very hard to compute

Ex: \(f(x,y) = 1 \), \(R = [0,1] \times [0,1] \) Then \(\sum f(x^*, y^*) \Delta A = \sum \Delta A \)

Now \(\sum \Delta A = \) sum of areas of rectangles that cover \([0,1] \times [0,1] \)

\(= \) area of \([0,1] \times [0,1] = 1. \)

In fact, for any \(R \),

\[\iint_R dA = \text{area}(R) \]

Can also look at average values:

\(f_{av} = \) value so that if we have one box with this height and base \(R \), we get the right volume.

\[f_{av} \cdot \text{area}(R) = \iint_R f(x,y) \, dA. \]

We compute these with a "fundamental theorem".

Theorem: If \(f \) is continuous, then

\[\iint_R F(x,y) \, dA = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx \]

\[\text{hold } x \text{ constant} \]

\[\text{hold } y \text{ constant} \]

\[= \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy \]

Ex: \(R = [0,2] \times [0,2] \) \(f(x,y) = xy \)

\[\iint_R xy \, dA = \int_0^2 \int_0^2 xy \, dy \, dx \]

\[\int_0^2 \left(\frac{x^2 y^2}{2} \right) \bigg|_{y=0}^{y=2} \, dx = \int_0^2 2x \, dx = 4 \]
Ex: \(R = [0, \pi/2] \times [0, \pi/4] \)

\[f(x, y) = \sin x + \cos y \]

\[
\iint_{R} f(x, y) \, dA = \int_{0}^{\pi/2} \int_{0}^{\pi/4} \sin x + \cos y \, dy \, dx
\]

\[
\int_{0}^{\pi/2} \left(\int_{0}^{\pi/4} (\sin x + \cos y) \, dy \right) \, dx = \int_{0}^{\pi/2} \left(\int_{0}^{\pi/4} \sin x + \frac{\sqrt{2}}{2} \, dy \right) \, dx
\]

\[
= -\frac{\pi}{4} \cos x + \pi \int_{0}^{\pi/2} \frac{\sqrt{2}}{2} \, dx = \frac{\pi}{4} + \frac{\pi \sqrt{2}}{4}
\]

Fubini’s Theorem. If \(f \) is continuous, then

\[
\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy.
\]

In other words, the order of integration doesn’t matter.

Why do we have such a formula? Compare with cross-sections.

\[A(x) = \int_{c}^{d} f(x, y) \, dy \quad \text{area of cross-section \(\parallel \) to \((y, z) \)-plane \(\sigma \) \(x \):} \]

\[
\Rightarrow \int_{1}^{6} \int_{0}^{1} f(x, y) \, dA = \int_{0}^{1} A(x) \, dx = \int_{0}^{1} \left(\int_{0}^{1} f(x, y) \, dy \right) \, dx
\]

What about non-rectangular \(R \)? Express one variable’s bounds in terms of the other:

\[
\begin{align*}
R & : \begin{cases} y = 2 - 2x \\ y = 0 \end{cases} \\
& : 0 \leq x \leq 1
\end{align*}
\]

\[f(x, y) = 3x \]

So \(0 \leq x \leq 1 \) and for fixed \(x \), \(0 \leq y \leq 2 - 2x \).

\[
\int_{0}^{1} \int_{0}^{2-2x} 3x \, dy \, dx = \int_{0}^{1} (3xy) \bigg|_{0}^{2-2x} \, dx = \int_{0}^{1} (6x - 6x^2) \, dx
\]

\[
= 3x^2 - 2x^3 \bigg|_{0}^{1} = 1
\]
2. Big Cases:

I. Bound by 2 functions of \(x \): \(a \leq x \leq b \), \(c(x) \leq y \leq d(x) \)

\[
\iint_{R} F(x, y) \, dA = \int_{a}^{b} \int_{c(x)}^{d(x)} f(x, y) \, dy \, dx
\]

Ex:

\[
\iint_{R} xy \, dA = \int_{0}^{4} \int_{0}^{\sqrt{x}} xy \, dy \, dx
\]

\[
= \int_{0}^{4} \frac{x^{2}}{2} \, dx = \int_{0}^{4} \frac{x^{2}}{2} \, dx = \frac{x^{3}}{6} \bigg|_{0}^{4} = \frac{32}{3}
\]

II. Bound by 2 functions of \(y \):

\[
\iint_{R} F(x, y) \, dA = \int_{c}^{d} \int_{a(y)}^{b(y)} f(x, y) \, dx \, dy
\]

Ex:

\[
\iint_{R} xy \, dA = \int_{0}^{4} \int_{0}^{\sqrt{y}} yx \, dx \, dy
\]

\[
= \int_{0}^{2} \frac{y^{2}}{2} \bigg|_{0}^{2} dy = \int_{0}^{2} y^{2} \, dy = \left(\frac{y^{3}}{3} \right) \bigg|_{0}^{2} = \frac{32}{3}
\]