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Abstract

We present a simple spectral approach to the
well-studied constrained clustering problem.
It captures constrained clustering as a gener-
alized eigenvalue problem with graph Lapla-
cians. The algorithm works in nearly-linear
time and provides concrete guarantees for
the quality of the clusters, at least for the
case of 2-way partitioning. In practice this
translates to a very fast implementation that
consistently outperforms existing spectral ap-
proaches both in speed and quality.

1 Introduction

Clustering with constraints is a problem of central im-
portance in machine learning and data mining. It cap-
tures the case when information about an application
task comes in the form of both data and domain knowl-
edge. We study the standard problem where domain
knowledge is specified as a set of soft must-link (ML)
and cannot-link (CL) constraints [Basu et al., 2008].

The extensive literature reports a plethora of meth-
ods, including spectral algorithms that explore various
modifications and extensions of the basic spectral al-
gorithm by Shi and Malik [Shi and Malik, 2000] and
its variant by Ng et al. [Ng et al., 2001].

The distinctive feature of our algorithm is that it con-
stitutes a natural generalization, rather than an ex-

tension of the basic spectral method. The generaliza-
tion is based on a critical look at how existing meth-
ods handle constraints, in section 3. The solution is
derived from a geometric embedding obtained via a
spectral relaxation of an optimization problem, exactly
in the spirit of [Ng et al., 2001, Shi and Malik, 2000].
This is depicted in the workflow in Figure 1. Data
and ML constraints are represented by a Laplacian
matrix L and CL constraints by another Laplacian
matrix H. The embedding is realized by computing
a few eigenvectors of the generalized eigenvalue prob-
lem Lx = λHx. The generalization of [Ng et al., 2001,
Shi and Malik, 2000] lies essentially in H being a
Laplacian matrix rather than the diagonal D of L. In
fact, as we will discuss later, D itself is equivalent to
a specific Laplacian matrix; thus our method encom-
passes the basic spectral method as a special case of
constrained clustering.

Figure 1: A schematic overview of our approach.

Our approach is characterized by its conceptual sim-
plicity that enables a straightforward mathematical
derivation of the algorithm, possibly the simplest
among all competing spectral methods. Reducing the
problem to a relatively simple generalized eigensys-
tem enables us to derive directly from recent signif-
icant progress due to Lee et al. [Lee et al., 2012] in
the theoretical understanding of the standard spectral
clustering method, offering its first practical realiza-
tion. In addition, the algorithm comes with two fea-
tures that are not simultaneously shared by any of
the prior methods: (i) it is provably fast by design



as it leverages fast linear system solvers for Lapla-
cian systems [Koutis et al., 2012] (ii) it provides a con-
crete theoretical guarantee for the quality of 2-way
constrained partitioning, with respect to the under-
lying discrete optimization problem, via a generalized
Cheeger inequality (section 5).

In practice, our method is at least 10x faster than com-
peting methods on large data sets. It solves data sets
with millions of points in less than 2 minutes, on very
modest hardware. Furthermore the quality of the com-
puted segmentations is often dramatically better.

2 Problem definition

The constrained clustering problem is specified by
three weighted graphs:

1. The data graph GD which contains a given number
of k clusters that we seek to find. Formally, the graph
is a triple GD = (V,ED, wD), with the edge weights
wD being positive real numbers indicating the level of
‘affinity’ of their endpoints.

2. The knowledge graphs GML and GCL. The two
graphs are formally triples GML = (V,EML, wML)
and GCL = (V,ECL, wCL). Each edge in GML in-
dicates that its two endpoints should be in the same
cluster, and each edge in GCL indicates that its two
endpoints should be in different clusters. The weight
of an edge indicates the level of belief placed in the
corresponding constraint.

We emphasize that prior knowledge does not have to
be exact or even self-consistent, and thus the con-
straints should not be viewed as ‘hard’ ones. However,
to conform with prior literature, we will use the exist-
ing terminology of ‘must link’ (ML) and ‘cannot link’
(CL) constraints to which GML and GCL owe their
notation respectively.

In the constrained clustering problem the general goal
is to find k disjoint clusters in the data graph. Intu-
itively, the clusters should result from cutting a small
number of edges in the data graph, while simultane-
ously respecting as much as possible the constraints in
the knowledge graphs.

3 Re-thinking constraints

Many approaches have been pursued within the con-
strained spectral clustering framework. They are quite
distinct but do share a common point of view: con-
straints are viewed as entities structurally extrane-
ous to the basic spectral formulation, necessitating its
modification or extension with additional mathemati-
cal features. However, a key fact is overlooked:

Standard clustering is a special case of constrained
clustering with implicit soft ML and CL constraints.

To see why, let us briefly recall the optimization prob-
lem in the standard method (Ncut).

