
LECTURE 2

Defintion. A subset W of a vector space V is a subspace if

(1) W is non-empty
(2) For every v̄, w̄ ∈ W and a, b ∈ F, av̄ + bw̄ ∈ W .

Expressions like av̄ + bw̄, or more generally

k∑

i=1

aiv̄ + i

are called linear combinations. So a non-empty subset of V is a subspace if it is
closed under linear combinations. Much of today’s class will focus on properties of
subsets and subspaces detected by various conditions on linear combinations.

Theorem. If W is a subspace of V , then W is a vector space over F with operations
coming from those of V .

In particular, since all of those axioms are satisfied for V , then they are for W .
We only have to check closure!

Examples:

Defintion. Let Fn = {(a1, . . . , an)|ai ∈ F} with coordinate-wise addition and scalar
multiplication.

This gives us a few examples. Let W ⊂ Fn be those points which are zero except
in the first coordinate:

W = {(a, 0, . . . , 0)} ⊂ Fn.
Then W is a subspace, since

a · (α, 0, . . . , 0) + b · (β, 0, . . . , 0) = (aα+ bβ, 0, . . . , 0) ∈ W.

If F = R, then W ′ = {(a1, . . . , an)|ai ≥ 0} is not a subspace. It’s closed under
addition, but not scalar multiplication.

We have a number of ways to build new subspaces from old.

Proposition. If Wi for i ∈ I is a collection of subspaces of V , then

W =
⋂

i∈I

Wi = {w̄ ∈ V |w̄ ∈ Wi∀i ∈ I}

is a subspace.

Proof. Let v̄, w̄ ∈ W . Then for all i ∈ I, v̄, w̄ ∈ Wi, by definition. Since each Wi is
a subspace, we then learn that for all a, b ∈ F,

av̄ + bw̄ ∈ Wi,

and hence av̄ + bw̄ ∈ W . ¤
Thought question: Why is this never empty?
The union is a little trickier.

Proposition. W1 ∪W2 is a subspace iff W1 ⊂ W2 or W2 ⊂ W1.
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Proof. ⇐ is obvious. We need to show the other, so assume that we can find w̄1 ∈
W1−W2 and w̄2 ∈ W2−W1. Then ifW1∪W2 is a subspace, then w̄1+w̄2 ∈ W1∪W2.
This means it’s in one of them, and without loss of generality, we may assume it’s
in W1. But this means

w2 = (w̄1 + w̄2)− w̄1 ∈ W1,

a contradiction. ¤
Example to keep in mind: R2 with W1 = x-axis and W2 = y-axis.
Instead of the union, we consider the smallest subspace containing the union.

Defintion. If W1 and W2 are subspaces of V , then the sum is

W1 +W2 = {aw̄1 + bw̄2|w̄i ∈ Wi}.
In other words, we consider all linear combinations of elements of W1 and W2.

Clearly if W is any subspace that contains W1 and W2, then W contains W1+W2.
On the other hand, it’s also closed under linear combinations and non-empty, so
this is a subspace.

Special attention is given to the case where W1 ∩W2 = {0̄}.
Defintion. If W1∩W2 = {0̄}, then we say the sum of W1 and W2 is the (internal)
direct sum, and we write it W1 ⊕W2.

So what’s so special about direct sums?

Proposition. Every element in W1 ⊕W2 can be uniquely written as w̄1 + w̄2.

Proof. Assume w̄1 + w̄2 = v̄1 + v̄2, where the subscript indicates the subspace from
which the element is drawn. Then rearranging, we see

w̄1 − v̄1 = v̄2 − w̄2.

The left-hand side is in W1, while the right-hand side is in W2, so both are in the
intersection. This means both are 0̄, and hence w̄i = v̄i. ¤

Our notion of sums therefore includes two distinct notions:

(1) being able to write elements as linear combinations
(2) being able to do so uniquely.

The former is related to span, the latter to linear independence.

Defintion. Let X ⊂ V . Then the span of X is the collection of all linear combi-
nations of elements of X:

Span(X) = 〈X〉 = {a1x̄1 + · · ·+ anx̄n|x̄i ∈ X,n ≥ 0}.
If X is empty, then 〈X〉 = {0̄}.

The following is immediate.

Proposition. The set 〈X〉 is a subspace of V .

Examples: For any V , 〈V 〉 = V . If X = W ∪ U , then 〈X〉 = W + U .
Just as before, if W is a subspace of V and W contains X, then 〈X〉 ⊂ W .

Thus 〈X〉 is the smallest subspace containing X, and the elements of X provide
convenient names for every element of their span.

Proposition. If w̄ ∈ 〈X〉, then
〈{w̄} ∪X〉 = 〈X〉.
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Proof. One inclusion is obvious. For the other, since w̄ ∈ 〈X〉, we know we can write
it as a linear combination of elements of X. Thus if we have a linear combination
of elements of X and w̄, then we can substitute for w̄ and get a linear combination
with just elements of X. ¤

This helps us greatly in cutting out redundant elements: anything we can name
using a smaller set of elements is extraneous.

Defintion. A spanning set is a set X such that 〈X〉 = V .

In general, these can be very big. One of the goals of much of linear algebra is
to give a very compact spanning set for an arbitrary vector space.

The corresponding small notion is linear independence.

Defintion. A set X is linearly independent if

a1v̄1 + · · ·+ anv̄n = 0̄

implies a1 = · · · = an = 0 for any v̄i ∈ X.
If X is not linearly independent, then it is linearly dependent.

We again see only 0̄ showing up. We can restate this definition as “0̄ has a unique
presentation as a linear combination of elements of X.

Theorem. If X is linearly independent and

a1v̄1 + . . . anv̄n = b1w̄1 + · · ·+ bmw̄m,

where all vectors are from X and all coefficients are non-zero, then n = m and up
to reordering, ai = bi and v̄i = w̄i for all i.

Proof. Order the v̄s and w̄s so that v̄1 = w̄1, . . . , v̄t = w̄t. Moving all terms to one
side then gives

(a1 − b1)v̄1 + · · ·+ (at − bt)v̄t + at+1v̄t+1 + · · · − (bt+1w̄t+1 + . . . ) = 0̄.

Since X is assumed to be linearly independent, we learn that at+1 = · · · = an = 0
and bt+1 = · · · = 0, and by our assumption on the non-zeroness of the coefficients,
this forces t = n = m. Moreover, we learn that ai = bi for all i. ¤

Thus knowing that 0̄ has a unique presentation as a linear combination ensures
that everything in the span does so. We can use span more directly to test for
linear independence.

Proposition. A set X is linearly independent if and only if for all v̄ ∈ X, v̄ 6∈
〈X − {v̄}〉.
Proof. We show the negative of this. X is linearly dependent if there is a linear
dependence relation

a1v̄1 + · · ·+ anv̄n = 0̄,

with some coefficient (say a1) not equal to zero. Solving for v̄1 then expresses v̄1
as an element of the span of the remaining vectors. ¤

Thus if a set is linearly independent, then we can add any vector not in the span
of it to it and still have a linearly independent set. On the other hand, if we add
in a vector in the span, then the set becomes linearly dependent.


