Lecture 24 — Functions as Power Series

Already saw that \(\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \).

Thm If \(f(x) = \sum_{n=0}^{\infty} a_n (x-b)^n \) has a non-zero radius of convergence \(R \), then

1. \(f(x) \) is differentiable \(\uparrow \)

\[f'(x) = \sum_{n=0}^{\infty} a_n \cdot n \cdot (x-b)^{n-1}, \text{ with radius of convergence } R \]

2. \(f(x) \) is integrable \(\uparrow \)

\[\int f(x) \, dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}, \text{ with radius of convergence } R. \]

So we can use our known power series:

\[\frac{1}{1-(\frac{1}{a})} = \sum_{n=0}^{\infty} \left(\frac{x}{a} \right)^n = \sum_{n=0}^{\infty} \frac{x^n}{a^n} \]

The radius of convergence of \(\frac{1}{1-x} \) is 1, so the radius of convergence of \(\frac{1}{1-(\frac{1}{a})} \) is \(a \).

Ex: \(\frac{1}{(1-x)^2} = \frac{d}{dx} \left(\frac{1}{1-x} \right) = \sum_{n=0}^{\infty} n \cdot x^{n-1} = 0 + 1 + 2x + 3x^2 +... \)

(reindexed)

\[\sum_{n=0}^{\infty} (n+1) x^n \]

\[\frac{2}{(1-x)^3} = \frac{d}{dx} \left(\frac{1}{(1-x)^2} \right) = \sum_{n=0}^{\infty} (n+1) \cdot n \cdot x^{n-1} = \sum_{n=0}^{\infty} \frac{(n+2)(n+1)x^n}{(n+2)(n+1)} \]

The radius of convergence in all cases is still 1.

Quick Review: How do we find this? Ratio test.

\(\sum_{n=0}^{\infty} (n+1)x^n \): look at \(\lim_{n \to \infty} \left| \frac{(n+2)x^{n+1}}{(n+1)x^n} \right| = \lim_{n \to \infty} \left| \frac{n+2}{n+1} \right| x < 1 \)

\(\longleftrightarrow |x| < 1 \leftrightarrow R_{\text{of C}} = 1 \).

Can get more complicated functions:

\[\frac{x}{(1-x)^2} = x \cdot \frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} n \cdot x^n, \text{ etc} \]
Also get integrals:

\[\int \frac{1}{1 + x} \, dx = \frac{1}{1 - (-x)} = \sum_{n=0}^{\infty} (-1)^n x^n \quad \text{Ref: C = 1} \]

So \(\ln(1 + x) = \int \frac{1}{1 + x} \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1} \quad \text{Ref: C = 1} \)

This series converges absolutely for \(|x| < 1 \).

Have to check what happens at \(|x| = 1 \):

\(x = 1 \): \(\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \), Series is alternating, \(b_n = \frac{(-1)^n}{n+1} \) is decreasing \(\implies \lim_{n \to \infty} b_n = 0 \).

\(\Rightarrow \) converges

\(x = -1 \): \(\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \cdot (-1)^{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{2n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = -\sum_{n=0}^{\infty} \frac{1}{n+1} \) diverges.

\(\therefore x = 1 \) learn that \(\ln(2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \).

So while \(\frac{1}{1 + x} \) converges only on \((-1, 1) \),

\(\ln(1 + x) \) converges on \((-1, 1) \).

\[\int \frac{1}{1 + x^2} \, dx = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} \]

\(\tan^{-1}(x) = \int \frac{1}{1 + x^2} \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \)

\(\frac{1}{1 + x^2} \) converges for \(|x^2| < 1 \) \(\iff \) \(-1 < x < 1 \)

So \(\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \) converges for \(-1 < x < 1 \)

\(\therefore x = 1 \): \(\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \) converges by alternating series test.

\(\therefore x = -1 \): \(\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot (-1)^{2n+1} = -\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \) converges by alternating series test.
Learn that \(\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \) converges on \([-1, 1]\).

If \(x = 1 \), learn that
\[
\frac{\pi}{4} = \tan^{-1}(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.
\]

Remarks on radius of convergence:

1. Important that we have absolute convergence. This essentially lets us commute limits if claim continuity.

2. Absolute convergence is an "open" condition: if it converges absolutely at a point, it does so near the point, hence having on open interval's worth of points.

3. Usually easy to find the ROC using ratio test.