φ = min
S⊆V

cutGD
(S, S̄)

vol(S)vol(S̄)/vol(V )
.

Here vol(S) denotes the total weight incident to the
vertex set S, and cutG(S, S̄) denotes the total weight
crossing from S to S̄ in G.

The data graph GD is actually an implicit encoding
of soft ML constraints. Indeed, pairwise affinities be-
tween nodes can be viewed as ‘soft declarations’ that
such nodes should be connected rather than discon-
nected in a clustering. Let now di denote the total
incident weight of vertex i in GD. Consider the de-
mand graph K of implicit soft CL constraints, de-
fined by the adjacency Kij = didj/vol(V ). It is easy
to verify that vol(S)vol(S̄)/vol(V ) = cutK(S, S̄). We
have

min
S⊆V

cutGD
(S, S̄)

vol(S)vol(S̄)/vol(V )
= min

S⊆V

cutGD
(S, S̄)

cutK(S, S̄)
.

In other words, the Ncut objective can be viewed as:

min
S⊆V

weight of cut (violated) implicit ML constraints

weight of cut (satisfied) implicit CL constraints
.

(1)

With this realization, it becomes evident that incor-
porating the knowledge graphs (GML, GCL) is mainly
a degree-of-belief issue, between implicit and explicit
constraints. Yet all existing methods insist on han-
dling the explicit constraints separately. For example,
[Rangapuram and Hein, 2012] modify the Ncut op-
timization function by adding in the numerator the
number of violated explicit constraints (independently
of them being ML or CL), times a parameter γ. In an-
other example, [Wang et al., 2014] solve the spectral
relaxation of Ncut, but under the constraint that the
number of satisfied ML constraints minus the num-
ber of violated CL constraints is lower bounded by a
parameter α. Despite the separate handling of the ex-
plicit constraints, degree-of-belief decisions (reflected
by parameters α and γ) are not avoided. The ac-
tual handling also appears to be somewhat arbitrary.
For instance, most methods take the constraints un-
weighted, as usually provided by a user, and handle
them uniformly; but it is unclear why one constraint
in a densely connected part of the graph should be
treated equally to another constraint in a less well-
connected part. Moreover, most prior methods en-
force the use of the balance implicit constraints in K,
without questioning their role, which may be actually



adverserial in some cases. In general, the mechanisms
for including the explicit constraints are oblivious of
the input, or even of the underlying algebra.

Our approach. We choose to temporarily drop
the distinction of the constraints into explicit and im-
plicit. We instead assume that we are given one set of
ML constraints, and one set of CL constraints, in the
form of weighted graphs G and H. We then design
a generalized spectral clustering method that retains
the k-way version of the objective shown in equation 1.
We apply this generalized method to our original prob-
lem, after a merging step of the explicit and implicit
CL/ML constraints into one set of CL/ML constraints.

The merging step can be left entirely up to the user,
who may be able to exploit problem-specific informa-
tion and provide their choice of weights for G and H.
Of course, we expect that in most cases explicit CL
and ML constraints will be provided in the form of sim-
ple unweighted graphs GML and GCL. For this case
we provide a simple method that resolves the degree-
of-belief issue and constructs G and H automatically.
The method is heuristic, but not oblivious to the data
graph, as they adjust to it.

4 Algorithm and its derivation

4.1 Graph Laplacians

Let G = (V,E,w) be a graph with positive weights.
The Laplacian LG of G is defined by LG(i, j) = −wij

and LG(i, i) =
∑

j 6=i wij . The graph Laplacian satis-
fies the following basic identity for all vectors x:

xTLGx =
∑
i,j

wij(xi − xj)2. (2)

Given a cluster C ⊆ V we define a cluster indicator
vector by xC(i) = 1 if i ∈ C and xC(i) = 0 otherwise.
We have:

xTCLGxC = cutG(C, C̄) (3)

where cutG(C, C̄) denotes the total weight crossing
from C to C̄ in G.

4.2 The optimization problem

As we discussed in section 3, we assume that the input
consists of two weighted graphs, the must-link con-
straints G, and the cannot-link constraints H.

Our objective is to partition the node set V into k
disjoint clusters Ci. We define an individual measure
of badness for each cluster Ci:

φi(G,H) =
cutG(Ci, C̄i)

cutH(Ci, C̄i)
(4)

The numerator is equal to the total weight of the vi-
olated ML constraints, because cutting one such con-
straint violates it. The denominator is equal to the
total weight of the satisfied CL constraints, because
cutting one such constraint satisfies it. Thus the min-
imization of the individual badness is a sensible objec-
tive.

