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ABSTRACT

We consider the problem of embedding unweighted, directed
k-nearest neighbor graphs in low-dimensional Euclidean
space. The k-nearest neighbors of each vertex provide or-
dinal information on the distances between points, but not
the distances themselves. Relying only on such ordinal in-
formation, along with the low-dimensionality, we recover the
coordinates of the points up to arbitrary similarity transfor-
mations (rigid transformations and scaling). Furthermore,
we also illustrate the possibility of robustly recovering the
underlying density via the Total Variation Maximum Penal-
ized Likelihood Estimation (TV-MPLE) method. We make
existing approaches scalable by using an instance of a local-
to-global algorithm based on group synchronization, recently
proposed in the literature in the context of sensor network
localization, and structural biology, which we augment with a
scale synchronization step. We show our approach compares
favorably to the recently proposed Local Ordinal Embedding
(LOE) algorithm even in the case of smaller sized problems,
and also demonstrate its scalability on large graphs. The
above divide-and-conquer paradigm can be of independent
interest to the machine learning community when tackling
geometric embeddings problems.

Index Terms— k-nearest-neighbor graphs, ordinal con-
straints, graph embeddings, eigenvector synchronization

1. INTRODUCTION

Embedding unweighted k-nearest neighbor (kNN) graphs is
a special case of ordinal or non-metric embedding, where one
seeks a spatial embedding of n points {~xi}ni=1 in Rd such that

∀(i1, j1, i2, j2) ∈ C, ‖~xi1 − ~xj1‖2 < ‖~xi2 − ~xj2‖2, (1)

where C denotes the set of ordinal constraints. Ordinal con-
straints are sometimes also specified as triplets [1]. In the
case of unweighted kNN graph embedding, C = C(G) ={

(a, b, a, c)
∣∣ab ∈ E(G), ac 6∈ E(G)

}
, where E(G) is the set

of directed edges in the kNN graph G.
Graph-based methods are of utmost importance in several

modern machine learning methods with applications such as
clustering, dimensionality reduction, and ranking. Many such
methods rely on weighted graphs, with weights often based

on similarity functions, i.e., wij = S(xi, xj). From a practi-
cal standpoint, storing unweighted kNN graphs instead would
allow for a very sparse representation of the data. If one
could recover the source data {xi}ni=1 from unweighted kNN
graphs, such a computationally efficient sparser representa-
tion would incur no information loss. Because of the extreme
sparsity of the representation, this is generally a hard problem.
Just recently, a method for recovering data distributions from
unweighted kNN graphs was introduced in [2]. Another mo-
tivation for this problem comes from an instance of the pop-
ular sensor network localization problem, where each sensor
is able to transmit only limited connectivity information to
a central location (ID names of its k nearest neighbors), but
transmits neither the distance measurements nor a complete
list of all its neighbors within a given fixed radius.

The original work on this problem dates back to Shepard
[3] and Kruskal [4, 5], and lately has been studied intensively
in the machine learning literature [1, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17]. In this work, we compare against and
extend the recent Local Ordinal Embedding method [18],
which enjoys several favorable comparisons with other mod-
ern methods. Another motivation for this problem comes
from an instance of the popular sensor network localization
problem, where each sensor is able to transmit only limited
connectivity information to a central location, in the form
of ID names of its k nearest neighbor sensors, but transmits
neither the estimated distance measurements nor a complete
list of all its neighbors within a given fixed radius. Note
that either of these last two scenarios renders the localiza-
tion problem (of estimating the sensor coordinates) easier
to solve. Similar to the sensor network application, one
could potentially apply this framework to cooperative con-
trol and sensing involving swarms of robot micro-vehicles
with limited payloads communicating via radio with limited
bandwidth [19, 20]. Our key ingredient is a modified ver-
sion of the As-Synchronized-As-Possible (ASAP) algorithm
introduced in [21], which makes existing embedding meth-
ods scalable via a divide-and-conquer, non-iterative local to
global approach, reduces computational complexity, allows
for massive parallelization of large problems, and increases
robustness to noise. The ASAP algorithm introduced in [21],
on which we rely in the present paper, renders our approach to
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reconstruct kNN graphs scalable to graphs with thousands or
even tens of thousands of nodes, and is an example of a local-
to-global approach that integrates local ordinal information
into a global embedding calculation.

We detail in Section 3.1 the exact approach used to de-
compose the initial kNN graph into many overlapping sub-
graphs, that we shall refer to as patches from now on. Each
resulting patch is then separately embedded in a coordinate
system of its own using an ordinal embedding algorithm, such
as the recent Local Ordinal Embedding (LOE) algorithm [18].
In the hypothetical scenario when LOE recovers the actual
ground truth coordinates of each patch, such local coordinates
agree with the global coordinates up to scaling and some un-
known rigid motion (such as rotation, reflection and transla-
tion), in other words, up to a similarity transformation. How-
ever, in most practical instances, it is unreasonable to expect
that the LOE algorithm will recover the exact coordinates
only from ordinal data. On a related note, we point out the re-
cent work of Kleindessner and von Luxburg [22], who settled
a long-known conjecture claiming that, given knowledge of
all ordinal constraints of the form ||xi−xj || < ||xk−xl|| be-
tween an unknown set of points x1, . . . , xn ∈ R (for finite n),
it is possible to approximately recover the ground truth coor-
dinates of the points up to similarity transformations. Further-
more, the same authors show that the above statement holds
even when we only have local information such as the dis-
tance comparisons between points in small neighborhoods of
the graphs, thus giving hope for a local-to-global approach, in
the spirit of the one we propose in the present paper.

Our contributions are: 1. We present a local-to-global ap-
proach for the problem of embedding clouds of points from
ordinal information, which is scalable to very large graphs,
and can be computed efficiently and robustly in a distributed
manner. Specifically, we extend the ASAP framework to the
setting of ordinal embeddings, by augmenting it with a scale
synchronization step. We believe that local-to-global strate-
gies could benefit many problems in the machine learning
community. The scale of data involved in many interesting
problems poses a challenge to direct, holistic approaches. 2.
We extend the ordinal embedding pipeline to perform den-
sity estimation via Total Varation Maximum Penalized Like-
lihood Estimation. This demonstrates the similarity between
the point localization and density estimation problems. Suf-
ficiently simple point distributions can be well estimated by
applying a short postprocessing step to an approximate em-
bedding. 3. We present preliminary results for a very simple,
straightforward ordinal embedding method.

