- 3. (a) (a, a, b) + (c, c, d) = (a+c, a+c, b+d). 1st components same. Closed under addition. k(a, a, b) = (ka, ka, kb). 1st components same. Closed under scalar multiplication. Subspace. (a, a, b) = a(1, 1, 0) + b(0, 0, 1). Vectors (1, 1, 0) and (0, 0, 1) span space and are linearly independent. {(1, 1, 0), (0, 0, 1)} is a basis. Dimension is 2.
 - (b) (a, 2a, b) + (c, 2c, d) = (a+c, 2(a+c), b+d). 2nd component is twice first. Closed under addition. k(a, 2a, b) = (ka, 2ka, kb). 2nd component is twice 1st. Closed under scalar multiplication. Subspace. (a, 2a, b) = a(1, 2, 0) + b(0, 0, 1). Vectors (1, 2, 0) and (0, 0, 1) span the space and are linearly independent. $\{(1, 2, 0, (0, 0, 1)\}$ is a basis. Dimension is 2.
 - (c) (a, 2a, 4a) + (b, 2b, 4b) = (a+b, 2a+2b, 4a+4b) = (a+b, 2(a+b), 4(a+b)). 2nd component is twice 1st, 3rd component four times 1st. Closed under addition. k(a, 2a, 4a) = (ka, 2ka, 4ka). 2nd component is twice 1st, 3rd component four times 1st. Closed under scalar multiplication. Subspace. (a, 2a, 4a) = a(1, 2, 4). {(1, 2, 4)} is a basis. Dimension is 1. Space is a line defined by the vector (1, 2, 4).
 - (d) (a, -a, 0) + (b, -b, 0) = (a+b, -a-b, 0) = (a+b, -(a+b), 0). 2nd component is negative of 1st. Closed under addition. k(a, -a, 0) = (ka, -ka, 0). 2nd component is negative first. Closed under scalar multiplication. Subspace. (a, -a, 0) = a(1, -1, 0). $\{(1, -1, 0)\}$ is a basis. Dimension is 1. Space is line defined by the vector (1, -1, 0).
- 4. (a) (a, b, a) + (c, d, c) = (a+c, b+d, a+c). 3rd component same as 1st. Closed under addition. k(a, b, a) = (ka, kb, ka). 3rd component same as 1st. Closed under scalar multiplication. Subspace. (a, b, a) = a(1, 0, 1) + b(0, 1, 0). $\{(1, 0, 1), (0, 1, 0)\}$ is a basis. Dimension is 2.
 - (b) (a, b, 0) + (c, d, 0) = (a+c, b+d, 0). Last component is zero. Closed under addition. k(a, b, 0) = (ka, kb, 0). Last component is zero. Closed under scalar multiplication. Subspace (a, b, 0) = a(1, 0, 0) + b(0, 1, 0). $\{(1, 0, 0), (0, 1, 0)\}$ is a basis. Dimension is 2. It is xy-plane.
 - (c) (a, b, 2) + (c, d, 2) = (a+c, b+d, 4). Last component not 2. Not closed under addition. Not a subspace.
 - (d) (a, a, a+3) + (b, b, b+3) = (a+b, a+b, a+b+6). Last component is not 1st plus 3. Not closed under addition. Not a subspace.
- 5. (a) a(1, 2, 3) + b(1, 2, 3) = (a+b)(1, 2, 3). Sum is a scalar multiple of (1, 2, 3). Closed under addition. ka(1, 2, 3) = (ka)(1, 2, 3). It is a scalar multiple of (1, 2, 3). Closed under scalar multiplication. Subspace of **R**³. Basis {(1, 2, 3)}. Dimension is 1. Space is line defined by vector (1, 2, 3).
 - (b) (a, 0, 0) + (b, 0, 0) = (a+b, 0, 0). Last two components zero. Closed under scalar multiplication. k(a, 0, 0) = (ka, 0, 0). Last two components zero. Closed under scalar multiplication. Subspace of \mathbf{R}^3 . Basis $\{(1, 0, 0)\}$. Dimension is 1. Space is the x-axis.
 - (c) (a, 2a) + (b, 2b) = (a+b, 2a+2b) = (a+b, 2(a+b)). 2nd component is twice 1st. Closed under addition. k(a, 2a) = (ka, 2ka). 2nd component is twice 1st. Closed under scalar multiplication. Subspace. Basis $\{(1, 2)\}$. Dimension is 1. Space is line defined by vector (1, 2) in \mathbb{R}^2 .
 - (d) (a, b, c, 1) + (d, e, f, 1) = (a+d, b+e, c+f, 2). Last component is not 1. Not closed under addition. Not a subspace of \mathbf{R}^4 .