We would like then to find clusters C1, . . . , Ck that
minimize the maximum badness, i.e. solve the follow-
ing problem:

Φk = min max
i
φi. (5)

Using equation 3, the above can be captured in terms
of Laplacians: letting xCi

denote the indicator vector
for cluster i, we have

φi(G,H) =
xTCi

LGxCi

xTCi
LHxCi

.

Therefore, solving the minimization problem posed in
equation 5 amounts to finding k vectors in {0, 1}n with
disjoint support.

Notice that the optimization problem may not be well-
defined in the event that there are very few CL con-
straints in H. This can be detected easily and the user
can be notified. The merging phase also takes auto-
matically care of this case. Thus we assume that the
problem is well-defined.

4.3 Spectral Relaxation

To relax the problem we instead look for k vectors
in y1, . . . , yk ∈ Rn, such that for all i 6= j, we have
yiLHyj = 0. These LH -orthogonality constraints can
be viewed as a relaxation of the disjointness require-
ment. Of course their particular form is motivated
by the fact that they directly give rise to a general-
ized eigenvalue problem. Concretely, the k vectors yi
that minimize the maximum among the k Rayleigh
quotients (yTi LGyi)/(y

T
i LHyi) are precisely the gen-

eralized eigenvectors corresponding to the k smallest
eigenvalues of the problem: LGx = λLHx.

1 This fact
is well understood and follows from a generalization
of the min-max characterization of the eigenvalues for
symmetric matrices; details can be found for instance
in [Stewart and Sun, 1990].

Notice that H does not have to be connected. Since we
are looking for a minimum, the optimization function
avoids vectors that are in the null space of LH . That

1When H is the demand graph K discussed in section 2,
the problem is identical to the standard problem LGx =
λDx, where D is the diagonal of LG. This is because LK =
D − ddT /(dT1), and the eigenvectors of LGx = λDx are
d-orthogonal, where d is vector of degrees in G.



means that no restriction needs to be placed on x so
that the eigenvalue problem is well defined, other than
it can’t be the constant vector (which is in the null
space of both LG and LH), assuming without loss of
generality that G is connected.

4.4 The embedding

Let X be the n × k matrix of the first k general-
ized eigenvectors for LGx = λLHx. The embedding
is shown in Figure 2.

We discuss the intuition behind the embedding. With-
out step 4 and with LH replaced with the diagonal D,
the embedding is exactly the one recently proposed
and analyzed in [Lee et al., 2012]. It is a combination
of the embeddings considered in [Shi and Malik, 2000,
Ng et al., 2001, Verma and Meila, 2003], but the first
known to produce clusters with approximation guar-
antees. The generalized eigenvalue problem Lx = λDx
can be viewed as a simple eigenvalue problem over a
space endowed with the D-inner product: 〈x, y〉D =
xTDy. Step 5 normalizes the eigenvectors to a unit
D-norm, i.e. xTDx = 1. Given this normalization,
it is shown in [Lee et al., 2012] that the rows of U at
step 7 (vectors in k-dimensional space) are expected
to concentrate in k different directions. This justifies
steps 8-10 that normalize these row vectors onto the k-
dimensional sphere, in order to concentrate them in a
spatial sense. Then a geometric partitioning algorithm
can be applied.

Input: X,LH , d
Output: embedding U ∈ Rn×k, l ∈ Rn×1

1: u← 1n

2: for i = 1 : k do
3: x = X:,i

4: x = x− (xT d/uT d)u

5: x = x/
√
xTLHx

6: U:,i = x
7: end for
8: for j = 1 : n do
9: lj = ||Uj,:||2

10: Uj,: = Uj,:/lj
11: end for

Figure 2:
Embedding Computation (based on [Lee et al., 2012]).

From a technical point of view, working with LH in-
stead of D makes almost no difference. LH is a positive
definite matrix. It can be rank-deficient, but the eigen-
vectors avoid the null space of LH , by definition. Thus
the geometric intuition about U remains the same if
we syntactically replace D by LH . However, there is
a subtlety: LG and LH share the constant vector in

their null spaces. This means that if x is an eigen-
vector, then for all c the vector x + c1n is also an
eigenvector with the same eigenvalue. Among all such
possible eigenvectors we pick one representative: in
Step 4 we pick c such that x+ c1n is orthogonal to d.
The intuition for this is derived from the proof of the
Cheeger inequality claimed in section 5; this choice is
what makes possible the analysis of a theoretical guar-
antee for a 2-way cut.

