Fibonacci in Groups and Rings University of Virginia MATH 552 Intro to Abstract Algebra Spring 08

Maura Rowell

April 17, 2008

- 1 Background
- 2 Definitions
- 3 Fibonacci in Groups and Rings
 - The Golden Matrix Ring
 - Example 1
 - Example 2
- 4 Fibonacci in the \mathbb{R} world
 - Fibonacci Spirals
 - Application to Music

Fibonacci the Man

- o Leonardo Pisano
- Lived from 1170 to 1250
- He was an Italian mathematician who has been called the most talented mathematician of the Middle Ages
- He is known for
 - Spreading the Hindu-Arabic numeral system in Europe
 - The Fibonacci numbers

• 0, 1, 1, 2, 3, 5, 8, 13,...

- 0, 1, 1, 2, 3, 5, 8, 13,...
- The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, G(S) = 1.618033989...

- 0, 1, 1, 2, 3, 5, 8, 13,...
- The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, G(S) = 1.618033989...
- The reciprocal of G(S) is 0.1618033989..., so

- 0, 1, 1, 2, 3, 5, 8, 13,...
- The ratio of two any consecutive numbers, for example 13/8, approaches the Golden Section, G(S) = 1.618033989...
- The reciprocal of G(S) is 0.1618033989..., so
- 1/G(S) = 1 + G(S)

Background

- Fibonacci groups were first introduced by J. H. Conway, the creator of the Game of Life (A cellular automaton)
- Used largely to test various computational techniques

Definitions

 Fundamental Period - the length of a smallest portion of the domain over which the function completes a cycle

Definitions

- o Fundamental Period the length of a smallest portion of the domain over which the function completes a cycle
- o k(m) the Fibonacci length of a sequence mod m

Definitions Cont.

• Fibonacci Sequence - the first number of the sequence is 0, the second 1, and each subsequent number is equal to the sum of the previous two numbers

Definitions Cont.

- Fibonacci Sequence the first number of the sequence is 0, the second 1, and each subsequent number is equal to the sum of the previous two numbers
- \circ Fibonacci Group the Fibonacci group F(n) is defined by
 - $F(n) = \langle a_1, a_2, ..., a_n | a_i a_{i+1} = a_{i+2}, i = 1, ..., n \rangle$ where the subscripts are reduced mod n to lie in the range 1,2,...n

Golden Matrix Ring

The matrix A =

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

can be used to derive an explicit formula for the Fibonacci Numbers in terms of the golden ratio, $\phi = (1+\sqrt{5})/2$, and its conjugate.

Golden Matrix Ring

The matrix A =

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

can be used to derive an explicit formula for the Fibonacci Numbers in terms of the golden ratio, ϕ = $(1+\sqrt{5})/2$, and its conjugate.

The simplest ring generated by A is $\mathbb{Z}[A]$, the ring of polynomials in A with integer coefficients.

In $\mathbb{Z}[A]$, A^2 - A - 1 = 0 because the characteristic polynomial of A is det(XI-A) = X^2 - X - 1, which is

also the characteristic polynomial of the Fibonacci

recurrence relation $F_{n+2} = F_{n+1} + F_n$.

Since ϕ is the positive root of $\phi^2 - \phi - 1 = 0$, $\mathbb{Z}[A]$ and $\mathbb{Z}[\phi]$ are isomorphic under the eigenvalue map ε : $\mathbb{Z}[A] \to \mathbb{Z}[\phi]$ determined by $\varepsilon(A) = \phi$ and $\varepsilon(I) = 1$.