- 6. (a) True: Arbitrary vector can be expressed as a linear combination of (1, 0) and (0, 1). (a, b) = a(1, 0) + b(0, 1).
 - (b) True: (a, b) = a(1, 0) + b(0, 1) + 0(1, 1). (One or more of the scalars can be zero).
 - (c) True: p(1, 0) + q(0, 1) = (0, 0) has the unique solution p=0, q=0.
 - (d) False: Consider the identity p(1, 0) + q(0, 1) + r(0, 2) = (0, 0). Does this have the unique solution p=0, q=0, r=0? No, can have 0(1, 0) + 2(0, 1) 1(0, 2) = (0, 0). Vectors are not linearly independent we say that they are linearly dependent.
 - (e) True: (x, y) = x(1, 0) y(0, -1). Thus (1, 0) and (0, -1) span \mathbb{R}^2 . Further, p(1, 0)+q(0, -1)=(0, 0) has the unique solution p=0, q=0. Vectors are linearly independent.
 - (f) True: $(x, y) = \frac{x}{2}(2, 0) \frac{y}{3}(0, 3)$. Thus (2, 0) and (0, 3) span \mathbb{R}^2 . Further, $p(2, 0) + q(0, 3) = (0, 0) \Leftrightarrow (2p, 3q) = (0, 0)$, has the unique solution p=0, q=0. Vectors linearly independent.
- 7. (a) True: (1, 0, 0) and (0, 1, 0) span the subset of vectors of the form (a, b, 0). Further, p(1, 0, 0) + q(0, 1, 0) = (0, 0, 0) has the unique solution p=0, q=0. Vectors are linearly independent. Subspace is 2D since 2 base vectors. The subspace is the xy plane.
 - (b) True: The vector (1, 0, 0) spans the subset of vectors of the form a(1, 0, 0). Further p(1, 0, 0)=(0,0,0) has unique solution p=0. Subspace is line defined by vector (1, 0, 0). One vector in basis, thus 1D.
 - (c) True: Can write (a, 2a, b) in the form (a, 2a, b) = a(1, 2, 0) + b(0, 0, 1).
 - (d) True: Can write (a, b, 2a-b) in the form (a, b, 2a-b) = a(1, 0, 2) + b(0, 1, -1).
 - (e) False: 1(1, 0, 0) + 1(0, 1, 0) 1(1, 1, 0) = (0, 0, 0). Thus vectors not linearly independent.
 - (f) False: \mathbf{R}^2 is not a subset of \mathbf{R}^3 . e.g., (1, 2) is an element of \mathbf{R}^2 , but not of \mathbf{R}^3 .
- 8. (a) Let (x, y) be an arbitrary vector in \mathbb{R}^2 . Then (x, y) = x(1, 0) + y(0, 1). Thus $\{(1, 0), (0, 1)\}$ spans \mathbb{R}^2 . Notice that both vectors are needed we cannot drop one of them.
 - (b) (x, y) can be expressed (x, y) = x(1, 0) + y(0, 1) + 0(0, 2), or (x, y) = x(1, 0) + 3y(0, 1) y(0, 2); there are many ways. Thus $\{(1, 0), (0, 1), (0, 2)\}$ spans \mathbb{R}^2 . But it is not an efficient spanning set. The vector (0, 2) is not really needed.
 - (c) 0(1, 0) + 2(0, 1) (0, 2) = (0, 0). Thus {(1, 0), (0, 1), (0, 2)} is linearly dependent. It is not a basis.
- 9. (a) Let (x, y) be an arbitrary vector in \mathbb{R}^2 . Then (x, y) = x(1, 0) + y(0, 1). Thus $\{(1, 0), (0, 1)\}$ spans \mathbb{R}^2 . Notice that both vectors are needed we cannot drop one of them.
 - (b) (x, y) can be expressed $(x, y) = x(1, 0) + y(0, 1) + 0(1, 1) or <math>(x, y) = 2x(1, 0) + 2y(0, 1) y(1, 1) there are many ways. Thus <math>\{(1, 0), (0, 1), (1, 1)\}$ spans \mathbb{R}^2 . But it is not an efficient spanning set. The vector (1, 1) is not really needed.
 - efficient spanning set. The vector (1, 1) is not really needed. (c) 1(1, 0) + 1(0, 1) - 1(1, 1) = (0, 0). Thus $\{(1, 0), (0, 1), (1, 1)\}$ is linearly dependent. It is not a basis.