The rest of the paper is organized as follows. Section 2 is
a summary of existing methods for related embedding prob-
lems. Section 3 details the pipeline of the ASAP framework,
including the scale synchronization step in Section 3.2. In
Section 4 we remark on the connection to the density esti-
mation problem, and describe the post-processing step per-
formed via Total-Variation Maximum Penalized Likelihood

Estimation. Section 5 shows the results of several experi-
ments recovering point embeddings from a variety of data
sets, and compares to the existing LOE algorithm, as well
as presenting results for the density estimation problem. In
Section 6 we discuss an entirely different approach to ordi-
nal embedding, and present some preliminary results which
suggest more modifications are needed. We conclude our pri-
mary discussion in Section 7 and summarize in Appendix 7.1
some related basic notions from the rigidity theory literature.

2. RELATED WORK

2.1. Multidimensional Scaling

Broadly speaking, multidimensional scaling (MDS) refers
to a number of related problems and methods. In Classical
Multidimensional Scaling (CMDS) [23], one is given all Eu-
clidean Squared-Distance measurements ∆ij = ‖~xi − ~xj‖22
on a set of points X = {~xi}ni=1 and wishes to approximate
the points, assuming that they approximately lie in a low-
dimensional space d � n. Note that the solution for the
coordinates is unique only up to rigid transformations, and
that solutions do not exist for all possible inputs ∆.

One can generalize CMDS to incorporate additional non-
negative weights Wij on each distance, useful when some
distances are missing, or most distances are noisy, but some
are known. The optimization involves minimizing an energy
known in the literature as stress [24]. One approach to min-
imize stress is to iteratively minimize a majorizing function
of two variables. A further generalization of MDS is non-
metric MDS, or Ordinal Embedding, in which the input D
is assumed to be an increasing function applied to distance
measurements [3]. This may be the case if D represents dis-
similarity between points, as opposed to measured distances.
The problem can again be expressed with stress functionals
and is usually solved with isotonic regresion [5].

2.2. Semidefinite Programming methods

Semidefinite Programming methods (SDP) have been applied
frequently to MDS and related problems. Classical MDS can
be stated as an SDP, with a closed form solution. Any for-
mulation of the problem that optimizes over the Gram matrix
requires the semidefinite constraint K ∈ Sn+. Indeed, for met-
ric MDS, if one penalizes the squared error on the squared
distance measurements, the problem can be written as

min
X∈Rd×n

∑
ij

Wij(∆ij −∆ij(X))2

= min
K∈Sn+,X∈Rd×n

∑
ij

Wij(∆ij − (Kii − 2Kij +Kjj))
2

s.t. K = XTX.



Constraints of the form K = XTX are usually not allowed
however, and are typically relaxed to [25, 26][

I X
XT K

]
� 0.

via Schur’s Lemma. Furthermore, one encouragesK to be ap-
proximately low-rank by introducing a nuclear norm or trace
penalty ‖K‖∗ = ‖σ(K)‖1 = tr(K), as a convex relaxation
of a rank constraint. Intuitively, since the `1 norm promotes
sparsity, the nuclear norm should promote few nonzero singu-
lar values. Elsewhere [27], it is argued that one should max-
imize tr(K), in the spirit of the popular Maximum Variance
Unfolding approach [27]. Neither minimizing nor maximiz-
ing the trace actually imposes an exact rank constraint, which
is non-convex and NP-hard. One approach that could achieve
exact rank constraints would be to use the Majorized Penalty
Approach of Gao and Sun [28] with an alternating minimiza-
tion method.

A group of methods have studied the graph realization
problem, where one is asked to recover the configuration of a
cloud of points given a sparse and noisy set of pairwise dis-
tances between the points [29, 30, 31, 32, 33]. One of the
proposed approaches involves minimizing the following en-
ergy

min
p1,...,pn∈R2

∑
(i,j)∈E

(
‖pi − pj‖2 − d2

ij

)2
. (2)

which unfortunately is nonconvex, but admits a convex relax-
ation into a SDP program. We refer the reader to Section 2
of [21] for several variations of this approach, some of which
have been shown to be more robust to noise in the measured
distances.

2.3. Local Ordinal Embedding
Terada and von Luxburg [18] have recently proposed an al-
gorithm for ordinal embedding and kNN embedding specif-
ically, called Local Ordinal Embedding (LOE), which mini-
mizes a soft objective function that penalizes violated ordinal
constraints.

min
X∈Rd×n

∑
i<j,k<l,(i,j,k,l)∈C

max [0, Dij(X) + δ −Dkl(X)]
2
. (3)

The energy takes into account not only the number of con-
straints violated, but the distance by which the constraints are
violated, penalizing large violations more heavily.

An advantage of this energy in contrast to ones that nor-
malize by the variance of X (to guarantee nondegeneracy) is
its relatively simple dependence on X , making the above en-
ergy easier to minimize. Instead, the scale parameter δ guar-
antees nondegeneracy, and fixes the scale of the embedding
(which is indeterminable from ordinal data alone).

The authors introduce algorithms to minimizing the above
energy, based on majorization minimization and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) approximation of New-
ton’s method, and prove that ordinal embedding is possible

when only local information is given (e.g. a k neareast neigh-
bor graph). The algorithm recovers not only the ordinal
constraints, but the density structure of the data as well. The
algorithm applies to ordinal constraints associated with kNN
graphs as well more general sets of ordinal constraints. We
will use this crucial property when solving subproblems in
the method presented here, as the corresponding subgraphs
are generally not kNN graphs.

3. ASAP & SCALE SYNCHRONIZATION FOR
ORDINAL EMBEDDINGS

In this section we detail the steps of the ASAP algorithm,
central to the divide-and-conquer algorithm we propose for
the ordinal embedding problem. Note that the difference be-
tween the original ASAP algorithm introduced in [21] and
our approach lies in the decomposition method from Section
3.1 and the scale synchronization step from Section 3.2. The
ASAP approach starts by decomposing the given graphG into
overlapping subgraphs (referred to as patches), which are then
embedded via the method of choice (in our case LOE). To ev-
ery local patch embedding, there corresponds a scaling and
an element of the Euclidean group Euc(d) of d-dimensional
rigid transformations, and our goal is to estimate the scalings
and group elements that will properly align all the patches in a
globally consistent framework. The local optimal alignments
between pairs of overlapping patches yield noisy measure-
ments for the ratios of the above unknown group elements.
Finding group elements from noisy measurements of their ra-
tios is also known as the group synchronization problem. for
which Singer [34] introduced spectral and semidefinite pro-
gramming (SDP) relaxations over the group SO(2) of planar
rotations, which is a building block for the ASAP algorithm
[21].

Table 1 gives an overview of the steps of our approach.
The inputs are an ordinal graph (we consider kNN graphs)
G = (V,E), where edge ij ∈ E and non-edge il 6∈ E in-
dicates that dij ≤ dil, the max patch size parameter MPS,
the target dimension d, and a base-case ordinal embedding
method OrdEmbed : G 7→ X ∈ Rd×n for embedding each
patch, such as LOE.

