Equations in Three-Dimensions >> Cylinders and Quadric Surfaces | Parabolas in
two directions | Point or
Hyperbola | | $ax^2 - by^2 = cz$ | Hyperbolic
Paraboloid | l Linear term | 1 Negative | 2 quadratic
terms | |---|---|--|---------------------------|---------------------------|---------------|--|--| | Parabolas in one direction | Point or
Circle/Ellipse | # T | $ax^2 + by^2 = cz$ | Paraboloid | 1 Linear term | All positive | 2 quadratic
terms | | Hyperbolas | Nothing or
Circle/Ellipse | | $-ax^2 - by^2 + cz^2 = d$ | Hyperboloid of 2 Sheets | | 2 Negative | 3 quadratic
terms | | Hyperbolas | Circle/Ellipse | | $ax^2 + by^2 - cz^2 = d$ | Hyperboloid of
1 Sheet | | 1 Negative | 3 quadratic
terms | | Ellipses | Ellipse (use intercepts to find major axis) | 1. The state of th | $ax^2 + by^2 + cz^2 = d$ | Ellipsoid/Sphere | Constant | All positive | 3 quadratic
terms | | Intersecting
Lines | Point or
Circle/Ellipse | | $ax^2 + by^2 = cz^2$ | Cone | No constant | All positive | 3 quadratic
terms | | A 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | $2x^2 - y = 3$ | Cylinder | | | Only 2 variables | | Traces of Other Variables | Traces of
Unique
Variable | Surface
Shape | Example | Then
Surface Is | And | And | | | | | | | | | Amende Colonic Description (Colonic Street Schools of Colonic Colonic Street Schools of Colonic Coloni | The second of th | Note: Constant terms in table are positive real numbers "Unique" variable determines axis of surface (in the above examples, z is the unique variable) - does not apply to Ellipsoid If equation involves Quadratic AND Linear terms of one or more variables, the center is not at the origin → Complete the Square