- (a) Vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) span R³ but are not linearly independent.
 (b) Vectors (1, 0, 0), (0, 1, 0) are linearly independent but do not span R³.
- 11. Separate the variables in the general solution, (2r 2s, r 3s, r, s) = r(2, 1, 1, 0) + s(-2, -3, 0, 1). Vectors (2, 1, 1, 0) and (-2, 3, 0, 1) thus span W. Also, identity p(2, 1, 1, 0) + q(-2, 3, 0, 1) = (0, 0, 0, 0) leads to p=0, q=0. The two vectors are thus linearly independent. Set $\{(2, 1, 1, 0), (-2, 3, 0, 1)\}$ is therefore a basis for W. Dimension 2. Solutions form a plane in \mathbf{R}^4 .
- 12. Separate the variables in the general solution, (3r + s, -r 4s, r, s) = r(3, -1, 1, 0) + s(1, -4, 0, 1). Vectors (3, -1, 1, 0) and (1, -4, 0, 1) thus span W. Also, identity p(3, -1, 1, 0) + q(1, -4, 0, 1) = (0, 0, 0, 0) leads to p=0, q=0. The two vectors are thus linearly independent. Set $\{(3, -1, 1, 0), (1, -4, 0, 1)\}$ is therefore a basis for W. Dimension 2. Solutions form a plane in \mathbb{R}^4 .
- 13. (2r, -r, 4r, r) = r(2, -1, 4, r). The set of solutions form a line in \mathbb{R}^4 . $\{(2, -1, 4)\}$ is a basis. Dimension is 1.
- 14. Separate the variables in the solution, (2r s, -3r 2s r, s) = r(2, -3, 1, 0) + s(-1, -2, 0, 1). Vectors (2, -3, 1, 0) and (-1, -2, 0, 1) thus span W. Also, identity p(2, -3, 1, 0) + q(-1, -2, 0, 1) = (0, 0, 0, 0) leads to p=0, q=0. The two vectors are thus linearly independent. The set $\{(2, -3, 1, 0), (-1, -2, 0, 1)\}$ is therefore a basis for W. Dimension 2. Solutions form a plane in \mathbb{R}^4 .

Exercise Set 1.5

- 1. (a) $(2,1)\cdot(3,4) = 2x3 + 1x4 = 6 + 4 = 10$
 - (b) $(1,-4)\cdot(3,0) = 1x3 + -4x0 = 3$
 - (c) $(2,0)\cdot(0,-1) = 2x0 + 0x-1=0$
 - (d) $(5,-2)\cdot(-3,-4) = 5x-3 + -2x-4 = -15 + 8 = -7$
- 2. (a) $(1,2,3)\cdot(4,1,0) = 1x4 + 2x1 + 3x0 = 4 + 2 + 0 = 6$
 - (b) $(3,4,-2)\cdot(5,1,-1) = 3x5 + 4x1 + -2x-1 = 15 + 4 + 2 = 21$