4.5 Computing Eigenvectors

It is understood that spectral algorithms based on
eigenvector embeddings do not require the exact
eigenvectors, but only approximations of them, in
the sense that the quotients xTLx/xTHx are close
to their exact values, i.e. close to the eigen-
values [Chung, 1997, Lee et al., 2012]. The com-
putation of such approximate generalized eigenvec-
tors for LGx = λLHx is the most time-consuming
part of the entire process. The asymptotically
fastest known algorithm for the problem runs in
O(km log2m) time. It combines a fast Lapla-
cian linear system solver [Koutis et al., 2011a] and
a standard power method [Golub and Loan, 1996].
In practice we use the combinatorial multigrid
solver [Koutis et al., 2011b] which empirically runs in
O(m) time. The solver provides an approximate in-
verse for LG which in turn is used with the precondi-
tioned eigenvalue solver LOBPCG [Knyazev, 2001].

4.6 Partitioning

For the special case when k = 2, we can compute the
second eigenvector, sort it, and then select the sparsest
cut among the n−1 possible cuts into {v1, . . . , vi} and
{vi+1 . . . vn}, for i ∈ [1, n], where vj is the vertex that
corresponds to coordinate j after the sorting. This
‘Cheeger sweep’ method is associated with the proof of
the Cheeger inequality [Chung, 1997], and is also used
in the proof of the inequality we claim in section 5.

In the general case, given the embedding ma-
trix embedding U , the clustering algorithm invokes
kmeans(U) (with a random start), which returns a k-
partitioning. The partitioning can be refined option-
ally into a k-clustering by performing a Cheeger sweep
among the nodes of each component, independently for
each component: the nodes are sorted according to the
values of the corresponding coordinates in the vector l
returned by the embedding algorithm given in 2. We
will not use this refinement option in our experiments.



4.7 Merging Constraints

As we discussed in section 2, it is frequently the case
that a user provides unweighted constraints GML and
GCL. Merging these unweighted constraints with the
data into one pair of graphs G and H is an interesting
problem.

Here we propose a simple heuristic. We construct
two weighted graphs ĜML and ĜCL, as follows: if
edge (i, j) is a constraint, we take its weight in the
corresponding graph to be didj/(dmindmax), where di
denotes the total incident weight of vertex i, and
dmin, dmax the minimum and maximum among the
di’s. We then let G = GD+ĜML and H = K/n+ĜCL,
where K is the demand graph and n is the size of the
data graph, whose edges are normalized to have mini-
mum weight. We include this small copy of K in H in
order to render the problem well-defined in all cases of
user input.

The intuition behind this choice of weights is bet-
ter understood in the context of a sparse unweighted
graph. A constraint on two high-degree vertices is
more significant relative to a constraint on two lower-
degree vertices, as it has the potential to drastically
change the clustering, if enforced. In addition, assum-
ing that noisy/inaccurate constraints are uniformly
random, there is a lower probability that a high-degree
constraint is inaccurate, simply because its two end-
points are relatively rare, due to their high degree.
From an algebraic point of view, it also makes sense
having a higher weight on this edge, in order to be
comparable with the neighborhood of i and j and have
an effect in the value of the objective function. Notice
also that when no constraints are available the method
reverts to standard spectral clustering.

5 A generalized Cheeger inequality

The success of the standard spectral clustering method
is often attributed to the existence of non-trivial ap-
proximation guarantees, which in the 2-way case is
given by the Cheeger inequality and the associated
method [Chung, 1997]. Here we present a generaliza-
tion of the Cheeger inequality. We believe that it pro-
vides supporting mathematical evidence for the advan-
tages of expressing the constrained clustering problem
as a generalized eigenvalue problem with Laplacians.

Theorem 1. Let G and H be any two weighted graphs
and d be the vector containing the degrees of the ver-
tices in G. For any vector x such that xT d = 0, we
have

xTLGx

xTLHx
≥ φ(G,K) · φ(G,H)/4,

where K is the demand graph. A cut meeting the guar-
antee of the inequality can be obtained via a Cheeger
sweep on x.

Due to its length, the proof is given separately in sec-
tion 9.

6 Related Work

The literature on constrained clustering is quite exten-
sive, as the problem has been pursued under various
guises from different communities. Here we present a
short and unavoidably partial review.

A number of methods incorporate the constraints
via only modifying the data matrix in the stan-
dard method. In certain cases some or all of the
CL constraints are dropped in order to prevent the
matrix from turning negative [Kamvar et al., 2003,
Lu and Carreira-Perpiñán, 2008]. The formulation
of [Rangapuram and Hein, 2012] incorporates all con-
straints into the data matrix, essentially by adding
a signed Laplacian, which is a generalization of the
Laplacian for graphs with negative weights; notably,
their algorithm does not solve a spectral relaxation of
the problem but attempts to solve the (hard) optimiza-
tion problem exactly, via a continuous optimization
approach.

A different approach is proposed in [Li et al., 2009]:
constraints are used in order to improve the embedding
obtained through the standard problem, before apply-
ing the partitioning step. In principle this embedding-
processing step is orthogonal to methods that compute
some embedding (including ours), and it can be used
to potentially improve them.