3.1. Break up the kNN graph into patches and embed
The first step we use in breaking the kNN graph into patches is
to apply normalized spectral clustering [35] to a symmetrized
version of the graph. Normalized spectral clustering parti-
tions the nodes of a graph into N � n clusters by perform-
ing k-means on the embedding given by the top N eigenvec-
tors of the random-walk normalized graph Laplacian. It is
shown [35] that normalized spectral clustering minimizes a
relaxation of the normalized graph cut problem. Next, we
enlarge the clusters by adding the graph-neighbors of each
node, so that the resulting patches have significant overlap,
a prerequisite for the ASAP synchronization algorithm. The
higher the overlap between the patches, the more robust the
pairwise group ratio estimates would be, thus leading overall



Algorithm 1 Modified ASAP algorithm that incorporates the scale synchronization step.
INPUT G = (V,E), |V | = n, |E| = m, MPS, d, OrdEmbed(·)
Choose Patches 1. Break G into N overlapping globally rigid patches P1, . . . , PN following the steps in Sec. 3.1.
Embed Patches 2. Embed each patch Pi separately based on the ordinal constraints of the corresponding subgraph ofG using

OrdEmbed(·).
Step 1 1. If a pair of patches (Pi, Pj) have enough nodes in common, let Λij be the median of the ratios of distances

realized in the embedding of Pi and their corresponding distances in Pj as in (4); otherwise set Λij = 0.
Scale 2. Compute the eigenvector vΛ

1 corresponding to the largest eigenvalue of the sparse matrix Λ.
3. Scale each patch Pi by vΛ

1 (i), for i = 1, . . . , n

Step 2 1. Align all pairs of patches (Pi, Pj) that have enough nodes in common.
Rotate & Reflect 2. Estimate their relative rotation and possibly reflection Hij ∈ O(d) ⊂ Rd×d.

3. Build a sparse dN × dN symmetric matrix H = (Hij) where entry ij is itself a matrix in O(d).
4. DefineH = D−1H , where D is a diagonal matrix with
D1+d(i−1),1+d(i−1) = . . . = Ddi,di = deg(i), i = 1, . . . , N , where deg(i) is the node degree of patch Pi.
5. Compute the top d eigenvectors vHi ofH satisfyingHvHi = λHi v

H
i , i = 1, . . . , d.

6. Estimate the global reflection and rotation of patch Pi by the orthogonal matrix ĥi that is closest to H̃i in
Frobenius norm, where H̃i is the submatrix corresponding to the ith patch in the dN × d matrix formed by
the top d eigenvectors [vH1 . . . vHd ].
7. Update the embedding of patch Pi by applying the above orthogonal transformation ĥi

Step 3 Translate Solve m× n overdetermined system of linear equations (6) for optimal translation in each dimension.
OUTPUT Estimated coordinates x̂1, . . . , x̂n

to a more accurate final global solution. Finally, we use an it-
erative procedure to remove nodes from the graph relying on
tools from rigidity theory. 1 If a patch is not globally rigid,
we drop a constant fraction of the added nodes. At each round
we choose to drop a quarter of the nodes with the lowest de-
gree while retaining all nodes that were in the original cluster
generated by k-means in the corresponding patch. This uses
the heuristic that low-degree nodes tend to render a graph not
globally rigid. After dropping nodes, we check the remaining
patch for globally rigidity again. We stop the pruning process
when the patch contains fewer than 4/3 the number of nodes
in the original cluster, or the patch is globally rigid.

We refer the readers to Appendix 7.1 for for a brief de-
scription of global rigidity, and relevant results in the litera-
ture, and use the remainder of this section as a brief discus-
sion of the main definitions. In the graph realization prob-
lem (GRP), one is given a graph G = (V,E) together with a
non-negative distance measurement dij associated with each
edge, and is asked to compute a realization of G in Rd. In
other words, for any pair of adjacent nodes i and j, the dis-
tance dij = dji is available, and the goal is to find a d-
dimensional embedding p1, p2, . . . , pn ∈ Rd such that ‖pi −
pj‖ = dij , for all (i, j) ∈ E. The main difference between
the GRP and the problem we aim to address in our paper is
the input information available to the user. Unlike the GRP
problem where distances are available to the user, here we
only have information of the adjacency matrix of the graph
and have the knowledge that it represents a kNN graph. Both
problems aim to recover an embedding of the initial configu-

1A graph is globally rigid if all realizations of it are congruent up to a
rigid transformation.

ration of points.
A graph is globally rigid in Rd if there is a unique (up

to the trivial Euclidean isometries) embedding of the graph
Rd such that all distance constraints are preserved. It is well
known that a necessary condition for global rigidity is 3-
connectivity of the graph. Since the problem at hand that we
are trying to solve is harder (as we do not have distance infor-
mation available) we require that the patches we generate are
globally rigid graphs. Even in the favorable scenario when
we do have available distance measurements (which we do
not in the present problem, but only ordinal information), any
algorithm seeking an embedding of the graph would fail if
the graph were to have multiple non-congruent realizations.

3.2. Scale Synchronization
Before applying the original ASAP algorithm to the embed-
ded patches, we introduce an additional step that further im-
proves our approach and is independent of the dimension d.
In the graph realization problem which motivated ASAP, one
is given a graph G = (V,E) and non-negative distance mea-
surement dij associated with each edge ij ∈ E(G), and is
asked to compute a realization of G in Rd. The distances are
readily available to the user and thus the local embedding of
each patch is on the same scale as the ground truth. How-
ever, in the kNN embedding problem, distances are unknown
and the scale of one patch relative to another must be approx-
imated. Any ordinal embedding approach has no way of re-
lating the scaling of the local patch to the global scale. To this
end, we augment the ASAP algorithm with a step where we
synchronize local scaling information to recover an estimate
for the global scaling of each patch, thus overall synchroniz-



ing over the group of similarity transformations.
We accomplish this as follows. Given a set of patches,

{Pi}Ni=1, we create a patch graph in which two patches are
connected if and only if they have at least d + 1 nodes in
common. We then construct a matrix Λ ∈ RN×N as

Λij =


median

{
D

Pi
a,b

D
Pj
a,b

}
a6=b∈Pi∩Pj

if Pi ∼ Pj , i ≤ j,
1/Λji if Pi ∼ Pj , i > j,

0 otherwise,
(4)

where DPi

a,b is the distance between nodes a and b as realized
in the embedded patch Pi. The matrix Λ approximates the
relative scales between patches. If all distances in all patches
were recovered correctly up to scale, and all patches had suf-
ficient overlap with each other, then each row of Λ would be a
scalar multiple of the others and each column of Λ would be
scalar multiple of the others, thus rendering Λ a rank-1 ma-
trix. For the noisy case, in order to get a consistent estimate
of global scaling, we compute the best rank-1 approximation
of Λ, given by its leading eigenvector v(Λ)

