Goal: understand equivariant commutative ring spectra. Have an equivariant spectrum \mathcal{R} + a homotopy coherent comm. multiplication + homotopy coherent norms.

What does structure do we have and what does this mean for G-categories in general?

Step back: what is this norm thing?

In genuine G-spectra, \mathcal{D}_G objects = spectra of G-colours, morphisms: G-spaces/spectra of maps of ring algebras.

Slightly different from the usual definition S^2, $S^{2n} \mapsto S^n$, for some V. Lewis showed this has the same information (he did so with the transfer).

\mathcal{D}_G is a closed symmetric monoidal category \(\mathcal{D}_G \otimes \mathcal{D}_G \to \mathcal{D}_G \), symmetric monoidal in both factors.

In particular, these are torsor over G-sets/spaces: G-Ens $(X \otimes Y, R) = \text{Top}(X, \text{Comm}(T, R))$.

The (H-hip-hooray) The tensoring map extends to $- \otimes : \text{Ens}(G \otimes H, \mathcal{D}_G) \to \mathcal{D}_G$, symmetric monoidal in both factors.

For G/H, $G/H \otimes X, \mathcal{D}_G(x, y) \to \mathcal{D}_G$ is the norm used often in the known proof:

1. \mathcal{D}_G is symmetric monoidal
2. $\mathcal{D}_G(x, y) \to \mathcal{D}_G$ is the norm used often in the known proof.

\mathcal{D}_G is symmetric monoidal (we can speak of a G-set, not just G-set).

This activity adds something valuable, so we can talk about commutative rings again:

Let \mathcal{F} be a category of subgroups (He $\equiv \mathcal{K} \equiv G$, $G \equiv G^\bullet \text{algebras}$).

This has a cat \mathcal{D}_G: obj is $\{X \mid \text{abcr}(X) \in \mathcal{F} \forall X \in X\}$.

Def: If C is G-symmetric monoidal, the \mathcal{F} is an F-comm monoidal if \mathcal{D}_G extends to a functor $\mathcal{D}_G \to C$.

Def: If C is \mathcal{D}_G, this is always genuinely commutative! We want a homotopical version, and I will come back to this.

Question: Why does Bousfield localise preserve (\mathcal{F})-commutative?

(H-Hip-hooray) Why is the category of G-sets instead of G-sets?

This is a different version of the result than the discussed before, but the difference is mainly expository.

In a G-spectra, ZG-algebras, \mathcal{D}_G.

The dual map: $\wedge \otimes \mathcal{D}_G \otimes \wedge \mathcal{D}_G$ commutes.

Let U be a G-inverse, then $(U \otimes U) \to (U \otimes U)$ is a closed in G-spacs, weakened by an E_0-closed \mathcal{D}_G-algebras over this and the homotopical versions have no preferred product or norm, etc.
Model tells us that if R is an E_1-ring spectrum, then the category of modules is symmetric monoidal. So a "dual" to the category of objects gives us the structure of the set of modules: If R is a commutative F-algebra, then the category of modules has $-\otimes_F$: $\text{Mod}_F \times \text{R-Mod} \to \text{R-Mod}$. If R is commutative G-spectrum, then R-Mod has norms:

- N^G_M is naturally a $N^G_{R \otimes \text{H} N} \cdot \text{R-Mod}$.
- $R_{\otimes F}$ on R-Mod.

Algebra: Two candidates: G-Mod, $G^\text{ Mackey}$.
- Both are (known) equivariant cats, auto-cartesian, G-symmetric monoidal:
- $N^G_{R \otimes \text{H} N} \cdot \text{Mod}$.
- (Mackey dual)

G-Mod has a similar dual back to spectra; a comm ring obj is automatically G-comm. This is just too weak.

$G^\text{ Mackey}$ has more flexibility. In particular, we have examples of F-algebras:

- $\mathcal{I}^F \cong \mathcal{C}_G$ (the dual to the augmentation ideal). This is $\mathcal{I}_{\alpha} S^\lambda_+ \mathcal{S}^\lambda_+$ for \mathcal{I}-acting rep.

- \mathcal{I}^F is a comm ring (S^λ_+ is homotopy comm).

- $N^{\mathcal{C}_G}_{\mathcal{C}_G} \mathcal{I}^F \mathcal{C}_G = \mathcal{I}^F (\mathcal{I}_{\alpha} \mathcal{S}^\lambda_+ \mathcal{S}^\lambda_+ + \text{Hom}(\mathcal{I}_{\alpha} \mathcal{S}^\lambda_+, \mathcal{S}^\lambda_+))$. \mathcal{I}^F is a G-algebra, $\mathcal{I} \cong \mathcal{C}_G$.

- $N^{\mathcal{C}_G}_{\mathcal{C}_G} \mathcal{C}_G = 0$.

The usual computation produces a family of examples, one for any cofinite in G.

This is a special case: $F = \mathbb{N}$. F-algebras have another name in the literature: Tambara functors. So we get extra structure on the category of modules over a Tambara functor, namely norms.

Still missing something. \otimes, the monoidal product in G^Mackey is the Kan extension of \otimes in Mod over \otimes in Gr. Both Mod and Gr are G-symmetric monoidal. So we should just repeat Kan extended in the "right" G-way, but I don't yet know how.