism type! To make this precise, we need another notion of
direct sum.

Defintion. Let I be a set, and let Vi be a collection of vector spaces indexed by I.
Then the direct product of the Vi is defined to be

∏

i∈I

Vi = {f : I →
⋃

i∈I

Vi|f(i) ∈ Vi}.
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Put into words, these are the functions from I where the value at i is a vector in
Vi. Coordinatewise operations make this set into a vector space in a natural way.

Defintion. Let f and g be elements of
∏

i∈I Vi. Then the linear combination
a · f + b · g is the function defined by

(a · f + b · g)(i) = a · f(i) + b · g(i).
Since all of the Vi are vector spaces, these operations make

∏
i∈I Vi into a vector

space. In general, this vector space is HUGE. The elements of I don’t assemble in
any meaningful way to give a basis, and in fact, the direct product in general has
a dimension bigger than the cardinality of I. The problem is with our requirement
that we only have finite sums.

Defintion. The support of an element in the direct product is

Supp(f) = {i ∈ I|f(i) 6= 0}.
Those elements where the support is finite are those that we can get as linear

combinations of vectors related to I. This forms an important subspace.

Defintion. The direct sum of the collection Vi is⊕

i∈I

Vi = {f ∈
∏

i∈I

Vi||Supp(f)| < ∞}.

Proposition. The direct sum is a subspace of the direct product.

This is much nicer. We have much better control on the size of the direct sum!
We can use this to get another notion (although as stated, it won’t be as canonical
as we might like.

Defintion. If X is a set, then we define the free vector space on X, FX to be the
direct sum over X of copies of F: ⊕

x∈X

F.

This vector space has a very nice basis.

Proposition. Let fx denote the function

fx(y) =

{
1 y = x

0 otherwise.

Then {fx, x ∈ X} forms a basis for FX.

Proof. This is almost obvious. These functions are clearly linearly independent
(since each function involves only one “coordinate”). We need to see that they
span. However, if we are given a function f of finite support, then

f =
∑

y∈Supp(f)

f(y)fy.

This shows that the span of these functions is all of FX. ¤
We will often denote fy by simply y, and instead of thinking of functions, think

of “linear combinations of elements of X”. Free vector spaces are closely tied to
linear combinations (and this is somewhat why this definition is slightly unnatural).
As we talk more about the structure of linear transformations, this will be made
more clear. For now, we need the universal property.
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Theorem. Giving a linear transformation L : FX → V is the same a giving a map
of sets X → V . Given a function f : X → V , we associate the linear transformation

Lf (a1x1 + · · ·+ anxn) = a1f(x1) + · · ·+ anf(xn).

Given a linear transformation L : FX → V , we get a function on X by restriction.

What’s this theorem saying? It says that if you have a free vector space, then you
can describe any linear transformation by specifying the values on this distinguished
basis. We of course know more is true: given any vector space and any basis, we
can describe any linear transformation by specifying the values on a basis. We’ll
see that as a consequence of this.

Proof. By construction, we see that restricting Lf to X gives back the function
f . That gives one direction. For the other, to specify a linear transformation
L : FX → V , we just have to specify the values on a basis. This is by linearity:
every element is a linear combination of basis elements, and linear transformations
play nicely with linear combinations. This gives the other direction. ¤

Now we can get to an important restatement of an earlier theorem.

Theorem. If V is a vector space, then a choice of basis B gives us an isomorphism

FB → V.

Thus every vector space is free.

Proof. We saw that to give a function from B to V is to give a linear transformation.
We also have an obvious function: take each element of the basis to itself. We need
to show that it is 1− 1 and onto.

“Onto” is a restatement that the basis spans. If we have a vector v̄ ∈ V , then
we need to show it is a linear combination of elements of B. Since B is a basis, we
know this to be true:

v̄ = a1v̄1 + · · ·+ anv̄n,

and then we learn that
v̄ = L(a1v̄1 + · · ·+ anv̄n).

(We remark that our choice of notation for the basis and the indexing set makes
this statement essentially obvious). Thus every element is in the image.

“1-1” is a restatement of linear independence. If

L(a1v̄1 + · · ·+ anv̄n) = L(b1w̄1 + · · ·+ bmv̄m),

then in V ,
a1v̄1 + · · ·+ anv̄n = b1w̄1 + · · ·+ bmv̄m.

Since B was assumed to be linearly independent, we know that n = m, that up to
reordering v̄i = w̄i, and that the corresponding coefficients are equal. That means
the starting elements were equal. ¤

As stated, this seems like an empty theorem. The important fact is that the
right-hand side is an arbitrary vector space. We know basically nothing about it.
The left-hand side is a very simple vector space. If our basis is finite, it’s just Fn,
where n is the dimension. So what the theorem is really telling us is that all vector
spaces are very simple.