1 . We use this ap-
proximation of global scaling to rescale the embedded patches
before running ASAP. Note that the connectivity of the patch
graph and the non-negativity of Λ guarantee, via the Perron-
Frobenius Theorem, that all entries of v(Λ)

1 are positive. We
refer the reader to Figure 2, which illustrates on an actual ex-
ample the importance of this scaling synchronization step.
3.3. Optimal Rotation, Reflection and Translation
After applying the optimal scaling to each patch embedding,
we use the original ASAP algorithm to integrate all patches
in a global framework, as illustrated in the pipeline in Fig-
ure 1. We estimate, for each patch Pi, an element of the Eu-
clidean group Euc(d) = O(d) ×Rd which, when applied to
that patch embedding Pi, aligns all patches as best as pos-
sible in a single coordinate system. In doing so, we start
by estimating, for each pair of overlapping patches Pi and
Pj , their optimal relative rotation and reflection, i.e., an el-
ement Hij of the orthogonal group O(d) that best aligns Pj
with Pi. Whenever the patch embeddings perfectly match the
ground truth, Hij = OiO

−1
j . We refer the reader to [21] for

several methods on aligning pairs of patches and computing
their relative reflections and rotations Hi,j . Finding group el-
ements {Oi}Ni=1 from noisy measurements Hij of their ratios
is also known as the group synchronization problem. Since
this problem is NP-hard, we rely on the spectral relaxation
[34] of

min
O1,...,ON∈O(d)

∑
Pi∼Pj

‖OiO−1
j −Hij‖2F . (5)

for synchronization over O(2), and estimate a consistent
global rotation of each patch from the top d eigenvectors of
the graph Connection Laplacian, as in Step 2.4 in Table 1.
We estimate the optimal translation of each patch by solving,
in a least squares sense, d overdetermined linear systems

xi − xj = x
(k)
i − x

(k)
j , (i, j) ∈ Ek, k = 1, . . . , N, (6)

Fig. 1. ASAP and scale synchronization pipeline.

where xi, respectively x(k)
i , denote the unknown location of

node i we are solving for, respectively, the known location of
node i in the embedding of patch Pk. We refer the reader to
[21] for a description of computing the optimal translations.

3.4. Extension to higher dimensions
Although we present experiments here on 2D and 3D data,
the ASAP approach extends naturally to higher dimensions.
In the 3D case, ASAP has been recently used as a scalable
robust approach to the molecule problem in structural biol-
ogy [36]. For the d-dimensional general case, one can extend
ASAP by first using the same approach for scaling synchro-
nization from Section 3.2, then synchronizing over O(d), and
finally estimating the optimal translations over Rd by solv-
ing d overdetermined systems of linear equations via least-
squares. The LOE approach that can be used to obtain the
local patch embeddings required by ASAP, has a natural ex-
tension to the d-dimensional case, thus rendering the entire
pipeline amenable to dealing with higher-dimensional data.

4. DENSITY ESTIMATION

In this section, we remark on the explicit connection between
the graph embedding problem considered in this paper and
the density estimation problem. In particular, one may ap-
proach the problem of recovering the unknown coordinates
underlying the kNN graph by first aiming to estimate the den-
sity function that generates the coordinates. Suppose for ex-
ample that one is able to estimate the pointwise density u :
Ω ⊆ Rd → [0, 1], up to some constant multiple, evaluated
at each vertex of the graph, xi. Next, as outlined in [2], one
can assign weights to the originally unweighted kNN graph,
defined byw(xi, xj) = (u−1/d(xi)+u−1/d(xj))/2. Further-
more, it can be shown that the shortest path distance in the
resulting weighted kNN graphs converges to the Euclidean
distance of the original points as the number of points in-
creases. In other words, applying multidimensional scaling
to the shortest path distances on the weighted kNN graph will
yield increasingly accurate embeddings of the original points
{xi}ni=1 as n→ +∞.



In contrast to finding an approximate embedding from a
density estimate, under certain conditions, the reverse process
is also straightforward. With sufficiently many points and suf-
ficiently strong priors on the distribution, the methodology
of Maximum Penalized Likelihood Estimation (MPLE) ap-
plies [37]. One first assumes that the locations correspond to
points drawn independently identically distributed according
to some unknown underlying spatial distribution. MPLE ap-
proximates the most likely spatial distribution given the points
observed and some assumed prior distribution on the space
of distributions. The data fidelity term comes in the form of
a log-likelihood term, a function of the distribution estimate
and the point locations, and is given by

L(u, {xi}ni=1) =

n∑
i=1

log(u(xi)),

and the penalty term, P (u) enforces the prior distribution
on the space of distributions. Typical choices for P (u) in-
clude the H1-seminorm regularizer, P (u) = λ

2

∫
Ω
|∇u|2dx,

enforcing smoothness, and Total Variation (TV) norm regu-
larization, P (u) = λ

∫
Ω
|∇u|dx, which enforces smoothness,

but also allows for edges. Therefore, general MPLE seeks
to optimize the following energy over all probability distribu-
tions on the spatial domain Ω ⊆ Rd

û = argmaxu≥0,
∫
Ω
udx=1L(u, {xi}ni=1)− P (u).

The form and scale of P encodes different types and amounts
of regularity in the resulting density estimate u. In practical
settings, cross-validation should be performed to determine
the appropriate amount of regularity to impose on a given data
set.

For the purpose of using kNN graphs to recover densi-
ties, we will include a post-processing step for a subset of the
embedding experiments, to which we apply a standard imple-
mentation of TV MPLE [38] to the embedded points. TV is
a good choice of penalty because we will be applying it to
points that are drawn from a piecewise constant density. The
good density estimates based on good embeddings shown in
Section 5 illustrate that there is in fact a strong connection
between the embedding and density estimation problems.

The actual implementation of the TV MPLE relies on the
Split Bregman (equivalently Alternating Direction Method
of Multipliers) minimization technique in which one intro-
duces a splitting and equality constraints that are enforced
by performing saddle-point optimization of the augmented
Lagrangian. This results in an iterative update procedure
given by Algorithm 2. The first minimization step is actually
replaced by minimizing over u, and d individually, making
use of the shrinkage proximal operator associated with the `1

norm.

