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Want to Understand Spaces

• Use algebra to distinguish spaces.
• Two parts:

1. Find [computable] invariants of spaces
2. Specify how to build spaces out of simpler ones.

• Example: [deRham] Cohomology, Handlebodies for
manifolds, obstruction theory.

• Ideally, solutions to second part use invariants from the
first.
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Why Homotopy?

• “Continuous functions occur continuously”
• Elementary algebraic objects are discrete
• Passage to homotopy classes makes functions into

discrete families.

Definition
f ,g : X → Y are homotopic if there is a map F : X × I → Y such
that F (x ,0) = f (x) and F (x ,1) = g(x).
In other words, we can continuously deform f into g.
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Picture!

Imagine 2 embeddings of the line into the plane:

If we pull the ends of the bottom string, then it looks like the top
string.
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Homotopy Groups

Definition
Let Sn be the collection of unit vectors in Rn+1.
Let πn(X ) be the collection of homotopy classes of maps
Sn → X .

• If n = 1, then this gives the fundamental group of X .
• If n > 0, then this is a group.
• If n > 1, then this group is commutative.

Measure ways to glue disks to X (up to homotopy).
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Homotopy Groups of Spheres

• πn(Sm) describes how to attach disks to spheres.
• First step to build anything out of disks.
• If n < m, there is only one class of maps: Jordan Curve

Theorem.
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πn(Sm)

m�n 1 2 3 4 5 6 7 8
1 Z 0 0 0 0 0 0 0
2 0 Z Z Z/2 Z/2 Z/12 Z/2 Z/2
3 0 0 Z Z/2 Z/2 Z/12 Z/2 Z/2
4 0 0 0 Z Z/2 Z/2 Z× Z/12 Z/2× Z/2

Few patterns:
• (Serre) πn(Sm) is almost always finite.

At most two copies of Z each row.
• (Freudenthal) Diagonals stabilize. These are the stable

homotopy groups of spheres.

Definition
πS

n is the stable group corresponding to πn+kSk .
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Geometry

Very close ties between homotopy groups and geometry.
• Degree: Given Sn → Sn, can count the number of

preimages generically.

• Parity is an invariant (“detected in mod 2 homology”)
• If we remember orientations, then get an integer invariant.

This perfectly detects Sn → Sn.
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Cobordism
Can generalize this to other homotopy groups.

Definition
A framed manifold is a manifold embedded in RN together with
a basis for the normal vectors at each point.

Definition
Two manifolds M and N are cobordant if there is a W such that
∂W = M

∐
N.

Cobordism defines an equivalence relation on n-manifolds.
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Homotopy Groups
Theorem (Pontrjagin)
{Framed manifolds of dimension n embedded in Rk+n} up to
cobordism = πn+kSk .
Idea: Pick a regular value of the map Sn+k → Sk . It gets a
framing from Sk . Pull that point back to get an n-dimensional
manifold with a framing. Homotopy↔ Cobordism.

Theorem
πS

1 = Z/2.
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Filtrations

We need a way to isolate particular maps.
We use the length of factorizations invisible to a homology
theory.
f : X → Y induces group homomorphism in homology
f∗ : H∗(X )→ H∗(Y ).

Definition
Given a map f : X → Y, we say it has Adams filtration at least s
if we can write it as a composite

X = X0 → · · · → Xs = Y ,

where each map induces the zero homomorphism in homology.
Example: The Hopf map η : S3 → S2 has Adams filtration 1.
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General Sketch of Homotopy Groups

Adams filtration lets us draw out a 2D region of all maps:
• vertical axis = s
• horizontal axis = topological dimension = n in πS

n

dimension

s

There is a vanishing curve s = g(n)

• Know lim g(n)
n = 0

• Think that g(n) looks like
√

n.
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Algebraic Approximation

• Purely algebraic approximation: Adams-Novikov Spectral
Sequence

• Built by considering all algebraically possible maps with the
above filtration.

dimension

s

“Asymptotics” means the stuff in the red region.
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Drawbacks

• Tricky to compute where there could be maps
• Very coarse approximation!

Two questions:
1. What’s happening in the red region?
2. What does this mean for the region below the vanishing

curve?
Work with Hopkins and Ravenel essentially answers the first
question and provides a framework to answer the second.
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Above the vanishing curve

• The entire algebraic story is governed by the theory of
formal groups

• The algebraic approximation is the cohomology of the
moduli stack of formal groups.

• Working one prime at a time, this story is controlled by the
height: Chromatic Filtration.

• At each height, the stack is determined by a p-adic Lie
group Gn.

• H∗(Gn;π∗En) governs what happens above the vanishing
line.
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Morava Stabilizer Groups

• Gn is the automorphisms of any height n formal group law.
• Gn has finite virtual cohomological dimension.
⇒ Asymptotically, H∗(Gn;π∗En) is entirely controlled by finite

subgroups.
• Example: G1 = Z×p , π∗E1 = Zp[u±1].

If p > 2, this has finite cohomological dimension.
If p = 2, G1 = Z2 × Z/2.

• If p = 2 and G = Z/2 ⊂ Gn, this is a completion of work of
Kitchloo and Wilson.



Definitions and History Computing Homotopy Groups Asymptotics in Stable Homotopy

Theorem (H.-Hopkins-Ravenel)
For finite G, π∗En is an easily described G-algebra.
Essentially the symmetric algebra on the Dieudonné module.

Theorem (H.-Hopkins-Ravenel)
For G = Z/p,

H∗
Tate(Z/p;π∗En) = Fpn [[δ1, . . . , δf ]][∆±1][β±1]⊗ E(h1,0, . . . ,hf ,0).

For finite G, H∗(G;π∗En) cover the whole upper half plane.
Contains more and more of the red region.
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