The Frenet-Serret Formulas

September 13, 2006

We start with the formula we know by the definition:

\[\frac{dT}{ds} = \kappa N. \]

We also defined

\[B = T \times N. \]

We know that \(B \) is a unit vector, since \(T \) and \(N \) are orthogonal unit vectors. This means, just as for \(T \), that

\[B \cdot \frac{dB}{ds} = 0. \]

Now we differentiate:

\[\frac{d}{ds} B = \frac{d}{ds} (T \times N) = \left(\frac{dT}{ds} \right) \times N + T \times \left(\frac{dN}{dx} \right). \]

Since the derivative on \(T \) is in the same direction as \(N \), we know that the first cross product is \(0 \). The second one we can’t say much about. We do, however, know that it is orthogonal to \(T \), since \(T \) is one of the factors. In other words, we know that

\[\frac{d}{ds} B \cdot B = 0 = \frac{d}{ds} B \cdot T. \]

This means that it has to be in the direction of \(N \), and we just define the magnitude to be \(-\tau \). In other words, we see that

\[\frac{d}{ds} B = -\tau N. \]

Now we approach the derivative of \(N \). We can write \(N = B \times T \), just by thinking about the right hand rule. Now we differentiate this, using the previous rules:

\[\frac{dN}{ds} = \left(\frac{dB}{ds} \right) \times T + B \times \left(\frac{dT}{ds} \right) = -\tau N \times T + B \times \kappa N. \]

Now we just rewrite the cross products using the right hand rule:

\[-\tau N \times T + B \times \kappa N = \tau B - \kappa T. \]