5. EXPERIMENTS
Our experiments compare embeddings of points drawn from
three different 2D synthetic densities: piecewise constant

Algorithm 2 TV MPLE
INPUT : {xi}, ρ, γ
y = 0, z = 0
For numberIterations {

(
û, d̂
)

=

argminu≥0,d

{
‖d‖1 −

n∑
i=1

log(u(xi))

+
ρ

2
‖∇u− d+ y‖22 +

γ

2
(‖u‖1 − 1 + z)

2

}
y =y + ∇̃û− d̂
z =z + ‖û‖1 − 1

}

half-planes (PC), piecewise constant squares (PCS), and
Gaussian (Gauss), and a 3D synthetic denisty : piecewise
constant half-cubes (halfcube), each with n = {500, 1000, 5000}
points, as well as points drawn uniformly from a 3D donut
shape (Donut) with n = 500, and the actual 2D coordinates
of n = 1101 cities in the US (US cities). For a given set of
data points, we use its kNN adjacency matrix as input to each
ordinal embedding method. Separate from these datasets with
a clear correct geometric embeddings, we find embeddings
of points in a co-authorship network of network scientists
(NetSci2010) with n = 552 (see Section 5.6). We test Lapla-
cian Eigenmaps [39], the LOE BFGS and LOE MM methods
[18], and ASAP with LOE BFGS used for the patch embed-
dings. As LOE was already compared with several methods
in [18], attaining better performance than LOE may suggest
better performance than a number of relevant methods includ-
ing Kamada and Kawai [40], and Fruchterman and Reingold
[41]. We remark that our approach deals with a different
input than that of the t-SNE method in [42], which is gen-
erally used for embeddings of high dimensional data where
some of the constraints are deliberately violated, which is not
necessarily the case in our setting. We evaluate the methods
based on (wall-clock) runtime and two different error metrics,
Procrustes alignment error[43], and A-error (EA) defined as
the percentage of edge disagreements between the kNN adja-
cency matrix of the proposed embeddeding X̃ and the ground
truth

error(X̃,X) : EA
def
=

1

n2

n∑
i,j=1

∣∣∣(AkX̃)ij − (AkX)ij∣∣∣ , (7)

where AkX ∈ {0, 1}n×n denotes the adjacency matrix of the
corresponding kNN graph. We set varying limits on the num-
ber of LOE iterations {5, 10, 50, 100, 300, 500}, and we use
varying maximum patch sizes (MPS) for ASAP . The LOE
and ASAP methods give, for each distribution and values n



and k, an error-runtime Pareto curve (with low values in both
coordinates being best). In Table 1, we establish some short-
hand notation for the methods and parameters used in this
section. For fair comparisons, we pass the same randomly
sampled data to each of the methods. Ideally, one would run
these experiments many times over and average the results
(to get an estimate of average performance), but this is ef-
fect already partially accomplished by running the LOE and
ASAP methods with multiple parameters to get a more holis-
tic measurement of performance. It is worth mentioning that
while LOE BFGS and LOE MM are iterative methods which
should converge to the best estimate of the solution as the
number of iterations increases, ASAP is not iterative and the
results of ASAP LOE with a given MPS, do not inform the
results of ASAP LOE with another MPS. This aspect, com-
bined with the randomized k-means spectral clustering used
to choose patches means that we do not generally expect the
recovery errors of ASAP LOE to be monotonically decreasing
with MPS or time (as higher MPS generally leads to longer
computational time). A principled way of choosing the best
MPS for a given application of ASAP LOE could be of further
interest.

Recovery Method
LE Laplacian Eigenmaps embedding
LOE MM Local Ordinal Embedding using ma-

jorization minimization
LOE BFGS Local Ordinal Embedding using BFGS
ASAP LOE ASAP & LOE BFGS patch embeddings
Parameters
sparse k k = d2 log(n)e
dense k k = d

√
n log(n)e

MPS maximum patch size (for ASAP)
Iter. number of iterations (of LOE)
Data sets
PC 2D piecewise constant half-planes
PCS 2D piecewise constant squares
Gauss 2D Gaussian
halfcube 3D piecewise constant half-cubes
Donut 3D Donut
US cities 2D coordinates of US cities
NetSci2010 co-authorship network of scientists

Table 1. Notation for plotting experimental results.

5.1. The need for scale synchronization

First, to illustrate the importance of the scale synchroniza-
tion introduced in Section 3.2, we compare in Figure 2 ASAP
synchronized embeddings with and without this step. Clearly,
this step significantly improves the recovered solutions.

Fig. 2. Left: Ground truth, n = 1000, k = 14. Middle:
ASAP LOE with scale synchronization: EA = 0.007. Right:
ASAP LOE without scale synchronization: EA = 0.038.

5.2. Simulations with n = 500, 1000, 5000 with sparse
and dense k

We show EA versus runtime for recovering n = {500, 1000, 5000}
points sampled from the PC (Figure 3), PCS (Figure 4), and
Gaussian (Figure 5), with each figure showing results in the
sparse and dense k regime (see Table 1). We also show EA
versus runtime for n = {500, 1000, 5000} points drawn from
the halfcube (Figure 6) distribution for k = 50, 150250, 450.
Even for lower values of n, we find that ASAP LOE is of-
ten either faster than or better-performing than LOE BFGS,
or both. This seems to be especially true in the sparse k
domain. This is partly due to the massively parallel embed-
ding step in ASAP, which can take advantage of multiple
cores as the problem scales. One would expect that as n
continues to grow, if more processors are made available and
memory increases sufficiently, the advantage of embedding
parallelization would continue to increase.

To further illustrate how the methods perform, we plot the
embeddings of n = 1000 point sampled from the 2D densi-
ties in Figure 7. In each case, the ASAP LOE with MPS=400
takes less time to run and yields smaller EA errors than the
LOE BFGS with 100 maximum iterations. We only run LOE
MM for n = 500 because of difficulties we had when trying
to get the provided R implementation to run on our Linux-
based remote computing resource. We ran into no problems
with the LOE BFGS implementation. The computers used
have 12 CPU cores which are Intel(R) Xeon(R) X5650 @
2.67GHz, and have 48GB ram. The R implementation of
LOE does not (as far as its authors are aware) take advan-
tage of multiple cores, and runs a single process on a single
core. In contrast, our ASAP Matlab implementation uses the
Multicore package to divide up the local embedding problems
among the available cores.

To demonstrate that this approach is not limited to the
2D case, nor does it only perform well on synthetic data,
we plot in Figure 9 the embeddings Procrustes aligned with
points sampled from a 3D donut shape, and actual coordi-
nates of n = 1101 US cities. In both cases, ASAP LOE with
MPS=300 runs faster and yields smaller EA than LOE BFGS
with 500 maximum iterations, the latter of which produces
twisted or folded results.