- (c) If (a,b,c) is orthogonal to (5,1,-1), then $(a,b,c)\cdot(5,1,-1)=5a+b-c=0$, so c=5a+b. Thus any vector of the form (a,b,5a+b) is orthogonal to (5,1,-1).
- (d) If (a,b,c,d) is orthogonal to (5,0,1,1), then $(a,b,c,d)\cdot(5,0,1,1)=5a+c+d=0$, so d=-5a-c. Thus any vector of the form (a,b,c,-5a-c) is orthogonal to (5,0,1,1).
- (e) If (a,b,c,d) is orthogonal to (6,-1,2,3), then $(a,b,c,d)\cdot(6,-1,2,3)=6a-b+2c+3d=0$, so b=6a+2c+3d. Thus any vector of the form (a,6a+2c+3d,c,d) is orthogonal to (6,-1,2,3).
- (f) If (a,b,c,d,e) is orthogonal to (0,-2,3,1,5), then $(a,b,c,d,e)\cdot(0,-2,3,1,5)$ = -2b +3c + d + 5e = 0, so d = 2b-3c-5e. Thus any vector of the form (a,b,c,2b-3c-5e,e) is orthogonal to (0,-2,3,1,5).
- 20. If (a,b,c) is orthogonal to both (1,2,-1) and (3,1,0), then $(a,b,c)\cdot(1,2,-1)=a+2b-c=0$ and $(a,b,c)\cdot(3,1,0)=3a+b=0$. These equations yield the solution b=-3a and c=-5a, so any vector of the form (a,-3a,-5a) is orthogonal to both (1,2,-1) and (3,1,0).
- Let (a,b,c) be in W. Then (a,b,c) is orthogonal to (-1,1,1). $(a,b,c)\cdot(-1,1,1)=0$, -a+b+c=0, c=a-b. W consists of vectors of the form (a,b,a-b). Separate the variables. (a,b,a-b)=a(1,0,1)+b(0,1,-1). (1,0,1), (0,1,-1) span W. Vectors are also linearly independent. $\{(1,0,1),(0,1,-1)\}$ is a basis for W. The dimension of W is 2. It is a plane spanned by (1,0,1) and (0,1,-1).
- Let (a,b,c) be in W. Then (a,b,c) is orthogonal to (-3,4,1). $(a,b,c)\cdot(-3,4,1)=0$, -3a+4b+c=0, c=3a-4b. W consists of vectors of the form (a,b,3a-4b). Separate the variables. (a,b,3a-4b)=a(1,0,3)+b(0,1,-4). $\{(1,0,3),((0,1,-4))\}$ is a basis for W. The dimension of W is 2. It is a plane spanned by (1,0,3) and (0,1,-4).
- 23. Let (a,b,c) be in W. Then (a,b,c) is orthogonal to (1,-2,5). (a,b,c)·(1,-2,5)=0, a-2b+5c=0, a=2b-5c. W consists of vectors of the form (2b-5c,b,c). Separate the variables. (2b-5c,b,c)=b(2,1,0)+c(-5,0,1). {(2,1,0), ((-5,0,1)} is a basis for W. The dimension of W is 2. It is a plane spanned by (2,1,0) and (-5,0,1).
- Let (a,b,c,d) be in W. Then (a,b,c,d) is orthogonal to (1,-3,7,4). (a,b,c,d). (1,-3,7,4)=0, a-3b+7c+4d=0, a=3b-7c-4d. W consists of vectors of the form (3b-7c-d,b,c,d). Separate the variables. (3b-7c-4d,b,c,d)=b(3,1,0,0)+c(-7,0,1,0)+d(-4,0,0,1). $\{(3,1,0,0), (-7,0,1,0), (-4,0,0,1)\}$ is a basis for W. The dimension of W is 3.
- 25. (a) $d = \sqrt{(6-2)^2 + (5-2)^2} = 5$. (b) $d = \sqrt{(3+4)^2 + (1-0)^2} = \sqrt{50} = 5\sqrt{2}$.
 - (c) $d = \sqrt{(7-2)^2 + (-3-2)^2} = \sqrt{50} = 5\sqrt{2}$. (d) $d = \sqrt{(1-5)^2 + (-3-1)^2} = 4\sqrt{2}$.
- 26. (a) $d = \sqrt{(4-2)^2 + (1+3)^2} = \sqrt{20} = 2\sqrt{5}$. (b) $d = \sqrt{(1-2)^2 + (2-1)^2 + (3-0)^2} = \sqrt{11}$.
 - (c) $d = \sqrt{(-3-4)^2 + (1+1)^2 + (2-1)^2} = \sqrt{54} = 3\sqrt{6}$.