A number of other works use the ML and CL
constraints to super-impose algebraic constraints
onto the spectral relaxation of the standard prob-
lem. These additional algebraic constraints usually
yield much harder constrained optimization prob-
lems [Eriksson et al., 2011, Kawale and Boley, 2013,
Xu et al., 2009, Wang et al., 2014].

Besides our work, there exists a number of other ap-
proaches that reduce constrained clustering into gen-
eralized eigenvalue problems Ax = λBx that devi-
ate substantially from than the standard formulation.
These methods can be implemented to run fast, as
long as: (i) linear systems in A can be solved effi-
ciently, (ii) A and B are positive semi-definite. Specif-
ically, [Yu and Shi, 2001, Yu and Shi, 2004] use a gen-
eralized eigenvalue problem in which B is a diagonal,
but A is not generally amenable to existing efficient
linear system solvers. In [Wang et al., 2014] matrix
A is set to be the normalized Laplacian of the data



graph (implicitly attempting to impose the standard
balance constraints), and B has both positive and neg-
ative off-diagonal entries representing ML and CL con-
straints respectively. In the general case B is not posi-
tive, forcing the computation of full eigenvalue decom-
positions. However the method can be modified to
use a (positive) signed Laplacian as the matrix B, as
partially observed in [Wang et al., 2012]. This modi-
fication has a fast implementation. The formulation
in [Rangapuram and Hein, 2012] also leads to a fast
implementation of its spectral relaxation.

7 Experiments

In this section, we sample some of our experimen-
tal results. We compare our algorithm Fast-GE
against two other methods, CSP [Wang et al., 2014]
and COSC [Rangapuram and Hein, 2012].

COSC is an iterative algorithm that attempts to
solve exactly an NP-hard discrete optimization prob-
lem that captures 2-way constrained clustering; k-way
partitions are computed via recursive calls to the 2-
way partitioner. The method actually comes in two
variants, an exact version which is very slow in all but
very small problems, and an approximate ‘fast’ ver-
sion which has no convergence guarantees. The size of
the data in our experiments forces us to use the fast
version, COSf.

CSP reduces constrained clustering to a generalized
eigenvalue problem. However, the problem is indef-
inite and the method requires the computation of a
full eigenvalue decomposition.

We focus on these two methods because of their read-
ily available implementations but mostly because the
corresponding papers provide sufficient evidence that
they outperform other competing methods. We also
selected them because they can be both modified or ex-
tended into methods that have fast implementations.

7.1 Some negative findings.

COSC has a natural spectral relaxation into a gen-
eralized eigenvalue problem Ax = λBx where A is a
signed Laplacian and B is a diagonal. CSP can also
be modified by replacing the indefinite matrix Q of its
generalized eigenvalue problem with a signed Lapla-
cian that counts the number of satisfied constraints.
In this way both methods become scalable. We did
a number of experiments based on these observations.
The results were disappointing, especially when k > 2.
The output quality was comparable or worse to that
obtained by COSf and CSP in the reported experi-
ments. We attribute this the less-clean mathematical
properties of the signed Laplacian.

We also experimented with the automated merging
phase of Fast-GE. Specifically we tried adding more
significance to the standard implicit balance con-
straints, by increasing the coefficient of the demand
graph K in graph H. The output deteriorates (of-
ten significantly) for the more challenging problems we
tried. This supports our decision to not enforce the use
of balance constraints in our generalized formulation,
unlike all prior methods.

7.2 Synthetic Data Sets.

We begin with a number of small synthetic experi-
ments. The purpose is to test the output quality, es-
pecially under the presence of noise.

We generically apply the following construction: we
chose uniformly at random a set of nodes for which we
assume cluster-membership information is provided.
The cluster-membership information gives unweighted
ML and CL constraints in the obvious way. We also
add random noise in the data.

More concretely, we say that a graph G is generated
from the ensemble NoisyKnn(n, kg, lg) with parame-
ters n, kg and lg if G of size n is the union of two
(non-necessarily disjoint) graphs H1 and H2 each on
the same set of n vertices G = H1 ∪ H2, where H1

is a k-nearest-neighbor (knn) graph with each node
connected to its kg nearest neighbors, and H2 is an
Erdős-Rényi graph where each edge appears indepen-
dently with probability lg/n. One may interpret the
parameter lg as the noise level in the data, since the
larger lg the more random edges are wired across the
different clusters, thus rendering the problem more dif-
ficult to solve. In other words, the planted clusters are
harder to detect when there is a large amount of noise
in the data, obscuring the separation of the clusters.