Fig. 3. EA vs. time, n = {500, 1000, 5000}, Left : k sparse,
Right : k dense, piecewise constant half-planes, ◦ ASAP
LOE, × LOE BFGS, � LE , ? LOE MM

MPS 100 300 500
PCS EA 5.1× 10−4 5.6× 10−4 1.9× 10−4

PC EA 5.8× 10−4 4.7× 10−4 3.0× 10−4

Table 2. Recovery results for n = 50, 000 for ASAP LOE.

5.3. Large n : 50,000

In Table 2 we show EA vs runtime for ASAP LOE on a data
set of n = 50, 000 points and k = 22. While this size
is completely prohibitive for LOE BFGS, ASAP LOE pro-
duces good results in less than 4 hours. The worst possible
result would be all edges of original graph misplaced, mean-
ing EA = 2 · 50k · 22/(50k)2 = 8.8× 10−4. EA = 2× 10−4

means we get approximately 3/4 of the edges correct.

5.4. Increasing k

We show in Figure 10, scaled (n/k)×NumberNonzero(A−
A0) (this is a rescaling of EA proportional to number of mis-
placed edges, more comparable for different values of k) and
procrustes error versus increasing values of k for n = {5000}
points drawn from the piecewise constant half-planes distri-
bution using the method ASAP LOE with MPS=300. We
see that for large n, adjacency matrix error and Procrustes
error remain relatively small and stable over a range of small
increasing k. Additionally, we show in Figure 16 some of
the embeddings corresponding to these results. Like the Pro-
crustes error plot, these embeddings suggest that for a range

Fig. 4. EA vs. time, n = {500, 1000, 5000}, Left : k sparse,
Right : k dense, piecewise constant half-planes, ◦ ASAP
LOE, × LOE BFGS, � LE , ? LOE MM

of k small relative to n and not too large relative to MPS,
ASAP LOE BFGS returns sensible, although not perfect re-
sults. As k gets too large however the results are quite poor.
We suspect this is a result of k being too large relative to
MPS, leading to patches which are overly dense. When an
ordinal graph contains nearly all possible edges, it essentially
provides no information. When such data is of specific in-
terest, one could either increase the mps as computational re-
sources and time allow, or potentially use an alternate method
for breaking the graph into overlapping patches which are not
too dense.

5.5. Density Estimation Experiments

In Figure 11 we show the results of applying TV MPLE to
some of the embeddings shown in Figure 7. The regulariza-
tion parameter used is .0001 . This is not obtained by cross-
validation, but it simply seems to perform well on the origi-
nally sampled points. The densities of the approximate em-
beddings are as expected, with ASAP LOE BFGS recovering
the density best, with LOE BFGS behind, and LE doing the
worst. This altogether suggests that better embedding results
do lead to better density estimation, if that is the end goal.



Fig. 5. EA vs. time, n = {500, 1000, 5000}, Left : k sparse,
Right : k dense, Gaussian density ◦ ASAP LOE, × LOE
BFGS, � LE , ? LOE MM

Fig. 11. TV MPLE applied to example embeddings of PC
n = 1000, k dense, and top left : LE, top right : LOE
BFGS maxIt=100, bottom left : ASAP LOE BFGS max patch
size 400, bottom right : estimated density from ground truth
points, see column 1 of Figure 7

Fig. 6. EA vs. time, n = {500, 1000, 5000}, k =
50, 150, 250, 450, 3D half-cube density ◦ ASAP LOE, ×
LOE BFGS, � LE , ? LOE MM

Fig. 12. TV MPLE applied to example embeddings of PCS
n = 1000, k dense, and top left : LE, top right : LOE
BFGS maxIt=100, bottom left : ASAP LOE BFGS max patch
size 400, bottom right : estimated density from ground truth
points, see column 2 of Figure 7

5.6. Network of network scientists embedding

To further illustrate potential of ordinal embedding to broad
categories of data, we present here an experiment embedding
data that does not have an apparent ground-truth geometry.
We use data from a co-authorship network of network sci-
entists [44] from 2010, which was studied in [45] to evalu-
ate methods of computing core-periphery structure. The net-
work contains nonegatively weighted undirected edges where
the weights are based on the number of papers they have co-
authored. The network has 552 nodes and 1318 edges, with



Fig. 7. Embeddings for the PC (left), PCS (middle), and
Gauss (right) data sets with n = 1000, and k dense. Row
1 : LE. Row 2: LOE BFGS Iter.=100. Row 3: ASAP LOE
with MPS = 400 (with each ASAP result obtained is less time
than the corresponding LOE result). Row 4: ground truth.

the number of edges attached to each node ranging from 1
to 38. The mean number of edges attached to each node is
4.7754 and the median is 4.

To embed the data, we treat the co-authorship links as
nearest neighbor relationships. In other words, if X and Y
have authored papers together, but X has not authored any
papers with Z, we impose that the distance between X and Y
should be smaller than the distance between X and Z. We used
LOE BFGS and ASAP LOE BFGS to perform these embed-
dings in 2D and 3D. In this case, the LOE results were ulti-
mately best with the 2D LOE BFGS 500 iteration embedding
misplacing 754 of the 1318 nearest neighbor edges and the
3D LOE BFGS 500 Iteration embedding misplacing 272 of
the nearest neighbor edges, while the 2D ASAP LOE BFGS
mps 500 misplaced 910 edges, and the 3D ASAP LOE BFGS
mps 500 misplaced 467 edges. That being said, several of the
runtimes for the ASAP LOE results beat the LOE results. We
speculate that the reasons LOE outperforms ASAP LOE in
accuracy in this case are twofold : 1) the number of nodes,

Fig. 8. Embeddings for halfcube data sets with n = 1000,
and k = 50 (left), 150 (middle), 450 (right) Row 2: LOE
BFGS Iter.=100. Row 3: ASAP LOE with MPS = 300 (with
each ASAP result obtained is less time than the corresponding
LOE result). Row 4: ground truth.

n = 552, is too small to make the LOE method applied to the
full data sufficiently intensive, and 2) the wide distribution of
degrees of the nodes in the network perhaps does not go well
with our approach of breaking up the network via spectral
clustering. Perhaps other methods for braking up the network
should be considered when the degree distribution is highly
varied.

Independent of the comparison of the two methods, we
look at the best 2D and 3D embeddings from LOE (shown in
Figure 13 and Figure 14 respectively), to see if the embed-
dings preserve any interesting structure in the network. Since
the network was previously studied for core-periphery detec-
tion, we color the nodes based on the corescore computed by
the method proposed in [45] (mapping low values to blue and
high values to red), and label the names of the authors with
the top 10 corescores. These red, core authors appear primar-
ily central to the embeddings, suggesting that these embed-
dings preserve important structural properties in the original
network.



