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Name: Instructor:

Instructions: Write clearly. You must show all work to receive credit.

Missed: pg1 pg2 pg3 pg4 pg5 pg6 pg7

. pg8 pg9 pg10 pg11 pg12 Total Score /300

1. (10 points) Set up the partial fraction decomposition of the following rational function. Do not solve
for the coefficients.

5x2 − 6x+ 2008

(x− 1)(5x+ 3)2(x2 + 4)(x2 + x+ 1)2

2. (10 points each) Evaluate the following definite integrals.

(a)

∫ π/2

0

x2 sin(x) dx
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(b)

∫ 3

0

5x

(x2 − 1)2/3
dx

3. (10 points each) Compute the following indefinite integrals.

(a)

∫
1

x2 + 2x+ 2
dx
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(b)

∫
x2

(1− x2)3/2
dx

4. (15 points) Compute the arc length of the curve f(x) = 1
4
x2 − 1

2
ln(x) on the interval 1 ≤ x ≤ 5.
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5. (5 points each) Complete the following definitions:

(a) The improper integral
∫∞
a
f(x) dx is convergent if

(b) The improper integral
∫∞
a
f(x) dx is divergent if

6. (10 points) Set up, but do not evaluate, an integral to compute the surface area of the solid of
revolution generated by revolving the curve f(x) = cos(x), 0 ≤ x ≤ π/2, about the y-axis.

7. (5 points each) Find polar coordinates (r, θ) for the point with Cartesian coordinates (x, y) = (4,−4)
such that

(a) r > 0:

(b) r < 0:
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8. Consider the parametric curve defined by the equations x(t) = cos3(t), y(t) = sin3(t), 0 ≤ t ≤ π/2.

(a) (15 points) Write the equation of the tangent line to the curve at the point where t = π/4.

(b) (15 points) Compute the length of the parametric curve.
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9. (15 points) Find the area of the shaded region below, inside the polar curve r = 2 and outside the
polar curve r = 2 cos(2θ).
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10. (15 points each) Evaluate the following double integrals.

(a)

∫∫
D

xey dA where D is the region bounded by the curves y = 4− x, y = 0, and x = 0.

(b)

∫ 1

0

∫ ln(3)

0

xyexy
2

dx dy
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11. (10 points each) Compute the sums of the following infinite series.

(a)
∞∑
n=2

e3−2n

(b)
∞∑
n=0

(−1)nπ2n+1

62n+1(2n+ 1)!

12. (10 points) The letter k is an arbitrary real number that has been fixed ahead of time. Show that

the infinite series
∞∑
n=1

nk3−n converges no matter what value of k has been chosen.
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13. (10 points) Determine whether the following infinite series are convergent, or divergent. State which
test(s) you use to reach your conclusion. Show all work.

(a)
∞∑
n=2

n3

√
n4 − 2n2 + 1

(b)
∞∑
n=1

arctan(n)

n2

14. (5 points each) Complete the following definitions.

(a) The infinite series
∑∞

n=1 an is convergent if

(b) The infinite series
∑∞

n=1 an is divergent if

(c) The infinite series
∑∞

n=1 an is absolutely convergent if

(d) The infinite series
∑∞

n=1 an is conditionally convergent if
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15. (15 points) Determine whether the following series is conditionally convergent, absolutely convergent,
or divergent. State which test(s) you use to reach your conclusion. Show all work.

∞∑
n=241

(−1)n+1

n ln(n)

16. (10 points) Find the interval and radius of convergence of the following power series:

∞∑
n=12

en(x− 2)n



Math 132 - Spring 2008 Final Exam Page 11

17. (10 points each) Find Taylor series centered at a = 0 for the following functions. Simplify your
answer. State the radius of convergence.

(a) f(x) =
x

4− 2x3

(b) f(x) = (1 + 2x)−2
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18. (15 points) Find the degree three Taylor polynomial T3(x) at a = 4 for f(x) =
√
x.

19. Write out and sign the Honor Pledge.


