(b) Submatrix products:
$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 6 & 12 \end{bmatrix} + \begin{bmatrix} -1 & -3 \\ 1 & 3 \end{bmatrix}.$$

$$AB = \begin{bmatrix} 1 & -1 \\ 7 & 15 \end{bmatrix}.$$

23/
(a), (c)
$$A = \begin{bmatrix} \frac{2}{6} & \frac{3}{2} & \frac{-1}{9} \\ \frac{6}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix}$$
, or $\begin{bmatrix} \frac{2}{6} & \frac{3}{2} & \frac{-1}{9} \\ \frac{6}{1} & \frac{2}{1} & \frac{-5}{1} & \frac{9}{1} \end{bmatrix}$, $\begin{bmatrix} 2 & 0 & \frac{3}{2} & \frac{-1}{1} \\ \frac{6}{2} & \frac{2}{2} & \frac{5}{9} & \frac{9}{1} \end{bmatrix}$, $\begin{bmatrix} 2 & 0 & \frac{3}{2} & \frac{-1}{2} \\ \frac{6}{2} & \frac{2}{2} & \frac{5}{9} & \frac{9}{1} \end{bmatrix}$, $\begin{bmatrix} 2 & 0 & \frac{3}{2} & \frac{-1}{2} \\ \frac{6}{2} & \frac{2}{2} & \frac{5}{9} & \frac{9}{1} \end{bmatrix}$, $\begin{bmatrix} 2 & 0 & \frac{3}{2} & \frac{-1}{2} \\ \frac{6}{2} & \frac{2}{2} & \frac{5}{2} & \frac{9}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

42. Consider the system AX = B. Let $A_1, ..., A_n$ be the columns of A. Suppose B is a linear combination of $A_1, ..., A_n$. Let $B = x_1 A_1 + ... + x_n A_n$. This can be written $B = AX_0$ (see Section 2.1). This value of X_0 is a solution to the system.

(b) Outputs
$$= \frac{1}{6} + \frac{1}{2} +$$

27, (b)
$$G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$g_{12} = 0$$
, $g_{13} = 1$, $g_{14} = 0$,
 $g_{23} = 1$, $g_{24} = 1$, $g_{34} = 0$,
so $1 \rightarrow 3 \rightarrow 2 \rightarrow 4$ or $4 \rightarrow 2 \rightarrow 3 \rightarrow 1$.

$$P = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

$$p_{12} = 1$$
, $p_{13} = 1$, $p_{23} = 0$,
so $2 \rightarrow 1 \rightarrow 3$ or $3 \rightarrow 1 \rightarrow 2$.

(d)
$$G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

$$g_{12} = 0$$
, $g_{13} = 1$, $g_{14} = 0$,
 $g_{23} = 0$, $g_{24} = 1$, $g_{34} = 1$,
so $1 \rightarrow 3 \rightarrow 4 \rightarrow 2$ or $2 \rightarrow 4 \rightarrow 3 \rightarrow 1$.

$$P = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

$$p_{12} = 1, p_{13} = 1, p_{14} = 0,$$

 $p_{23} = 0, p_{24} = 0, p_{34} = 1,$
so $2 \rightarrow 1 \rightarrow 3 \rightarrow 4$ or $4 \rightarrow 3 \rightarrow 1 \rightarrow 2.$

- 31. (a) $f_{ij} = a_{i1} a_{j1} + a_{i2} a_{j2} + ... + a_{in} a_{jn}$ as in the graves model. $a_{ik} a_{jk}$ is 1 if both person i and person j'are friends of person k and is zero otherwise. So the sum of these terms is the number of friends person i and person j have in common.
 - (b) The matrix A is symmetric when friendships are mutual and is not symmetric when friendships are not mutual. Define a_{ij} to be 1 if person i considers person j to be his friend and zero otherwise. fi will then be the number of people both person i and person i consider to be their friends.