Fig. 9. Embeddings of Donut (3D) and US Cities (2D) data
sets. Row 1: LOE BFGS Iter.=500. Row 2: ASAP LOE
MPS=300 (with each ASAP result obtained in less time than
the corresponding LOE result). Row 3: Ground truth.

Fig. 10. ASAP LOE MPS=300, n = 5000, k increasing by
20, Left: number of differences in adjacency matrix divided
by number of edges, nk, Right: Procrustes error.

Fig. 13. LOE BFGS 2d embeddings of data from NetSci2010
data set, n = 552, where co-authorship imposes that authors
should be close

Fig. 14. LOE BFGS 3d embeddings of data from NetSci2010
data set, n = 552, where co-authorship imposes that authors
should be close

6. A LINEAR PROGRAM ALTERNATIVE TO SDP
EMBEDDING

In this section we present the algorithm and a few results for
a Linear Program Embedding approach using metric MDS
(LPEm) for ordinal embedding. Though the results are ul-
timately not competitive with Local Ordinal Embedding, the
approach is different enough so that the ideas may be of in-
dependent interest. In contrast to the SDP methods which
cast embedding problems in terms of the Gram matrix K our
LPEm approach for kNN embedding optimizes over the vari-
ables D (the distance matrix), R (the radius at each node),
and the slack variables. The radius at each node i, denoted by
Ri is defined to be the distance between node i and its k-th
closest neighbor. Thus Ri is the radius of the neighborhood
at node i. In kNN embedding, the objective and constraints
can be written as linear constraints inD,R and the slack vari-
ables, altogether leading to a linear program which is compu-
tationally cheaper to solve than an SDP. Although SDP-based
methods can encompass a larger class of problems, they cur-
rently do not approach the scalability or numerical maturity
of LP and SOCP solvers.

After the LP returns a candidate distance matrix D and
radii R, we pass D into a standard mdscale, here using metric
multidimensional scaling (see Algorithm 3), where by T we
mean the set of triangle inequalities we considered (ordered
set (i, j, k)). If (i, j, k) ∈ T , the same holds true for the
two other permutations. The full set of triangle inequalities
are necessary, though not sufficient, for the matrix D to cor-
respond to an Euclidean distance matrix. If one omits slack
variables, there are n(n − 1)/2 distance values to solve for
along with n radii, and thus n(n + 1)/2 unknowns in total.
Considering the ordinal constraints, for the upper bounds on
the entries Dij , there are n ways to choose i, and for each
i there are k ways to choose j, thus nk/2 constraints (ac-
counting for symmetric distances). For the lower bounds on



Algorithm 3 LP approach

(D∗, R∗) =argmin
α,β,R,D

∑
ij∈E(G)

αij +
∑

ij /∈E(G)

βij

subject to α, β ∈ Rn×n+ , R ∈ Rn+, D ∈ Rn×n+,sym

Dij ≤ Ri + αij , if ij ∈ E(G)

Dij > Ri − βij , if ij /∈ E(G)
n∑
i=1

Ri = V

Dij +Dik ≤ Dkl, (i, j, k) ∈ T
X =mds (D∗, d)

the entries Dij there are n ways to choose i and for each i
there are n− k − 1 ways to choose j, giving n(n− k − 1)/2
constraints. So there are n(n − 1)/2 ordinal constraints on
relating the n(n− 1)/2 distances and n radii. In other words,
the intuition behind the added triangle inequalities is that they
help to better constrain the system. There are on the order of
n3 triangle inequalities (choose any three points), so for large
n, there are many more constraints than unknowns.

To avoid the added complexity from imposing all triangle
inequalities, one could consider models that impose only a
fraction of such constraints via either imposing them locally,
for k-hop neighboring triples of points, or globally, such as
picking edges via an Erdős-Rényi model, or mixing the two
approaches.

We remark that dropping triangle inequalities altogether
could certainly speed up the embedding process. The result-
ing non-metric D may correspond to an increasing function
of distance (e.g., distance squared), which suggests that non-
metric MDS would be appropriate.

In general, even if the recovered distance metric corre-
sponds to a metric distance, this is not a guarantee that the dis-
tance is realizable in a low-dimensional space. That requires
a rank constraint on D, which is non-convex and is computa-
tionally intractable for an LP or SDP. The ultimate embedding
into a low-dimensional space thus potentially gives up some
structure in both the LP and SDP formulation, and it can be
argued that this effect is lessened via the local to global ap-
proach.

In Figure 15 we show an example with points drawn
from the densities discussed in the previous section along
with points embedded using the LPEm approach. In these
experiments we use a very dense value of k, k = n/2 = 50,
which is where the approach seemed to work the best. The
recovery of the piecewise constant half-planes is the best,
but the preliminary results led us to decide not to experiment
with this method further for the time being. The method was
implemented using the CVX library, a package for specifying

and solving convex programs ([46, 47]). Overall, we find
the LP formulation appealing due to its simplicity. It would
be interesting if a similarly simple approach could obtain
competitive results on the problem of ordinal embedding,
especially since until the work of von Luxburg and Alamgir
[2], it was unknown to the community whether the problem
was practically solvable at all.

Fig. 15. Linear Program Embeddings for the PC (left), PCS
(middle), and Gauss (right) data sets with n = 100, Row 1 :
k = 22 Row 2: k = 50 Row 3: ground truth. Line segments
highlight the displacement of each point.

7. SUMMARY AND DISCUSSION
We have demonstrated that the computational efficiency of
LOE for the kNN embedding problem can be significantly
improved, while maintaining and often improving spatial and
ordinal accuracy in a distributed setting. Our application of
the divide-and-conquer ASAP method renders the problem of
kNN embedding significantly more tractable, distributing the
embedding steps, and using fast spectral methods to combine
them. We expect that such improvements will make it possi-
ble to use kNN embeddings in a broader range of settings, and
that the ASAP framework will be of independent interest to
the machine learning community for tackling large geometric
embedding problems.
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7.1. Rigidity Theory Appendix

One of the main questions in the field of rigidity theory asks
whether one can uniquely determine (up to rigid transforma-
tions, such as translations, rotations, reflections) the coordi-
nates of a set of points p1, . . . , pn given a partial set of dis-
tances dij = ||pi − pj || between n points in Rd. To make our
paper self-contained, this short appendix if a very brief sum-
mary of the main definitions and results related to local and
global rigidity from the literature (e.g., [48, 49, 50, 51, and
references therein]). Readers who are unfamiliar with rigidity
theory may use this short Appendix as a glossary. As previ-
ously discussed in Section 3.1, one of the steps of the divide-
and-conquer approach proposed for the kNN-recovery prob-
lem relies to testing whether the underlying resulting patches
are globally rigid. As observed in our numerical simulations
detailed in Figures 3,4, 5, 6, 7 the final reconstruction is more
accurate when we rely on global rigidity as a postprocessing
step for the partitions obtained via spectral clustering. The
intuition behind our approach is as follows. In the case when
distance information is available, testing for global rigidity is
a crucial step in making sure that each of the local patches has
a unique embedding in its own reference frame, approxima-
tively consistent with the ground truth, up to a rigid transfor-
mation. Since in the kNN-recovery problem, we do not have
distance information but only ordinal data, thus we are faced
with solving even a harder problem, we expect that the global
rigidity check will improve the accuracy of the local patch
embeddings. One specific example where our current rigid-
ity heuristics improved results was in performing ASAP LOE
BFGS with max patch size 300, on n = 5000 points drawn
from the constant half-plane distribution, letting k = 18. In
that example, performing the rigidity check and pruning gave
a runtime of 107.056 s, an ordinal error of 0.00107096, and
0.0585465 Procrustes error, while skipping the rigidity check
and pruning gave a runtime of 192.606 s, an ordinal error of
0.00154208 A error, and 0.175992 Procrustes error.

