On the slice filtration and the Kervaire invariant one problem

M. Hill¹, M. Hopkins², D. Ravenel³

¹University of Virginia

²Harvard University

³University of Rochester

p-Adic Geometry Fun, August 2009

Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.

Exemplars:

- $2 S^1 \times S^1$
- *SU*(2) × *SU*(2)

- (Bökstedt) Related to $E_6/(U(1) \times Spin(10))$
- Possibly a similar construction.

1930s Pontryagin proves

{framed n – manifolds}/cobordism $\cong \pi_n^S$.

Tries to use surgery to reduce to spheres & misses an obstruction.

1950s Kervaire-Milnor show can always reduce to case of spheres...

Except possibly in dimension 4k + 2, where there is an obstruction: Kervaire Invariant.

Adams Spectral Sequence

$$[X, Y] \xrightarrow{} \operatorname{Hom}_{\mathcal{A}}(H^*(Y), H^*(X))$$

Have a SS with

$$E_2 = \operatorname{Ext}_{\mathcal{A}}(H^*(Y), H^*(X))$$

and converging to [X, Y].

- (Adem) $\operatorname{Ext}^1(\mathbb{F}_2, \mathbb{F}_2)$ is generated by classes $h_i, i \geq 0$.
- *h_j* survives the Adams SS if ℝ^{2^j} admits a division algebra structure.

Theorem (Browder 1969)

- There are no smooth Kervaire invariant one manifolds in dimensions not of the form 2^{j+1} 2.
- There is such a manifold in dimension 2^{j+1} 2 iff h²_j survives the Adams spectral sequence.

Adams showed that h_j itself survives only if j < 4

$$d_2(h_{j+1}) = h_0 h_j^2.$$

Previous Progress

 h_1^2 , h_2^2 , and h_3^2 classically exist.

Theorem (Mahowald-Tangora)

The class h_4^2 survives the Adams SS.

Theorem (Barratt-Jones-Mahowald)

The class h_5^2 survives the Adams SS.

Theorem (H.-Hopkins-Ravenel)

For $j \ge 7$, h_i^2 does not survive the Adams SS.

There are four main steps

- Reduce to a simpler homotopy computation which faithfully sees the Kervaire classes
- Rigidify the problem to get more structure and less wiggle-room
- Show homotopy is automatically zero in dimension -2
- Show homotopy is periodic with period 2⁸

Reduction to Simpler Cases

Reduction is purely algebraic!

- Lifting from Adams to Adams-Novikov is well understood.
- Reduction from Adams-Novikov to homotopy fixed points is formal deformation theory.

So good choice of *R* gives us something that is

- easily computable
- strong enough to detect the classes.

- Simplify computation by adding extra structure: equivariance.
- Here have fixed points, rather than homotopy fixed points.
- And there are spheres for every real representation.

Example

If $G = \mathbb{Z}/2$, then have $S^{\rho_2} = \mathbb{C}^+$ and S^2 .

- **O** Begin with *MU* with $\mathbb{Z}/2$ given by complex conjugation.
- 2 "induce" up to a $\mathbb{Z}/8$ spectrum:

- The geometric fixed points spectrum for the Z/8-action is geometric.
- This is a piece of the simplicial THH construction Teena gave for MU.

Advantages of the Slice SS

Hill-Hopkins-Ravenel On the slice filtration and the Kervaire invariant one problem

Want to decompose an equivariant X into computable pieces. Similar to Postnikov tower.

Key difference: don't use all spheres!

Key Fact

For spectra like *MU*, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for S^{ρ_4-1}

Gives the chain complex

$$\mathbb{Z}^4 \to \mathbb{Z}^4 \to \mathbb{Z}^2 \to \mathbb{Z} = C_{\bullet}.$$

Maps determined by $H_*(C_{\bullet}) = \tilde{H}_*(S^3).$

Theorem

For any non-trivial subgroup H of $\mathbb{Z}/8$ and for any slice sphere $\mathbb{Z}/8\otimes_H S^{\rho_H},$

$$H_{-2}(C^{\mathbb{Z}/8}_*)=0$$

The proof is an easy direct computation:

- If $k \ge 0$, then we are looking at something connected.
- If $k \leq 0$, then we look at the associated *co*chain algebra.
- $\label{eq:linear} \bigcirc \ \mbox{In the relevant degrees, the complex is } \mathbb{Z} \to \mathbb{Z}^2 \ \mbox{by} \\ 1 \mapsto (1,1).$

Theorem

 $\pi_{-2}(R) = 0.$

Proof.

• Slices of $MU \otimes MU \otimes MU \otimes MU$ are all of the form

$$H\mathbb{Z}\otimes (\mathbb{Z}/8\otimes_H S^{k\rho_H}).$$

- Class we are inverting is carried by an S^{kρ₈}.
- Inversion is a colimit and first steps show $\pi_{-2} = 0$.

Recall from Teena's Talk: TC(A) can be computed from $TR_*(A)$

$$TR_q^n(A,p) = \pi_q\Big(THH(A)^{C_{p^{n-1}}}\Big).$$

These are homotopy groups of honest fixed points and the maps essentially come from equivariant structure All of this is computable with slice machinery

General Benefits of Slices

Slice machine can much more general. Can build slice spectral sequences for other collections of cells

- Should have nice connectivity properties
- Should be "closed under restriction" = a Mackey functor in sets or subcategories
- Should make cellular objects being considered simpler.

Possible Collection: $L = \mathbb{C}, k \cdot L, L \oplus L^2 \oplus \cdots \oplus L^d$.