DATE: Nov. 14, Wednesday
TIME: 10:00 am - 10:50 am

Please write clearly, reduce answers to their simplest form, and box your answers.
To receive full credit you must show ALL your work.

Student's Name (Please print): __

Pledge: On my honor as a student at the University of Virginia I have neither given nor received aid on this test.

Signature: _______________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6 (Bonus)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>110/100</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 (25 points)
Find the volume of the region E bounded above by $x^2 + y^2 + z^2 = 2$ and below by $z = x^2 + y^2$.
Problem 2 (25 points)
Consider the region R in \mathbb{R}^2 bounded by $x^2 - 2xy + 5y^2 = 1$, and the transformation T given by
\[x = u + \frac{v}{2}, \quad y = \frac{v}{2}. \]

(a) (10 points) Find, describe and sketch the region S in the uv-plane corresponding to R (via the transformation T in the sense that $T : S \to R$).

(b) (5 points) Find the Jacobian of T (Use the proper notation!).

(c) (10 points) Evaluate
\[I = \iint_R \sqrt{x^2 - 2xy + 5y^2} \, dA \]
using the transformation T.
Problem 3 (25 points)
Find the work done by the force field \(\mathbf{F}(x, y) = 3x^2 \mathbf{i} + (4x + y^2) \mathbf{j} \) on a particle that moves along the following paths:

(a) (10 points) \(C_1 \) is the line segment from \((1, 0)\) to \((0, 1)\).

(b) (15 points) \(C_2 \) is part of the curve \(x^2 + y^2 = 1 \) for which \(x \geq 0 \) and \(y \geq 0 \) (the particle moves counterclockwise).
Problem 4 (15 points)
Find the mass of a ball given by $x^2 + y^2 + z^2 \leq 9$ if the density at any point, denoted by $D(x, y, z)$, is proportional to its distance from the origin.

Problem 5 (10 points)
Using cylindrical coordinates set up, but do not evaluate the integral

$$I = \iiint_E dV,$$

where E is the region bounded above by $x^2 + y^2 + z^2 = 4$ and below by $z = \sqrt{2}$.
Bonus Problem 6 (10 points)
Solve Problem 5 using spherical coordinates.