Since in these synthetic data sets, the ground truth
partition is available, we measure the accuracy of the
methods by the popular Rand Index [Rand, 1971].
The Rand Index indicates how well the resulting parti-
tion matches the ground truth partition; a value closer
to 1 indicates an almost perfect recovery, while a value
closer to 0 indicates an almost random assignment of
the nodes into clusters.

Four Moons. Our first synthetic example is the
‘Four-Moons’ data set, where the underlying graph
G is generated from the ensemble NoisyKnn(n =
1500, kg = 30, lg = 15). The plots in Figure 4 show
the accuracy and running times of all three methods
on this example, while Figure 3 shows a random in-
stance of the clustering returned by each of the meth-
ods, with 75 constraints. The accuracy of FAST-
GE and COSf is very similar, with FAST-GE being
somewhat better with more constraints, as shown in



Figure 4. However FAST-GE is already at least 4x
faster than COSf, for this size.
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Figure 3: Segmentation for a random instance of the
Four-Moons data set with 75 labels produced by CSP
(left), COSf (middle) and FAST-GE (right).
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Figure 4: Accuracy and running times for the Four-
Moons data set, where the underlying graph given by
the model NoisyKnn(n = 1500, k = 30, l = 15), for
varying number of constraints. Time is in logarithmic
scale. The bars indicate the variance in the output over
random trials using the same number of constraints.

PACM. Our second synthetic example is the some-
what more irregular PACM graph, formed by a cloud
of n = 426 points in the shape of letters {P,A,C,M},
whose topology renders the segmentation particularly
challenging. The details about this data set are given
in the section 10. Here we only present a visualization
of the obtained segmentations.
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Figure 5: Top: Segmentation for a random instance of
the PACM data set with 125 labels produced by CSP
(left), COSf (middle) and FAST-GE (right)

7.3 Image Data

In terms of real data, we consider two very different
applications. Our first application is to segmentation
of real images, where the underlying grid graph is given
by the affinity matrix of the image, computed using the
RBF kernel based on the grayscale values.

We construct the constraints by assigning cluster-
membership information to a very small number of
the pixels, which are shown colored in the pictures
below. The cluster-membership information is then
turned into pairwise constraints in the obvious way.
Our output is obtained by running k-means 20 times
and selecting the best segmentation according to the
k-means objective value.

Patras. Figure 6 shows the 5-way segmentation of
an image with approximately 44K pixels, which our
method is able to detect in under 3 seconds. The
size of this problem is prohibitive for CSP. The COSf
algorithm runs in 40 seconds and while it does better
on the lower part of the image it erroneously merges
two of the clusters (the red and the blue one) into a
single region.
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Figure 6: Patras: Top-left: Output of FAST-GE, in
2.8 seconds. Top-right: output of COSf, in 40.2 sec-
onds. Bottom: heatmaps for the first two eigenvectors
computed by FAST-GE.

Santorini. In Figure 7 we test our proposed method
on the Santorini image, with approximately 250K pix-
els. Our approach successfully recovers a 4-way parti-
tioning, with few errors, in just 15 seconds. Comput-
ing clusterings in data of this size is infeasible for CSP.
Furthermore, the output of the COSf method, which
runs in over 260 seconds, is completely meaningless.

Soccer. In Figure 8 we consider one last Soccer image,
with approximately 1.1 million pixels. We compute a
5-way partitioning using the Fast-GE method in just
94 seconds. Note that while k-means clustering hin-
ders some of the details in the image, the individual
eigenvectors are able to capture finer details, such as
the soccer ball for example, as shown in the two bot-
tom plots of the same Figure 8. The output of the
COSf method is obtain in 25 minutes and is again
meaningless.
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Figure 7: Santorini : Left: output of FAST-GE, in
15.2 seconds. Right: output of COSf, in 263.6 sec-
onds. Bottom: heatmaps for the first two eigenvectors
computed by FAST-GE.

7.4 Friendship Networks

Our final data sets represent Facebook networks in
American colleges. The work in [Traud et al., 2012]
studies the structure of Facebook networks at one hun-
dred American colleges and universities at a single
point in time (2005) and investigate the community
structure at each institution, as well as the impact and
correlation of various self-identified user characteristics
(such as residence, class year, major, and high school)
with the identified network communities. While at
many institutions, the community structures are or-
ganized almost exclusively according to class year, as
pointed out in [Traud et al., 2011], other institutions
are known to be organized almost exclusively accord-
ing to its undergraduate House system (dormitory res-
idence), which is very well reflected in the identified
communities. It is thus a natural assumption to con-
sider the dormitory affiliation as the ground truth clus-
tering, and aim to recover this underlying structure
from the available friendship graph and any available
constraints. We add constraints to the clustering prob-
lem by sampling uniformly at random nodes in the
graph, and the resulting pairwise constraints are gener-
ated depending on whether the two nodes belong to the
same cluster or not. In order for us to be able to com-
pare to the computationally expensive CSP method,
we consider two small-sized schools, Simmons College
(n = 850, d̄ = 36, k = 10) and Haverford College
(n = 1025, d̄ = 72, k = 15), where d̄ denotes the aver-
age degree in the graph and k the number of clusters.
For both examples, FAST-GE yields more accurate
results than both CSP and COSf, and does so at a
much smaller computational cost.
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Figure 8: Top-right: output of FAST-GE, in under
94 seconds. Bottom-right: output of COSf in 25 min-
utes. Bottom-left: heat-maps of eigenvectors.

