MATH 121 - MIDTERM II

NAME:

Problem 1. Give the definitions of the following terms:

(1) Hausdorff, Regular, & Normal

Housdorff given x=yeX, & U=x, V=y, UnV=p.

Regular: given x eX, C=X closed, x eC, IU=X, V=C s.t. UnV=Ø.

Normal: given C1, C2 closed, C1, C2=\$, IU2C1, V2C2 =.6. UN=\$.

(2) Connected

X is connected if the only cloper sets are X ? s.

(3) Basis for a topology

B=Tx is a basis if YUETx, U is a win of elevers of B.

(4) Continuous

f. X -> Y is continuous if Y UE Ty, f'(u) etx.

NAME:

Problem 2. Let X be a space and let $A \subset X$ be a closed subspace. Let $f: A \to \mathbb{R}^n$ be a continuous function

$$f(x) = (f_1(x), \dots, f_n(x))$$

such that for $1 \le i \le n$, f_i is a bounded function. Show that there is a continuous function $F: X \to \mathbb{R}^n$ such that F(a) = f(a) for all $a \in A$.

By the Tietze extension theorem, for each i, there is a map $F_i: X \to \mathbb{R} \text{ extending } f_i. \text{ Let } F: X \to \mathbb{R}^n \text{ be } F(x) = \left(F_i(x), ..., F_n(x)\right)$ The composite of F with the ith projection is F_i , which is continuous, so F is continuous. Since each F_i extends f_i , F extends f.

Problem 3. Let X be a space and let Y and Z be closed subspaces. Let $f: Y \to W$ and $g: Z \to W$ be functions such that for all $x \in Y \cap Z$ f(x) = g(x). Show that

$$f \cup g \colon Y \cup Z \to W$$

is continuous if and only if f and g are.

Let CSW be closed.

- \Leftrightarrow f,g continuous \Rightarrow f'(c) closed in Y, g'(c) closed in Z. Since Y i Z are closed in X, f'(c) i g'(c) are closed in X i hace f'(c) u g'(c) is closed in X \Rightarrow in YuZ. Now f'(c) u g'(c) = (fug)(c).
- \Rightarrow Y \hookrightarrow YuZ is continuous, so the composite Y \longrightarrow YuZ \longrightarrow W is. This is just f. The same result gives g's continuity.

Problem 4. Let X and Y be spaces.

(1) Show that if Y is compact, then the projection $\pi_X \colon X \times Y \to X$ is closed (i.e. takes closed sets to closed sets).

Let $V \subseteq X \times Y$ be closed. If $\pi_{X}(V) = X$, then we are done, since X is closed. So assume $X \notin \pi_{X}(V) \iff \S_{X}^{2} \times Y \cap V = \emptyset$. Since V is closed, $Y \in Y$, there are opens $U_{Y} \stackrel{?}{=} U_{Y}^{2} \times Y = 0$. Since Y is compact, finitely many U_{Y}^{2} cover: $U_{Y_{1}}^{2}, \dots, U_{Y_{n}}^{2}$. Let $U = U_{Y_{1}} \cap \dots \cap U_{Y_{n}} \cap \dots \cap U_{Y_{n}}^{2} = X \times Y = X \times Y = (U \times U_{Y_{1}}^{2} \cup \dots \cup U \times U_{Y_{n}}^{2}) = U \times Y$, and $U \times Y \cap V = \emptyset$ (since $U \times U_{Y_{1}}^{2} \subseteq U_{Y_{1}} \times U_{Y_{1}}^{2} \subseteq X \times Y = V$). $\Rightarrow U \cap \pi_{X}(V) = \emptyset$, and any $X \in X \cap \pi_{X}(V)$ has an open neighborhood in $X \cap \pi_{X}(V)$.

(2) Show that if Y is compact and Hausdorff, then a function $f: X \to Y$ is continuous if and only if the graph

$$\Gamma_f = \{(x, f(x)) | x \in X\} \subset X \times Y$$

y is closed. y is Houseborth iff $\Delta y = \{(y,y) | y \in y\}$ is closed. \Rightarrow) Consider $(x,y) \mapsto (f(x),y)$. If f is continuous, then so is this: Let π_y is π_y be the two projections $(x,y) \mapsto (f(x),y)$. Then $\pi_y \circ (f(x)) \cdot (x,y) = y = \pi_y \cdot (x,y)$, so $\pi_y \circ (f(x)) \cdot (x,y) = f(x)$, so $\pi_y \circ (f(x)) \cdot (x,y) = f(x)$, is continuous. $\pi_y \circ (f(x)) \cdot (x,y) = f \circ \pi_x$ is continuous. $(f(x)) \cdot (x,y) = f \circ \pi_x$ is continuous.

Let $C \subseteq Y$ be closed. Then $\pi_{y}^{-1}(C)$ is closed $\Rightarrow \pi_{y}^{-1}(C) \cap \Gamma_{f}^{-1}$ is closed. Now $\pi_{y}^{-1}(C) \cap \Gamma_{f}^{-1} = \{(x,y) | f(x) = y\} = \{(x,y) | x \in \Gamma^{-1}(C)\}$. Since Y is compact, π_{x} is closed $\Rightarrow \pi_{x}(\pi_{y}^{-1}(C) \cap \Gamma_{f}) = \Gamma^{-1}(C)$ is closed. NAME:

Problem 5. If X is a discrete space, then show that there is a minimal set of open sets \mathcal{B} that is contained in every basis for the topology on X. What is this set?

X is discrete iff $\forall x \in X$, $\{x\}$ is open. If B is a basis, then $\forall x \in X$, $\{x\}$ is a union of basic open $z \in x \in X$ is a basic open $x \in X$. So if B is a basis, then $\{x\} = x \in X$. This is a basis, since every set is a union of points, and if we were missing any $y \in X$, the $\{y\}$ would be missed.

Problem 6. Let $S^1 = \{z \in \mathbb{C} | |z| = 1\}$. Let $A \subset S^1$ be $\{z \in S^1 | z \neq 1\}$. Define an equivalence relation on S^1 by $x \sim y$ if x = y or if x and y are both in A. Describe explicitly the space S^1 / \sim . How many points does it have? Is it compact? Is it connected? Is it $T_0? T_1? T_2? T_3? T_4?$

Compact? Yes! It's finite

Connected? Yes! [1] is dosed but not open.

To? Yes! (Saw in dass)

Ti? No! [-1] is not dosed.

Tin? No! Tin ⇒ Ti.