$$\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1)$$

- $\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 x 1)$
- $\circ \mathbb{Z}[X] \to \mathbb{Z}[\phi]$

$$\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1)$$

$$\circ \ \mathbb{Z}[X] \to \mathbb{Z}[\phi]$$

$$\circ x \mapsto \phi$$

$$\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1)$$

$$\circ \mathbb{Z}[X] \to \mathbb{Z}[\phi]$$

$$\circ x \mapsto \phi$$

•
$$x^2 - x - 1 \mapsto \phi^2 - \phi - 1 = 0$$

$$\mathbb{Z}[A] \cong \mathbb{Z}[\phi] = \mathbb{Z}[X]/(x^2 - x - 1)$$

$$\circ \mathbb{Z}[X] \to \mathbb{Z}[\phi]$$

$$\circ x \mapsto \phi$$

$$x^2 - x - 1 \mapsto \phi^2 - \phi - 1 = 0$$

• So
$$Ker = < x^2 - x - 1 >$$

• Because the roots of $x^2 - x - 1$ are not in \mathbb{Z} , $x^2 - x - 1$ is irreducible, and therefore prime

- Because the roots of x^2-x-1 are not in \mathbb{Z} , x^2-x-1 is irreducible, and therefore prime
- This means $\mathbb{Z}[\phi]$ is an integral domain.

$$\phi^2 - \phi - 1 = 0$$

$$\phi^2 - \phi - 1 = 0$$

$$\circ \phi^2 - \phi = 1$$

$$\phi^2 - \phi - 1 = 0$$

$$\circ \phi^2 - \phi = 1$$

$$\phi(\phi-1)=1$$

$$\phi^2 - \phi - 1 = 0$$

$$\phi^2 - \phi = 1$$

$$\phi(\phi - 1) = 1$$

$$\circ$$
 So ϕ is a unit and $(1-\phi)$ = $\phi^{-1}=-ar{\phi}$

$$\phi^2 - \phi - 1 = 0$$

$$\phi^2 - \phi = 1$$

$$\phi(\phi - 1) = 1$$

$$\circ$$
 So ϕ is a unit and $(1-\phi)$ = $\phi^{-1}=-ar{\phi}$

$$\circ$$
 Since ϕ is a unit, so is ϕ^n

•
$$\phi(\phi - 1) = \phi\phi^{-1} = \phi(-\bar{\phi}) = -\phi\bar{\phi} = -\phi(\phi - 1) = 1$$

$$\phi(\phi - 1) = \phi\phi^{-1} = \phi(-\bar{\phi}) = -\phi\bar{\phi} = -\phi(\phi - 1) = 1$$

$$\circ$$
 So $-\phi^n$ is also a unit

$$\phi(\phi - 1) = \phi\phi^{-1} = \phi(-\bar{\phi}) = -\phi\bar{\phi} = -\phi(\phi - 1) = 1$$

- \circ So $-\phi^n$ is also a unit
- \circ So the units are $\pm\phi^{\pm n}$

By the isomorphism ε , $\mathbb{Z}[A]$ shares the same properties.

.

 $\mathbb{Z}[A]$ is called the Golden Matrix Ring

The Ring of Generalized Fibonacci Sequences

 \circ Consider the set $\mathbb F$ of all integer sequences $\{G_n\}_{n=1}^{\infty}$ satisfying the recurrence relation G_{n+2} = $G_{n+1} + G_n$, regardless of initial conditions.

The Ring of Generalized Fibonacci Sequences

- Consider the set \mathbb{F} of all integer sequences $\{G_n\}_{n=1}^{\infty}$ satisfying the recurrence relation $G_{n+2} = G_{n+1} + G_n$, regardless of initial conditions.
- This is the generalized Fibonacci Sequence.

- Consider the set \mathbb{F} of all integer sequences $\{G_n\}_{n=1}^{\infty}$ satisfying the recurrence relation $G_{n+2} = G_{n+1} + G_n$, regardless of initial conditions.
- o This is the generalized Fibonacci Sequence.
- \mathbb{F} is an abelian group under the addition $\{G_n\}$ + $\{H_n\}$ = $\{G_n + H_n\}$.