8 Final Remarks

We presented a spectral method that reduces con-
strained clustering into a generalized eigenvalue prob-
lem in which both matrices are Laplacians. This of-
fers two advantages that are not simultaneously shared
by any of the previous methods: an efficient imple-
mentation and an approximation guarantee for the
2-way partitioning problem in the form of a gener-
alized Cheeger inequality. In practice this translates
to a method that is at least 10x faster than some of
the best existing algorithms, while producing output
of superior quality. Its speed makes our method a
good candidate for some type of iteration, e.g. as
in [Tolliver and Miller, 2006], or interactive user feed-
back, that would further improve its output.

The current version of the code is not optimized and we
expect a significant speedup after optimization. The
method is also parallelizable. Code will become avail-
able online.

We view the Cheeger inequality we presented in sec-
tion 5 as indicative of the rich mathematical prop-
erties of generalized Laplacian eigenvalue problems.
We expect that tighter versions are to be discov-
ered, along the lines of [Kwok et al., 2013]. Finding
k-way generalizations of the Cheeger inequality, as
in [Lee et al., 2012], poses an interesting open prob-
lem.
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Figure 9: Facebook networks. Top: accuracy and run-
ning times for the Simmons College (n = 850, d̄ = 36,
k = 10). Bottom: accuracy and running times for
Haverford College (n = 1025, d̄ = 72, k = 15). Time
is in logarithmic scale.
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9 Proof of the Generalized Cheeger Inequality

We begin with two Lemmas.

Lemma 1. For all ai, bi > 0 we have ∑
i ai∑
i bi
≥ min

i

{
ai
bi

}
.

Lemma 2. Let G be a graph, d be the vector containing the degrees of the vertices, and D be corresponding
diagonal matrix. For all vectors x where xT d = 0 we have

xTDx = xTLDG
x,

where DG is the demand graph for G.

Proof. Let d be the vector consisting of the entries along the diagonal of D. By definition, we have

LDG
= D − ddT

vol(V )
.

The lemma follows.

We prove the following theorem.

Theorem 2. Let G and H be any two weighted graphs and D be the vector containing the degrees of the vertices
in G. F any vector x such that xT d = 0, we have

xTLGx

xTLHx
≥ φ(G,DG) · φ(G,H)/4,

where DG is the demand graph of G. A cut meeting the guarantee of the inequality can be obtained via a Cheeger
sweep on x.

Let V − denote the set of u such that xu ≤ 0 and V + denote the set such that xu > 0. Then we can divide EG

into two sets: Esame
G consisting of edges with both endpoints in V − or V +, and Edif

G consisting of edges with
one endpoint in each. In other words:

Edif
G = δG

(
V −, V +

)
, and

Esame
G = EG \ Edif

G .

We also define Edif
H and Esame

H similarly.

We first show a lemma which is identical to one used in the proof of Cheeger’s inequality [Chung, 1997]:

Lemma 3. Let G and H be any two weighted graphs on the same vertex set V partitioned into V − and V +.
For any vector x we have∑

uv∈Esame
G

wG (u, v)
∣∣x2u − x2v∣∣+

∑
uv∈Edif

G
wG(u, v)

(
x2u + x2v

)
xTLHx

≥ φ(G,H)

2
.

Proof. We begin with a few algebraic identities:

Note that 2x2u + 2x2v − (xu − xv)2 = (xu + xv)2 ≥ 0 gives:

(xu − xv)
2 ≤ 2x2u + 2x2v.

Also, suppose uv ∈ Esame
H and without loss of generality that |xu| ≥ |xv|. Then letting y = |xu| − |xv|, we get:

|x2u − x2v| = (|xv|+ y)
2 − |xv|2

= y2 + y|xv|
≥ y2 = (xu − xv)

2
.



The last equality follows because xu and xv have the same sign.

