Math 132 - Lecture 1: Intro & u Substitution

All info needed for the course is on Collab. Key things to note:
1. Self-scheduled exams you can re-take
2. Lots of homework. All ungraded.

Office Hours are TBA.

e-mail: mkehill@virginia.edu
office: Kerchof 213

Today: Review of u-substitution.

Idea: Integration undoes differentiation

\[\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du, \quad u = g(x) \]

Since the left-hand side involves x, after integrating, plug in for u.

Ex: 1) \(\int e^{\sin x} \cdot \cos x \, dx \)

Let \(u = \sin x \) \(\Rightarrow \) \(du = \cos x \, dx \) \(\Rightarrow \)

\[\int e^{\sin x} \cdot \cos x \, dx = \int e^u \, du = e^u + C \]

\[\text{Answer: } e^{\sin x} + C \]

2) \(\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx \)

\(u = \cos x \) \(\Rightarrow \) \(du = -\sin x \, dx \) \(\Rightarrow \)

\[\int \frac{1}{\cos x} \cdot -\sin x \, dx = \int \frac{-1}{u} \, du \]

\[= -\ln |u| + C = -\ln |\cos x| + C = \ln |\sec x| + C \]

How do we pick \(u \)?

Try to simplify as much as possible: \(\sin(x^2+3x+2) \) is hard, \(\sin(u) \) is easy.

\(\frac{1}{u} \) is hard, \(\frac{1}{u} \) is easy

3) \(\int 2x \cdot \sqrt{x^2+1} \, dx \)

\(u = x^2 + 1 \) \(\Rightarrow \) \(du = 2x \, dx \) \(\Rightarrow \)

\[\int \sqrt{u} \, du \]

hard part
\[\frac{2}{3} u^{3/2} + C = \frac{2}{3} \left(\frac{2}{3} \right)^{3/2} + C \]

More advanced \textit{u-sub}: solving for \(x \) too. Might have terms \(\not= u \) or \(du \).

In this case, try to solve \(u = g(x) \) for \(x \) and plug in.

1) \[
\int t\sqrt{t-1} \, dt \quad u = t-1 \quad \Rightarrow \quad t = u+1 \quad \Rightarrow \quad \int (u+1)^{5/2} \, du = \int u^{3/2} \, du + \int u^{5/2} \, du
\]

\[= \frac{2}{5} u^{5/2} + \frac{2}{3} u^{3/2} + C = \frac{2}{5} (t-1)^{5/2} + \frac{2}{3} (t-1)^{3/2} + C \]

Last case: definite integrals.

Fundamental Theorem: If \(F(x) \) is any antiderivative of \(f(x) \), then

\[\int_{a}^{b} f(x) \, dx = F(b) - F(a). \]

Have 2 methods:

1. Use method above, find antiderivative, & plug in.
2. Solve directly:

\[\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du. \]

In this case, we forget all about \(x \).

3) \[
\int_{-2}^{2} x^2 e^{x^3} \, dx
\]

\[u = x^3 \quad du = 3x^2 \, dx \quad \Rightarrow u = (-2)^3 - 8 \quad \Rightarrow \quad \int_{-2}^{2} e^{u} \cdot \frac{1}{3} \, du = \frac{1}{3} \int_{-8}^{8} e^{u} \, du = \frac{1}{3} \left(e^{8} - e^{-8} \right) \]