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In this talk, I discussed joint work with Hopkins which addresses the question:
“When is the localization of a commutative G-equivariant ring a commutative G-
equivariant ring?”. In all that follows, let G be a finite group. The talk sketches
a proof of the following theorem.

Theorem 1. If for all acyclics Z for a localization L and for all subgroups H,
NG
HZ is acylic, then for all commutative G-ring spectra R, L(R) is a commutative

G-ring spectrum.

The proof is modeled on the standard non-equivariant proof in EKMM [1]. The
essential twist is understanding the interplay between the G-action on the E∞
operad and the norm.

Already in the statement of the theorem we have used the norm (as described in
Hill-Hopkins-Ravenel [2]). This is a symmetric monoidal functor NG

H : SH → SG
from the category of H-spectra (with its smash product) to the category of G-
spectra. This has the distinguished feature of also refining to the left adjoint to
the forgetful functor from commutative G-ring spectra to commutative H-ring
spectra. Thus there is for any commutative G-ring spectrum R a canonical map
of commutative G-ring spectra

NG
HRes

G
H(R)→ R.

These satisfy axioms analogous to the norm maps in Tambara functors, making
commutative G-rings into spectral Tambara functors (analogous to Guillou-May’s
description of equivariant spectra).

1. Localizations Need Not Be Commutative

We first sketch a counterexample to the obvious conjecture. Let P denote the
family of proper subgroups of G, and let ẼP denote the cofiber of the natural map
from the classifying space EP+ to S0. The spectrum ẼP is a localization of S0: we

kill all maps from induced cells. Since G is finite, we can also realize ẼP as S0[a−1
ρ̄ ],

where aρ̄ is the inclusion of {0,∞} into the representation sphere associated to ρ̄,
the quotient of the real regular representation by its trivial summand.

This spectrum does not admit maps from the norms of its restrictions. For any
proper subgroup H, the commutative H-ring spectrum ResGH(ẼP) is contractible.

This is the terminal commutative H-ring, and since ẼP is not contractible, we
cannot have a commutative ring map

∗ ' NG
HRes

G
H(ẼP)→ ẼP.

The example already underscores the role the norm will play. Here there is
an obstruction to being a commutative ring spectrum. One way to interpret our
theorem is that this is the obstruction; if localization “plays nicely with the norm”,
then it takes commutative ring objects to commutative ring objects. On the other
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hand, the spectrum ẼP is a the result of inverting a map from an invertible element
(S−ρ̄) to the symmetric monoidal unit S0. For formal reasons, this is guaranteed to
be “infinitely coherently commutative”. Thus we need to understand the different
ways a G-commutative ring spectrum can be commutative.

2. Flavors of E∞

In the non-equivariant context, the model of the E∞ operad used for commu-
tative rings is the linear isometries operad on an separable Hilbert space U . In
the equivariant context, we have an additional choice: how does the group act
on U? We consider only universes (so if an irreducible representation occurs, it
does so infinitely often) that contain a trivial summand. This gives a hierarchy of
operads, all of which are underlain by the ordinary linear isometries operad. In all
cases, the key determination is which subgroups H are such that G/H embeds in
U (just as with transfers in the additive context). The extremal cases are where U
is a trivial universe (so only G/G embeds within), giving the “naive E∞ operad”
and U a complete universe (so all G/H embed within), giving the commutative
operad.

There is a huge difference between the algebras over these operads. Operads
over the naive E∞ operad are “coherently homotopy commutative”, but for a free
algebra over this operad on Z, the geometric fixed points is the free algebra on the
geometric fixed points of Z. In particular, for Z = G+, the geometric fixed points
are S0. In stark contrast, for the commutative operad, the geometric fixed points
can be much more complicated.

The spaces in these linear isometries operads are universal spaces for families of
subgroups of G×Σn. For the naive operad, the family is those subgroups contained
in G. For the commutative operad, the family is those subgroups H ⊂ G×Σn such
that H∩Σn = {e}. As universal families, they have nice simplicial decompositions,
and the only cells which appear are those with stabilizer in the families associated
to the operad.

In all cases, Σn acts freely. Since G × Σn need not, there can be fixed points
produced. The easiest way to describe how these interact, and to see the result,
is to utilize the natural enrichment of the symmetric monoidal structure on G-
spectra.

2.1. Tensoring over G-spaces. It is well known that the category of commuta-
tive G-ring spectra is tensored over G-spaces (see for instance Mandell-May or the
appendix to Hill-Hopkins-Ravenel [3]). The universal property defining the tensor
structure establishes canonical equivalences

G/H ⊗R ' NG
HRes

G
H(R).

This tells us how to tensor any commutative G-ring spectrum with any finite G-set
(and therefore by the usual tricks with any G-space, though this will not directly
be needed). What is perhaps more exciting is that while the left-hand side is not
defined for R an arbitrary element of SG, the right-hand side is. This means that
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via the norm, we can define X ⊗Z for a finite G-set X and a G-spectrum Z, and
the underlying spectrum is just the |X|-fold smash power of Z.

The key step in proving the theorem is to identify

(G× Σn/H)+ ∧Σn Z
∧n = (G× Σn/H)+ ∧Σn (n⊗ Z),

where n denotes the set with n-elements and a trivial G-action. Depending on
H, smashing over Σn converts n into a different G-set (possibly with a non-trivial
G-action). This means that smashing G × Σn/H over Σn with n ⊗ Z yields a
wedge of spectra of the form X ⊗ Z for various G-sets (determined by H).

The key example is as follows. Let n = 2, and let G = C2. There is a subgroup,
Z/2 of G × Σ2 given by the diagonal (it’s ludicrous, since all the groups are the
same). Now consider

G× Σ2/H+ ∧Σ2
(2⊗ Z).

The quotient by H shows that we identify the canonical Σ2-action on 2 with a
C2-action. This converts 2 into C2 as a C2-space, and hence

G× Σ2/H+ ∧Σ2
(2⊗ Z) = C2 ⊗ Z = NC2

e ResC2
e (Z).

A similar analysis holds in the general case.

3. Sketch of the proof

We need to show that if Z is acyclic, then Z∧n/Σn is acyclic. Knowing this will
allow us to simply copy EKMM. We can replace Z∧n/Σn with Ln(U)+ ∧Σn

Z∧n,
where Ln(U). Using the cell decomposition and the described analysis of the
possible stabilizer subgroups, we see that this has a filtration with associated
graded suspensions of wedges of smash products of norms. EKMM arguments
handle the wedges and smash products, and by assumption, the norms are also
acyclic.

We can do something better. We described above a hierarchy of commutative
operads. The stronger statement, showed in essentially the same way, is as follows.

Theorem 2. If for all L-acyclic spectra Z and for all G/H embedding in U the
spectrum NG

HRes
G
H(Z) is L-acyclic, then for all commutative G-ring spectra R,

L(R) is an algebra over L(U).
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