Thank you for the invitation to speak. One of the first papers that I read in equivariant homotopy was Nambuichi’s on equivariant vector fields on spheres. Meditating on this paper has shaped significantly my understanding and thinking. So this is a true honor.

I’m going to talk about what we might mean by “even” in the equivariant context. I’ll start with a classical story, then focus on newer, equivariant versions.

I’m going to assume we all know what “even” means in \(\mathbb{Z} \).

In spaces, we have 2 notions of “evenness”:

1. having only even cells - this is “presentation dependent”
2. having only even homotopy groups

Some of the most geometrically meaningful spaces have one or both of these:

Example: \(\mathbb{C}P^n \) has a cell structure with only even cells. \(\mathbb{H}n \neq \mathbb{C}P^n \) also has only even homotopy.

Building on this example, Schubert cells in \(\text{Gr}_k(\mathbb{F}^n) \) have a cell decomposition w/ cells \(\mathbb{F}^i \).

In particular, \(\text{Gr}_k(\mathbb{C}^n) \) has only even cells. Same is true as \(n \to \infty \). The “infinite limit”

\[
\lim_{n \to \infty} \lim_{k \to \infty} \text{Gr}_k(\mathbb{C}^n) = BU
\]

also has only even homotopy. Moreover, this is “natural” in the field.

These two contrasting notions of “even” cover some of the most important ideas in algebraic topology.

Def. An even periodic cohomology theory \(E \) is one for which \(E^*(S^1) = 0 \neq E^0(S^1) \).

The prototype is complex K-theory: \(K^*(S^1) = 0 \neq K^0(S^1) \approx K^0(S) \) is Bott Periodicity.

Prop. If \(E \) is even periodic, then \(E^*(\mathbb{C}P^\infty) = E^*(pt) \cup [x] \), \(n \) only has even cells!

The multiplication map \(\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty \) induces:

\[
E^*(pt) \cup [x] \longrightarrow E^*(pt) \cup [y, z], \quad \text{a formal group law.}
\]

If \(X \) has even cells, then something else is true: AHSS always collapses!

Moral: Easy to map out of spaces w/ even cells (i.e., into spaces w/ even homotopy).

Def. A space \(X \) is even if it is s.c. \(\forall n \geq 0 \)

- \(H_{ev}(X) = 0 \neq H_{ev}(X) \) free (if \(y \neq 0 \))
- \(\pi_{2n}(X) = 0 \Rightarrow \pi_{2n}X \) is torsion free.
Can be rephrased via Universal Coeff: \(H^{\infty}(x; M) = 0 \) for all \(M \neq X \) finite type.

These form an exceptionally nice class of spaces! In particular, they are quite algebraic.

Prop. If \(X = A \vee (\text{even cells}) \) and \(Y \) is even, then any map \(A \to Y \) extends to \(X \to Y \).

Thm: Obstructions are in \(H^{\infty}(x; A \vee \Sigma Y) \).

In fact, all \(\infty \)-loop spaces are \(X \).

Cor. If \(X \) is even, then \(X \) is an \(H \)-space: \(X \times X \to X \).

Cor. If \(X \) is even \(\Rightarrow \) \(\text{A is a retract} \Rightarrow \text{A is even} \) \(\Rightarrow X \simeq A \vee F \) with \(F \) even.

In particular, we can form a prime decap.

Def. Let \(Y_{2h} \) be the space formed by maximally efficiently killing the odd htpy of \(S^{2h} \).

I.e. choose minimal sets of generators for \(\pi_{2h-1}(Y_{2h}) \) and cone them off.

Thm. (Paddy-Wilson) This is a well-defined htpy type.

Aside: Can also start w/ \(KS(2; A) \) and kill odd cohomology.

The spaces \(Y_{2h} \) are the `primes` for even spaces.

Thm. (Wilson) \(Y_{2h} \) is irreducible \(\forall h \) \(\Rightarrow \) any even space is a product of \(Y_{2h} \).

Now the real surprise!

Thm. (Wilson) For all \(n \), the connected components of \(MU_{2n} = \Sigma^{2n} (S^{2n} \wedge MU) \) are even.

Cor. If \(X \) is even, then \(\pi_{2h} X \) is torsion free.

So in fact, the story for \(CP^\infty \), \(BU \), etc was generic! These have cells of the form \(C^n \).

Thm. (H.-Hopkins) For all \(n \), \(MU_{2p} \simeq S^{2p} \wedge (S^{2p} \wedge MU) \) has even cells.

What's a consequence of this? One thing is that the unstable Adams-Novikov SS for spaces with even cells is much simpler than expected. Here we resolve by \(S^{2n} \wedge (\Sigma^\infty MU \wedge \Sigma^\infty X) \). If \(X \) is even, then so is \(S^{2n} \wedge (\Sigma^\infty X) \Rightarrow \text{unstable ASS is extra computable}.\)

Conj. (Asok-Hopkins) This works motivically to let us compute \(\text{Vect}^h(X) = [X, BGL_{2n}]_A \) for \(X \) affine even, etc.