 \circ Define the matrix map $\mathcal{M}:\mathbb{F} o\mathbb{Z}[A]$

O Define the matrix map $\mathcal{M}:\mathbb{F} o\mathbb{Z}[A]$ by $\mathcal{M}(\{\mathit{G}_n\})=$

Operation Define the matrix map $\mathcal{M}:\mathbb{F} o \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\})=(G_1-G_0)I$

Operation Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 - G_0)I + G_0A$.

- Define the matrix map $\mathcal{M}:\mathbb{F} o \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\})=(G_1-G_0)I_-+G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get

- Define the matrix map $\mathcal{M}:\mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\})=(G_1-G_0)I^{-}+G_0A$.
- \circ \mathcal{M} is a group homomorphism and by induction, using A^2 = A+I, we get $G_{n-1}+G_nA$

- Define the matrix map $\mathcal{M}: \mathbb{F} o \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 G_0)I + G_0A$.
- \circ \mathcal{M} is a group homomorphism and by induction, using A^2 = A+I, we get $G_{n-1}+G_nA=A^n$

- Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) =$ $(G_1 - G_0)I + G_0A$.
- \circ $\mathcal M$ is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).

- Define the matrix map $\mathcal{M}:\mathbb{F} o \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$

- Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = \mathcal{G}(D)$.

- Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = \mathcal{G}(D)$.
- \circ Define the sequence map $\mathcal{L}: \mathbb{Z}[A] o \mathbb{F}$

- Operator Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = \mathcal{G}(D)$.
- \circ Define the sequence map $\mathcal{L}:\mathbb{Z}[A] o\mathbb{F}$ by $\mathcal{L}(a+bA)$

- Define the matrix map $\mathcal{M}:\mathbb{F} o\mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\})=(G_1-G_0)I^{-}+G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = \mathcal{G}(D)$.
- Define the sequence map $\mathcal{L}: \mathbb{Z}[A] \to \mathbb{F}$ by $\mathcal{L}(a+bA) = \{\mathcal{G}(A^n(a+bA))\}$.

- Operation Define the matrix map $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ by $\mathcal{M}(\{G_n\}) = (G_1 G_0)I + G_0A$.
- \mathcal{M} is a group homomorphism and by induction, using $A^2 = A + I$, we get $G_{n-1} + G_n A = A^n \mathcal{M}(\{G_n\})$ (Let this equal D).
- Here $a = G_{n-1}$ and $b = G_n$
- This gives you $G_n = b = \mathcal{G}(D)$.
- Define the sequence map $\mathcal{L}: \mathbb{Z}[A] \to \mathbb{F}$ by $\mathcal{L}(a+bA) = \{\mathcal{G}(A^n(a+bA))\}$.
- \circ Then $\mathcal L$ is a group homomorphism.

$$\quad \circ \ \mathcal{L}(\mathcal{M}(\{G_n\})) = \{G_n\} \ \text{and} \ \mathcal{M}(\mathcal{L}(a+bA)) = (a+bA).$$

- $\mathcal{L}(\mathcal{M}(\{G_n\})) = \{G_n\} \text{ and } \mathcal{M}(\mathcal{L}(a+bA)) = (a+bA).$
- \circ Thus, $\mathcal L$ and $\mathcal M$ form an inverse pair of group isomorphisms.

- $\mathcal{L}(\mathcal{M}(\{G_n\})) = \{G_n\} \text{ and } \mathcal{M}(\mathcal{L}(a+bA)) = (a+bA).$
- Thus, $\mathcal L$ and $\mathcal M$ form an inverse pair of group isomorphisms.
- . We can transfer the multiplicative structure of $\mathbb{Z}[A]$ to \mathbb{F} via $\mathcal L$ and $\mathcal M$.

• We define $\{G_n\}\{H_n\}$

• We define $\{G_n\}\{H_n\}=\mathcal{L}(\mathcal{M}(\{G_n\}))$

 \circ We define $\{G_n\}\{H_n\} = \mathcal{L}(\mathcal{M}(\{G_n\})\ \mathcal{M}(\{H_n\}))$

• We define $\{G_n\}\{H_n\} = \mathcal{L}(\mathcal{M}(\{G_n\}) | \mathcal{M}(\{H_n\}))$ and denote it by $\{(GH)_n\}$.