34.
$$||\mathbf{u}+\mathbf{v}||^2 = (\mathbf{u}_1 + \mathbf{v}_1)^2 + (\mathbf{u}_2 + \mathbf{v}_2)^2 + \dots + (\mathbf{u}_n + \mathbf{v}_n)^2$$

$$= \mathbf{u}_1^2 + 2\mathbf{u}_1 \mathbf{v}_1 + \mathbf{v}_1^2 + \mathbf{u}_2^2 + 2\mathbf{u}_2 \mathbf{v}_2 + \mathbf{v}_2^2 + \dots + \mathbf{u}_n^2 + 2\mathbf{u}_n \mathbf{v}_n + \mathbf{v}_n^2$$

$$= \mathbf{u}_1^2 + \mathbf{u}_2^2 + \dots + \mathbf{u}_n^2 + 2\mathbf{u}_1 \mathbf{v}_1 + 2\mathbf{u}_2 \mathbf{v}_2 + \dots + 2\mathbf{u}_n \mathbf{v}_n + \mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_n^2$$

$$= \mathbf{u}_1^2 + \mathbf{u}_2^2 + \dots + \mathbf{u}_n^2 + 2(\mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n) + \mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_n^2$$

$$= ||\mathbf{u}||^2 + 2(\mathbf{u} \cdot \mathbf{v}) + ||\mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 \text{ if and only if } \mathbf{u} \cdot \mathbf{v} = 0, \text{ i.e., if and only if } \mathbf{u} \text{ and } \mathbf{v} \text{ are orthogonal.}$$

35. $(a,b)\cdot(-b,a) = a \times -b + b \times a = 0$, so (-b,a) is orthogonal to (a,b).

36.
$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = (\mathbf{u}_1 + \mathbf{v}_1)(\mathbf{u}_1 - \mathbf{v}_1) + (\mathbf{u}_2 + \mathbf{v}_2)(\mathbf{u}_2 - \mathbf{v}_2) + \dots + (\mathbf{u}_n + \mathbf{v}_n)(\mathbf{u}_n - \mathbf{v}_n)$$

$$= \mathbf{u}_1^2 - \mathbf{v}_1^2 + \mathbf{u}_2^2 - \mathbf{v}_2^2 + \dots + \mathbf{u}_n^2 - \mathbf{v}_n^2$$

$$= \mathbf{u}_1^2 + \mathbf{u}_2^2 + \dots + \mathbf{u}_n^2 - \mathbf{v}_1^2 - \mathbf{v}_2^2 - \dots - \mathbf{v}_n^2 = \|\mathbf{u}\| - \|\mathbf{v}\|.$$

Thus IIuII - IIvII=0 if and only if $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = 0$. That is IIuII = IIvII if and only if $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ are orthogonal.

37. (a) $\|\mathbf{u}\|^2 = u_1^2 + u_2^2 + \dots + u_n^2 \ge 0$, so $\|\mathbf{u}\| \ge 0$.

and ||(0,-2,7)|| = ||0| + ||-2| + ||7| = 9.

- (b) $||\mathbf{u}|| = 0$ if and only if $u_1^2 + u_2^2 + ... + u_n^2 = 0$ if and only if $u_1 = u_2 = ... = u_n = 0$.
- (c) $||cu||^2 = (cu_1)^2 + (cu_2)^2 + \dots + (cu_n)^2 = c^2 (u_1^2 + u_2^2 + \dots + u_n^2) = c^2 ||u||^2$, so ||cu|| = |c| ||u||.

7.
$$I_1 + I_2 - I_3 = 0$$

 $2I_1 + 4I_3 = 34$
 $4I_2 + 4I_3 = 28$
so that $I_1 = 5$, $I_2 = 1$, $I_3 = 6$.

9.
$$I_1 + I_2 - I_3 = 0$$

 $3I_3 = 9$
 $4I_2 + 3I_3 = 13$
so that $I_1 = 2$, $I_2 = 1$, $I_3 = 3$.

11.
$$I_1 - I_2 - I_3 = 0$$

 $I_1 + 3I_2 = 31$
 $I_1 + 7I_3 = 31$
so that $I_1 = 10$, $I_2 = 7$, $I_3 = 3$.

12.
$$I_1 - I_2 - I_3 = 0$$

$$I_3 - I_4 - I_5 = 0$$

$$I_2 = 4$$

$$I_4 = 4$$

so that
$$I_1 = 12$$
, $I_2 = 4$, $I_3 = 8$, $I_4 = 4$, $I_5 = 4$.

14. Assume
$$I_3$$
 flows from A to B.
$$I_1 - I_2 - I_3 = 0$$

$$I_1 + 2I_3 = 4$$

$$I_2 - 2I_3 = 9$$

gives $I_1 = 6$, $I_2 = 7$, $I_3 = -1$, so the current in AB is 1 amp flowing from B to A.

