LECTURE 2

Defintion. A subset W of a vector space V' is a subspace if
(1) W is non-empty
(2) For every v,w € W and a,b€F, av+bw € W.

Expressions like av + bw, or more generally

k
E a;v+1
i=1

are called linear combinations. So a non-empty subset of V' is a subspace if it is
closed under linear combinations. Much of today’s class will focus on properties of
subsets and subspaces detected by various conditions on linear combinations.

Theorem. IfW is a subspace of V', then W is a vector space over F with operations
coming from those of V.

In particular, since all of those axioms are satisfied for V', then they are for W.
We only have to check closure!
Examples:

Defintion. LetF" = {(a1, ..., an)|a; € F} with coordinate-wise addition and scalar
multiplication.

This gives us a few examples. Let W C F” be those points which are zero except
in the first coordinate:
W ={(a,0,...,0)} C F".
Then W is a subspace, since
a-(a,0,...,0)+0b-(8,0,...,0) = (a + 13,0,...,0) € W.
IfF =R, then W' = {(a1,...,an)|a; > 0} is not a subspace. It’s closed under

addition, but not scalar multiplication.
We have a number of ways to build new subspaces from old.

Proposition. If W; for i € I is a collection of subspaces of V', then
W= (\W;={weVweWViec I}
iel
is a subspace.

Proof. Let v,w € W. Then for all i € I, v,w € W;, by definition. Since each W; is
a subspace, we then learn that for all a,b € F,

av + bw € W;,
and hence av +bw € W. O

Thought question: Why is this never empty?
The union is a little trickier.

Proposition. W7 U W5 is a subspace iff Wy C Wy or Wy C Wh.
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Proof. < is obvious. We need to show the other, so assume that we can find w; €
W1 —Ws and wy € Wo—W7. Then if W1 UW,; is a subspace, then w; +ws € W1 UWs.
This means it’s in one of them, and without loss of generality, we may assume it’s
in Wi. But this means
Wy = (151 —|—1I)2) —w; € Wh,

a contradiction. O

Example to keep in mind: R? with W; = z-axis and W, = y-axis.

Instead of the union, we consider the smallest subspace containing the union.
Defintion. If Wy and Wy are subspaces of V', then the sum is

Wi+ Wy = {a’LDl + b"(f)2|7j/z S WZ}

In other words, we consider all linear combinations of elements of W, and Wh.
Clearly if W is any subspace that contains W7 and W5, then W contains Wy + Ws.
On the other hand, it’s also closed under linear combinations and non-empty, so

this is a subspace.
Special attention is given to the case where W3 N W, = {0}.

Defintion. If Wy NWy = {0}, then we say the sum of W1 and Ws is the (internal)
direct sum, and we write it Wy & Ws.

So what’s so special about direct sums?
Proposition. Every element in Wi @ Wy can be uniquely written as w; + Ws.

Proof. Assume w; + Wy = U1 + U2, where the subscript indicates the subspace from
which the element is drawn. Then rearranging, we see
W1 — V1 = Vg — Ws.
The left-hand side is in W7, while the right-hand side is in W5, so both are in the
intersection. This means both are 0, and hence w; = ;. O
Our notion of sums therefore includes two distinct notions:
(1) being able to write elements as linear combinations
(2) being able to do so uniquely.
The former is related to span, the latter to linear independence.
Defintion. Let X C V. Then the span of X is the collection of all linear combi-
nations of elements of X :
Span(X) = (X) ={a1Z1 + - - - + anTp|T; € X,n > 0}.
If X is empty, then (X) = {0}.

The following is immediate.
Proposition. The set (X) is a subspace of V.

Examples: For any V, (V) =V. If X =W UU, then (X) =W + U.

Just as before, if W is a subspace of V and W contains X, then (X) C W.
Thus (X) is the smallest subspace containing X, and the elements of X provide
convenient names for every element of their span.

Proposition. If w € (X), then
{w} U X) = (X).
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Proof. One inclusion is obvious. For the other, since w € (X)), we know we can write
it as a linear combination of elements of X. Thus if we have a linear combination
of elements of X and w, then we can substitute for w and get a linear combination
with just elements of X. O

This helps us greatly in cutting out redundant elements: anything we can name
using a smaller set of elements is extraneous.

Defintion. A spanning set is a set X such that (X) =V.

In general, these can be very big. One of the goals of much of linear algebra is
to give a very compact spanning set for an arbitrary vector space.
The corresponding small notion is linear independence.

Defintion. A set X is linearly independent if

a1171+-~-+an17n:()
implies a1 = -+ = a,, =0 for any v; € X.
If X is not linearly independent, then it is linearly dependent.

We again see only 0 showing up. We can restate this definition as “0 has a unique
presentation as a linear combination of elements of X.

Theorem. If X is linearly independent and
a101 + ...ap0, = b1w1 + - + bW,

where all vectors are from X and all coefficients are non-zero, then n = m and up
to reordering, a; = b; and v; = w; for all i.

Proof. Order the vs and ws so that v; = wy,...,0 = w;. Moving all terms to one
side then gives

(a1 — bl)ﬂl + -4 ((Lt — bt)@t + at+117t+1 —+ = (bt+1wt+1 + .. ) = 6
Since X is assumed to be linearly independent, we learn that a1 =---=a, =0
and byy; = --- =0, and by our assumption on the non-zeroness of the coefficients,
this forces t = n = m. Moreover, we learn that a; = b; for all 4. O

Thus knowing that 0 has a unique presentation as a linear combination ensures
that everything in the span does so. We can use span more directly to test for
linear independence.

Proposition. A set X is linearly independent if and only if for allv € X, v &
(X —A{v}).
Proof. We show the negative of this. X is linearly dependent if there is a linear
dependence relation

a1y + - -+ a, b, =0,
with some coefficient (say a;) not equal to zero. Solving for ¥; then expresses o1
as an element of the span of the remaining vectors. ([

Thus if a set is linearly independent, then we can add any vector not in the span
of it to it and still have a linearly independent set. On the other hand, if we add
in a vector in the span, then the set becomes linearly dependent.



