Def. The ideal/subring generated by a set \(X \) is the intersection of all ideals/subrings containing \(X \).

Prop 51: 1) Subring generated by \(X \) is the collection of all sums/differences of products of elements in \(X \).

2) \(\langle X \rangle = R \times X = \sum_{i=1}^{n} r_i x_i s_i \mid r_i, s_i \in R, x_i \in X \)

3) If \(R \) is commutative,

\[\langle X \rangle = RX = \sum_{i=1}^{n} r_i x_i \mid r_i \in R, x_i \in X \]

Def. An ideal \(I \) is maximal if \(I \subseteq J \subseteq R \), \(J \) an ideal \(\Rightarrow J = I \) or \(J = R \).

An ideal \(I \) is prime if \(ab \in I \), then \(a \in I \) or \(b \in I \).

Thm 52: (If \(R \) is commutative) every ideal is contained in a maximal ideal.

Recall: \(a \leq b \): 1) \(a \leq a \)

2) \(a \leq b, b \leq a \Rightarrow a = b \)

3) \(a \leq b, b \leq c \Rightarrow a \leq c \)

On \(\sum I \mid I \) is a proper ideal, \(\leq \) is a partial order.

Zorn's Lemma: In a partially ordered set, if every chain has a least upper bound, then there are maximal elements.

Chain: \(\ldots \leq a \leq a_{n+1} \leq \ldots \)

Least ub: \(C \) a chain, \(u \) is an lub if \(a \leq u \) if \(v \) has the same property, then \(u \leq v \).

Pf: \(\ldots \subseteq I_1 \subseteq I_2 \subseteq \ldots \) is a chain in \(\sum I \mid I \) proper, \(\leq \)

The least upper bound: \(U_{\sum I} \),

\[x \in U_{\sum I} \Rightarrow x \in I_n \quad y \in U_{\sum I} \Rightarrow y \in I_n \]

\[x, y \in I_n \Rightarrow rx, xr, xy, x-y \in I_n \quad (I_n \text{ an ideal}) \]

\[\Rightarrow rx, xr, xy, etc \in U_{\sum I} \]

1 \(\notin I_n \) for any \(n \), since \(I_n \) is proper, \(1 \notin U_{\sum I} \Rightarrow U_{\sum I} \) proper.
Zorn's Lemma implies maximal elements.

Ex: Maximal ideals in \mathbb{Z} are $\langle p \rangle = p\mathbb{Z} = \mathbb{Z}/p$

= prime ideals.

Thm 53: If M is maximal, then R/M is a field
- If R/M is a field, then M is maximal.
- If R is prime, " " " " , then R/M is an integral domain.
- If R/\mathfrak{a} is an integral domain, \mathfrak{a} prime.

Pf: M maximal: Choose $a \neq 0 \in R/M$. Look at the ideal gen by a.
- Lift to an ideal in R via $R \xrightarrow{\pi_M} R/M$
 $$\pi_M^{-1}(\langle a \rangle) = Ra + M$$ is an ideal in R that contains $M \Rightarrow Ra + M = M$ or $Ra + M = R$ (M maximal)
 $a \notin M \Rightarrow Ra + M$ $\notin M \Rightarrow Ra + M = R$
 \Rightarrow have $b \in R$ s.t. $m \in M$ s.t.
 $$ba + m = 1.$$
 $$\Rightarrow \pi_M(ba + m) = 1$$
 $$\pi_M(b) \pi_M(a) + \pi_M(m) = \pi_M(b), \pi_M(a)$$
 $$\Rightarrow \pi_M(b)$$ is the desired inverse.

If R/M is a field, then R/M has exactly 2 ideals: \mathbb{Z}_0 $\neq R/M$.
- $(a \neq 0, a \in I, \text{then } 1 = a^{-1}a \in I \Rightarrow I = R/M)$ (holds in general)
 \Rightarrow the only ideals between M and R are M and R. $\Rightarrow M$ max.

If A prime: $\bar{a}, \bar{b} \in R/\mathfrak{a}, \text{then } \bar{a}\bar{b} = \bar{0}$, $\text{then } a \cdot b \in \mathfrak{a}$.
 \Rightarrow either $a \in \mathfrak{a}$ or $b \in \mathfrak{a}$ $\Rightarrow \bar{a}$ or $\bar{b} = \bar{0}$. $\Rightarrow R/\mathfrak{a}$ has no zero divisors.

Converse follows by reversing arrows. \(\square\)

Cor 54: Maximal ideals are prime (R is comm).

Def A multiplicative subset S is one for which $a, b \in S \Rightarrow ab \in S$ (S contains no zero divisors)
Ex: If R is an integral domain, $R - \{0\}$ is a mult-subset.
- If $f \in R$ is not a zero divisor, then $2f, f^2, f^3, \ldots \in R$ is a mult-subset.
- If π is prime, then $R - \pi$ is a mult-subset.
- If $S_1 \checkmark S_2$ are mult, then so is $S_1 \cap S_2$.

Def The localization of R away from S is the ring R_S together with a map $R \rightarrow R_S$ that satisfies the following universal property: If $R \xrightarrow{f} R'$ is a homomorphism s.t.

$$f(s) \in (R')^X \quad \forall s \in S,$$

then there is a unique map $\tilde{f} : R_S \rightarrow R'$.

$$\begin{array}{ccc}
R & \rightarrow & R'\\
\downarrow & \searrow & \searrow \tilde{f} \\
R_S & \rightarrow & R'
\end{array}$$

Construction: Look at fractions $\frac{a}{s}$, $a \in R$, $s \in S$.

1) $R \times S$ put on this an equivalence relation: $(a, s) \sim (b, t)$ iff $at = bs$.

$(a, s) \sim (b, t), \quad (b, t) \sim (c, u)$

$at = bs \quad bu = ct$

$atu = bsu = sbu = sct \Rightarrow atu = sct$

$\Rightarrow t(au - sc) = 0.$

$\Rightarrow au - sc = 0. \quad \Leftrightarrow (a, s) \sim (c, u).$

2) $R \times S/\sim$:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$

$$\frac{a}{s} \cdot \frac{b}{t} = \frac{a \cdot b}{s \cdot t}.$$