SHORT REVIEW FOR MATH 231 FINAL

Geometry: dot products, cross products, scalar triple product ; interpretation as area of parallelogram, volume of parallelpiped.

Euclidean/Cartesian, Polar, Cylindrical, Spherical Coordinates and their volume elements $dxdydz, rdrd\theta, \rho^2 \sin(\phi)d\rho d\phi d\theta$.

Parametric equations of curves $C : \mathbf{r}(t)$: (1) line through P in direction v [P + tv], (2) line segment from P to Q [(1 - t)P + tQ]. Tangent line to curve at P. Level curves f(x, y) = k. Parametric equations of surfaces $S : \mathbf{R}(u, v) = x(u, v), y(u, v), z(u, v)$): (1) plane through P_0 with normal vector $\mathbf{n} [(P - P_0) \bullet \mathbf{n} = 0]$, (2) sphere $\rho = a$ in spherical, (3) cylinder r = k in cylindrical, (4) graph z = g(x, y) or y = g(x, z).

Tangent plane to surface at $P_0 = r(u_0, v_0)$: $\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v$; graph z = g(x, y) has $\mathbf{n} = (-g_x, -g_y, 1)$. Level surfaces f(x, y, z) = k. Area of surface $A(S) = \int \int_S 1 d\mathbf{S}$; surface integral of function $\int \int_S f(x, y, z) d\mathbf{S}$

 $= \int \int_D f(r(u,v) r_u \times r_v \, dA.$

Functions: vector-valued r(t), tangent vector, r'(t); scalar-valued functions, partial derivatives, directional derivatives $D_u(f)$, gradient; differentiable functions, directional derivatives given by gradient dot u; Clairaut's Theorem (mixed partials agree if continuous). Chain Rule. Gradient as direction of maximum increase of function, with $\| \bigtriangledown (f)(\vec{x}) \|$ the maximum rate of increase at \vec{x} ; tangent plane to z = f(x, y) or to implicitly to a level surface f(x, y, z) = k.

Local extrema occur at critical points or on the boundary [No Lagrange Multipliers this test!!]; a continuous function on a closed bounded set attains its absolute maximum and minimum on that set.

Integration: Integration in Euclidean, polar, cylindrical, spherical coordinates. Change of variables, transformations, Jacobians. Change of iteration. Line integrals, work. Surface integrals.

Regions: R open [all points P in R have ball $B_{\varepsilon}(P)$ contained in R; usually < inequalities], connected [there is a continuous curve from P to Q for any two points in R], simply connected [connected and any closed path in R can be continuously shrunk in R to a point, i.e. no holes], closed [all limit points of sequences in R stay in R; usually \leq inequalities]. Examples: open/closed disk , annulus, sphere, ball.

Vector Fields: \mathbf{F} , gradients $\mathbf{F} = Grad(f) = \nabla f$, curl $curl(\mathbf{F}) = \nabla \times \mathbf{F}$, divergence $\nabla \bullet \mathbf{F}$, Curl(Grad(f)) = 0, Div(Curl(\mathbf{F})) = 0. Conservative ($\mathbf{F} = \text{Grad}(f)$) iff mixed partials agree [when R open, simply connected], iff (closed line integrals zero) iff (line integrals independent of path) [when R open, connected].

Oriented surface [smooth choice of normal vector], surface integral of vector field $\int \int_S \mathbf{F} \bullet \mathbf{n} d\mathbf{S} = \int \int_D \mathbf{F}(r(u, v)) \bullet r_u \times r_v \, dA.$

For nice functions and regions and boundaries: Green's Theorem $\int_{C=\partial S} Pdx + Qdy = \int \int_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$; Stoke's Theorem $\int_{C=\partial S} Pdx + Qdy + Rdz = \int_{C} \mathbf{F} \bullet d\mathbf{r} = \int \int_{S} Curl(\mathbf{F}) \bullet \mathbf{n} \, dS = \int \int_{C} Curl(\mathbf{F})(r(u,v)) \bullet r_u \times r_v \, dA$; Divergence Theorem $\int \int_{S=\partial E} \mathbf{F} \bullet d\mathbf{r} = \int \int \int_{E} Div(\mathbf{F})(r(u,v)) \, dV$.