MATH 231, Calculus III, Section 1, Fall 2007

Test 2

Date: Oct. 24, Wednesday Time: 10:00 am - 10:50 am

Please write clearly, reduce answers to their simplest form, and box your answers. To receive full credit you must show ALL your work.

Student's Name (Please print):

Pledge: On my honor as a student at the University of Virginia I have neither given nor received aid on this test.

Signature: _____

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
5 (Bonus)	10	
Total	110/100	

Problem 1 (25 points)

(a) (8 points) Evaluate the double integral

$$\iint_{R} (4-x)dA, \quad \text{where} \quad R = \{(x,y) \in \mathbb{R}^{2} | \ 0 \le x \le 4, 0 \le y \le 3\},\$$

by first identifying it as the volume of a solid.

(b) (8 points) If z = z(x, y) is given by $\sin(xyz) = x + 2y + 3z$, find $\frac{\partial z}{\partial x}$.

(c) (9 points) Let $z = z(u^2 - v^2, v^2 - u^2)$. Show that

$$u\frac{\partial z}{\partial v} + v\frac{\partial z}{\partial u} = 0.$$

Problem 2 (25 points)

Find the directions in which the directional derivative of the function $f(x, y) = x^2 + \sin(xy)$ at the point (1, 0) has the value 1.

Problem 3 (25 points) Evaluate the following double integral:

$$I = \iint_D \sin(xy) \, dA,$$

where D is bounded by y = 1, y = 2, the y-axis and $x = \frac{\pi}{y}$.

Problem 4 (25 points) Evaluate the following double integral:

$$I = \iint_{D} \frac{y \, dA}{\sqrt{x^2 + y^2 - (x^2 + y^2)^2}},$$

where $D = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0, \frac{1}{2} \le x^2 + y^2 \le 1\}.$

Bonus Problem 5 (10 points)

Suppose that f is a differentiable function of three variables. Show that the maximum value of the directional derivative of f in the direction of \mathbf{u} is $|\nabla f(x, y, z)|$ and it occurs when \mathbf{u} has the same direction as the gradient vector of f.