MATH 121 - MIDTERM I

APRIL 20^{TH} , 2016

Problem 1. Give the definitions of the following terms:

(1) Compact S = X is compact if for every open cover {Ui}; if of S, there is a finite subcover {Ui, ..., Uin}

- (2) Totally Bounded X is totally bounded if Ye>o, 3 x, ..., x, eX s.t. $X = B_{\epsilon}(x_1) \cup \dots \cup B_{\epsilon}(x_n)$
- (3) Bounded X is bounded if Ir s.t. Yx,y eX, d(x,y) < r. (OR 3r>0, xEX s.t. XSBr(x))

Problem 2. Let X be a metric space.

(1) Show that if $x \in X$, then $\{x\}$ is a closed subset of X.

Argument I: Part (2) shows $X-\{x\}$ is open. Argument II: Let $y \in X-\{x\}$ | let r=d(x,y)>0. Then $B_r(y) \subseteq X-\{x\}$, so $X-\{x\}$ is open.

Argument III: There is a unique sequence in $\{x\}$, namely $x_n = x$ $\forall n$. This visibly converges to x. So $\{x\}$ also has all limit points.

(2) Show that if $x \nmid y \in X$, then there are open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

Let r = d(x,y) > 0. Then if $z \in B_{r/2}(x) \cap B_{r/2}(y)$, then $r = d(x,y) \le d(x,z) + d(y,z) < r$, a contradiction $\Rightarrow U = B_{r/2}(x) \& V = B_{r/2}(y)$ work.

Problem 3. If A is a subset of X, then define a function

$$d_A\colon X\to\mathbb{R}$$

 $by \ d_A(x) = \inf_{a \in A} \{d(x, a)\}.$

Show that $d_A(x) = 0$ if and only if $x \in \overline{A}$.

 $d_A(x) = 0$ iff $\forall \varepsilon > 0$, $\exists \alpha \in A$ s.t. $d(\alpha, x) < \varepsilon$: (If for some ε , $d(\alpha, x) \ge \varepsilon$ bed then $d_A(x) \ge \varepsilon$).

For each n>0, choose an s.t. d(an,x) < 1/n.

Then [an] is a sequence in A converging to x so $x \in \overline{A}$.

Convexely, if $[a_n] \to x$ is any sequence $w/a_n \in A$ $\forall n$, then by assumption, $d(a_n, x) \to 0$ k d(x) = 0

Problem 4. Let Y be a subset of a metric space X. Show that the closure of Y is the intersection of all of the closed sets of X that contain Y:

$$\overline{Y} = \bigcap_{Y \subset V, V = \overline{V}} V$$

 \geq) \forall is always a closed set that contains \forall , so $\bigvee_{y \in V} V \subseteq \overline{Y}$.

 $(OR: X-\overline{Y} = \bigcup_{\substack{u \in X-Y \\ u \text{ open}}} u \Rightarrow \overline{Y} = \bigcap_{\substack{u \in X-Y \\ u \text{ open}}} (X-u)$. However, $U \in X-Y$ is open iff $(X-u) \ge Y$ is closed.)