15. Let
$$I_1$$
 be the current in the direction from the 16volt battery to A, let I_2 be the current from A to B, and let I_3 be the current in the direction from C to B.

$$I_1 - I_2 - I_3 = 0 : 0$$

$$I_1 - I_2 - I_3 = 0 : 0$$

 $5I_1 + I_2 = 16 : 16$
 $-I_2 + 5I_3 = 9 : 23$

8.
$$I_1 + I_2 - I_3 = 0$$

 $I_1 + 2I_3 = 9$
 $3I_2 + 2I_3 = 17$
so that $I_1 = 1$, $I_2 = 3$, $I_3 = 4$.

10.
$$I_1 + I_2 - I_3 = 0$$

 $2I_1 + 2I_3 = 4$
 $4I_2 + 2I_3 = 2$
so that $I_1 = 1$, $I_2 = 0$, $I_3 = 1$.

13.
$$I_1 - I_2 - I_3 = 0$$

$$I_3 - I_4 + I_5 = 0$$

$$I_1 + I_2 = 4$$

$$I_1 - I_2 + 2I_4 = 4$$

$$2I_4 + 2I_5 = 2$$

so that
$$I_1 = 7/3$$
, $I_2 = 5/3$, $I_3 = 2/3$, $I_4 = 5/6$, $I_5 = 1/6$.

 $CC: X_{\alpha} + X_{\beta} = 100$

17. A:
$$x_1 - x_4 = 100$$
 B: $x_1 - x_2 = 200$

C: $-x_2 + x_3 = 150$ D: $x_3 - x_4 = 50$

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 100 \\ 1 & -1 & 0 & 0 & 200 \\ 0 & -1 & 1 & 0 & 150 \\ 0 & 0 & 1 & -1 & 50 \end{bmatrix} \approx ... \approx \begin{bmatrix} 1 & 0 & 0 & -1 & 100 \\ 0 & 1 & 0 & -1 & -100 \\ 0 & 0 & 1 & -1 & 50 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_1 = x_4 + 100, x_2 = x_4 - 100, x_3 = x_4 + 50.$$

 $x_2 = 0$ is min flow along BC; i.e., BC, closed to traffic. In that case $x_4 = 100$, $x_1 = 200$, $x_3 = 150$. Then alternative route would have to be provided to get from B to towns in direction of C, and D.

18. $x_1 = x_2 + 100$, $x_3 = x_2 + 90$, $x_3 = x_4 + 130$, $x_5 = x_4 + 110$, $x_5 = x_6 + 80$, $x_7 = x_6 + 75$, $x_7 = x_8 + 120$, $x_1 = x_8 + 155$. Since a flow cannot be negative these equs give: $x_1 \ge 100$, $x_3 \ge 90$, $x_3 \ge 130$, $x_5 \ge 110$, $x_5 \ge 80$, $x_7 \ge 75$, $x_7 \ge 120$, $x_1 \ge 155$. Thus, must have $x_1 \ge 155$, $x_3 \ge 130$, $x_5 \ge 110$, $x_7 \ge 120$. Is $x_1 = 155$ possible, i.e., does it result in nonneg flows? Yes, gives $x_2 = 55$, $x_3 = 145$, $x_4 = 15$, $x_5 = 125$, $x_6 = 45$, $x_7 = 120$, $x_8 = 0$. Minimum flow allowable along x_1 is 155. Note that this is attained by closing x_8 to traffic. Alternative routes (clearly labelled diversions!) will then have to be provided for the x_7 traffic wanting to get to some of the towns that are accessed from other exits of the roundabout.

B:
$$x_1 + x_2 = 200$$

E: $x_2 + x_3 - x_5 = 0$

D: $x_4 + x_5 = 200$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 200 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 200 \end{bmatrix} \approx ... \approx \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 200 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $x_1 = x_3 - x_5 + 200$, $x_2 = -x_3 + x_5$, $x_4 = -x_5 + 200$.

Total time =
$$k(x_1 + 2x_2 + x_3 + 2x_4 + x_5)$$

= $4(x_3 - x_5 + 200 + 2(-x_3 + x_5) + x_3 + 2(-x_5 + 200) + x_5) = 4(600) = 2400$ minutes.

averages to 12 minutes per car. It is interesting to note that the time is model of the actual distribution of traffic for this model. This will not be true if k on different stretches of road due to different road conditions. Students can be a situations.