A bar and joint framework in Rd is defined as an undi-
rected graph G = (V,E) (|V | = n, |E| = m) together with a
configuration p which assigns a point pi in Rd to each vertex
i of the graph. The edges of the graph correspond to distance

constraints, that is, (i, j) ∈ E if an only there is a bar of
length dij between points pi and pj . We say that a framework
G(p) is locally rigid if there exists a neighborhood U of G(p)
such that G(p) is the only framework in U with the same set
of edge lengths, up to rigid transformations. In other words,
there is no continuous deformation that preserves the given
edge lengths. A configuration is generic if the coordinates
do not satisfy any non-zero polynomial equation with integer
coefficients (or equivalently algebraic coefficients).

Local rigidity in Rd has been shown to be a generic prop-
erty, in the sense that either all generic frameworks of the
graph G are locally rigid, or none of them are. A conse-
quence of the seminal results of Gluck [52] and Asimow and
Roth [53] asserts that the dimension of the null space of the
rigidity matrix is the same at every generic point, and hence
local rigidity in Rd is a generic property, meaning that either
all generic frameworks of the graph G are locally rigid, or
none of them are. With probability one, the rank of the rigid-
ity matrix that corresponds to the unknown true displacement
vectors equals the rank of the randomized rigidity matrix. A
similar randomized algorithm for generic local rigidity was
described in [49, Algorithm 3.2]. In other words, generic lo-
cal rigidity in Rd can be considered a combinatorial property
of the graphG itself, independent of the particular realization.
Using this observation, generic local rigidity can therefore be
tested efficiently in any dimension using a randomized algo-
rithm [50]: one can just randomize the displacement vectors
p1, . . . , pn while ignoring the prescribed distance constraints
that they have to satisfy, construct the so called rigidity matrix
corresponding to the framework of the original graph with the
randomized points and check its rank. This is approach we
use to make sure the obtained patches are local rigid.

Since local generic rigidity does not imply unique real-
ization of the framework, it is possible that there exist multi-
ple non-congruent realizations that satisfy the prescribed dis-
tances (which we do not even have available in the kNN re-
covery problem) One may consider for example, the 2D-rigid
graph with n = 4 vertices and m = 5 edges consisting of
two triangles that can be folded with respect to their joint
edge. We call a framework G(p) globally rigid in Rd if all
frameworks G(q) in Rd which are G(p)-equivalent (have all
bars the same length as G(p)) are congruent to G(p) (i.e., re-
lated by a rigid transformation). Hendrickson proved two key
necessary conditions for global rigidity of a framework at a
generic configuration:

Theorem 1 (Hendrickson [50]). If a framework G(p), other
than a simplex, is globally rigid for a generic configuration p
in Rd then:

• The graph G is vertex (d+ 1)-connected;

• The framework G(p) is edge-2-rigid (or, redundantly
rigid), in the sense that removing any one edge leaves
a graph which is infinitesimally rigid.



We say that a graphG is generically globally rigid in Rd if
G(p) is globally rigid at all generic configurations p [54, 55].
Though it has been conjectured for many years that global
rigidity is a generic property, this fact was shown to be true
only very recently. The seminal work of [55, 49] proves that
global rigidity is a generic property of the graph in each di-
mension. The conditions of Hendrickson as stated in Theo-
rem 1 are necessary for generic global rigidity. They are also
sufficient on the line, and in the plane [56]. However, by a
result of Connelly [54], K5,5 in 3-space is generically edge-
2-rigid and 5-connected but is not generically globally rigid.

One of the tools used in testing for global rigidity of
frameworks relies on the notions on stress matrices, more
popular perhaps in the engineering community. A stress is
defined an assignment of scalars wij to the edges of the given
graph G such that for every node i ∈ V it holds that∑

j: (i,j)∈E

ωij(pi − pj) = 0. (8)

Alternatively, it can be show that a stress is a vector w in the
left null space of the rigidity matrix: RG(p)Tw = 0. A stress
vector can be rearranged into an n × n symmetric matrix Ω,
known as the stress matrix, such that for i 6= j, the (i, j)
entry of Ω is Ωij = −ωij , and the diagonal entries for (i, i)
are Ωii =

∑
j: j 6=i ωij . Since all row and column sums are

zero, it follows that the all-ones vector (1 1 · · · 1)T is in
the null space of Ω as well as each of the coordinate vectors
of the configuration p. Therefore, it follows that for generic
configurations the rank of the stress matrix is at most n −
(d + 1). The following pairs of theorems give sufficient and
necessary conditions for generic global rigidity:

Theorem 2 (Connelly [55]). If p is a generic configuration in
Rd, such that there is a stress, where the rank of the associated
stress matrix Ω is n− (d+ 1), then G(p) is globally rigid in
Rd.

Theorem 3 (Gortler, Healy, and Thurston [49]). Suppose that
p is a generic configuration in Rd, such that G(p) is globally
rigid in Rd. Then either G(p) is a simplex or there is a stress
where the rank of the associated stress matrix Ω is n−(d+1).

Based on the latter theorem, the authors of [49] also
provided a randomized polynomial algorithm for checking
generic global rigidity of a graph [49, Algorithm 3.3], which
we use to test for global rigidity of the patches in the kNN-
recovery problem. If a given patch is generically locally rigid
then their algorithm picks a random stress vector of the left
null space of the rigidity matrix associated to this patch, and
converts it into a stress matrix. If the rank of the stress matrix
is exactly n − (d + 1), then we conclude that the patch is
globally rigid, and if the rank is lower, then the respective
patch is not globally rigid.



Fig. 16. ASAP LOE BFGS MPS=300, n = 5000, k increas-
ing by 20, Top left : originally sampled points, Remaining
plots : recovered embeddings
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