- We define $\{G_n\}\{H_n\} = \mathcal{L}(\mathcal{M}(\{G_n\}) | \mathcal{M}(\{H_n\}))$ and denote it by $\{(GH)_n\}$.
- \circ With this multiplication, $\mathbb F$ becomes a ring, and the maps $\mathcal{M}: \mathbb{F} \to \mathbb{Z}[A]$ and $\mathcal{L}: \mathbb{Z}[A] \to \mathbb{F}$ are isomorphisms of rings.

Fibonacci Sequences and Groups

 \circ An ordered pair (x_1,x_2) of elements of a group G determines a sequence in G by the rule $x_n x_{n+1}$ = X_{n+2} , $n \in \mathbb{N}$.

- An ordered pair (x_1, x_2) of elements of a group G determines a sequence in G by the rule $x_n x_{n+1} = x_{n+2}$, $n \in \mathbb{N}$.
- When this sequence is periodic, its fundamental period is called the Fibonacci length of (x_1, x_2) in G.

An Example

For the group \mathbb{Z}_2 x \mathbb{Z}_2 = $< a, b | a^2$ = b^2 = 1> we obtain the sequence

showing that the infinite dihedral group has Fibonacci length 6

A Second Example

The values of $U_n \pmod{7}$ are

$$0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1$$

and then repeat; so k(7) = 16. Note that $U_8 = 0 \pmod{7}$ so that the 16 terms in the period form two sets of 8 terms each.

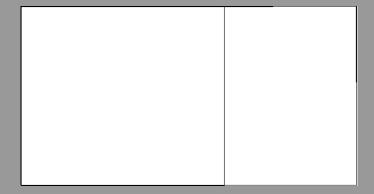
Fibonacci in the \mathbb{R} World

Fibonacci Spirals

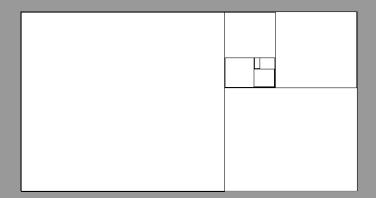
Start with a rectangle

Spirals Cont.

Then you create a square and a rectangle within the original rectangle

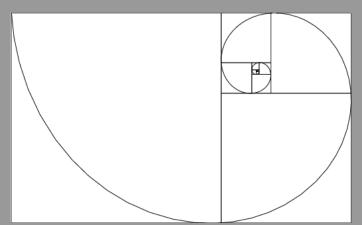


You continue doing this until you reach...



Spirals Cont.

Then you draw a spiral within the rectangle...



Application to Nature

- o The approach of a hawk to its prey: Their sharpest view is at an angle to their direction of flight; this angle is the same as the spiral's pitch.
- The arms of tropical storms
- The arms of spiral galaxies; the Milky Way, is believed to have 4 major spiral arms, each a Fibonacci spiral with pitch of about 12 degrees

Turku Power Station, Finland

Fibonacci Numbers in Music

Lateralus by Tool: If you count between pauses, the syllables in the verses from the first several Fibonacci numbers:

- (1) Black,
- (1) then,
- (2) white are,
- (3) all I see,
- (5) in my infancy,
- (8) red and yellow then came to be,
- (5) reaching out to me,
- (3) lets me see.
- (2) There is,
- (1) so,
- (1) much,
- O (2) more that
- (3) beckons me,
- (5) to look through to these,
- (8) infinite possibilities.
- (13) As below so above and beyond I imagine,
- (8) drawn outside the lines of reason,
- (5) push the envelope,
- (3) watch it bend.

Music Cont.

The time signatures of the chorus change from 9/8 to 8/8 to 7/8, and the song's original name was 9-8-7. 987 is the 17th step of the Fibonacci sequence.