We then use the above inequalities to decompose the xTLHx term.

xTLH =
∑

uv∈Esame
H

wH(u, v) (xu − xv)
2

+
∑

uv∈Edif
H

wH(u, v) (xu − xv)
2

≤
∑

uv∈Esame
H

wH(u, v) (xu − xv)
2

+
∑

uv∈Edif
H

wH(u, v)
(
2x2u + 2x2v

)

≤ 2

 ∑
uv∈Esame

H

wH(u, v) (xu − xv)
2

+
∑

uv∈Edif
H

wH(u, v)
(
x2u + x2v

)
≤ 2

 ∑
uv∈Esame

H

wH(u, v)
∣∣x2u − x2v∣∣+

∑
uv∈Edif

H

wH(u, v)
(
x2u + x2v

) . (6)

We can now decompose the summation further into parts for V − and V +:∑
uv∈Esame

G

wG (u, v)
∣∣x2u − x2v∣∣+

∑
uv∈Edif

G

wG (u, v)
(
x2u + x2v

)
=

∑
u∈V −,v∈V −

wG (u, v)
∣∣x2u − x2v∣∣+

∑
u∈V −,v∈V +

wG (u, v)x2u

+
∑

u∈V +,v∈V +

wG (u, v)
∣∣x2u − x2v∣∣+

∑
u∈V −,v∈V +

wG (u, v)x2u.

Doing the same for
∑

uv∈Esame
H

wH(u, v)|x2u − x2v|+
∑

uv∈Edif
H

wH(u, v)(x2u + x2v) we get:∑
uv∈Esame

G
wG(u, v)

∣∣x2u − x2v∣∣+
∑

uv∈Edif
G

wG(u, v)
(
x2u + x2v

)
xTLHx

≥min

{∑
u∈V −,v∈V − wG(u, v)

∣∣x2u − x2v∣∣+
∑

u∈V −,v∈V + wG(u, v)x2u∑
u∈V −,v∈V − wH(u, v) |x2u − x2v|+

∑
u∈V −,v∈V + wH(u, v)x2u

,∑
u∈V +,v∈V + wG(u, v)

∣∣x2u − x2v∣∣+
∑

u∈V −,v∈V + wG(u, v)x2v∑
u∈V +,v∈V + wH(u, v) |x2u − x2v|+

∑
u∈V −,v∈V + wH(u, v)x2v

}
.

The inequality comes from applying of Lemma 1.

By symmetry in V − and V +, it suffices to show that∑
u∈V −,v∈V − wG (u, v)

∣∣x2u − x2v∣∣+
∑

u∈V −,v∈V + wG(u, v)x2u∑
u∈V −,v∈V − wG (u, v) |x2u − x2v|+

∑
u∈V −,v∈V + wG (u, v)x2u

≥ φ(G,H). (7)

We sort the xu in increasing order of |xu| into such that xu1
≥ . . . ≥ xuk

, and let Sk = {xu1
, . . . , xuk

}. We have∑
u∈V −,v∈V −

wG(u, v)
∣∣x2u − x2v∣∣+

∑
u∈V −,v∈V +

wG(u, v)x2u =
∑

i=1...k

(
x2ui
− x2ui−1

)
capG

(
Sk, S̄k

)
,

and ∑
u∈V −,v∈V −

wH(u, v)
∣∣x2u − x2v∣∣+

∑
u∈V −,v∈V +

wH(u, v)x2u =
∑

i=1...k

(
x2ui
− x2ui−1

)
capH

(
Sk, S̄k

)
.

Applying Lemma 1 we have∑
u∈V −,v∈V − wG(u, v)|x2u − x2v|+

∑
u∈V −,v∈V + wG(u, v)x2u∑

u∈V −,v∈V − wG (u, v) |x2u − x2v|+
∑

u∈V −,v∈V + wG (u, v)x2u
≥ min

k

capH
(
SG, S̄i

)
capH

(
Si, S̄i

) ≥ φ(G,H),

where the second inequality is by definition of φ(G,H). This proves equation 7 and the Lemma follows.



We now proceed with the proof of the main Theorem.

Proof. We have

xTLGx =
∑

uv∈EG

wG(u, v)(xu − xv)2

=
∑

uv∈Esame
G

wG(u, v)(xu − xv)2 +
∑

uv∈Edif
G

wG(u, v)(xu − xv)2

≥
∑

uv∈Esame
G

wG(u, v)(xu − xv)2 +
∑

uv∈Edif
G

wG(u, v)(x2u + x2v).

(8)

The last inequality follows by xuxv ≤ 0 as xu ≤ 0 for all u ∈ V − and xv ≥ 0 for all v ∈ V +.

We multiply both sides of the inequality by∑
uv∈Esame

G

wG(u, v)(xu + xv)2 +
∑

uv∈Edif
G

wG(u, v)(x2u + x2v).

We have (∑
uv∈Esame

G
wG(u, v)(xu − xv)2 +

∑
uv∈Edif

G
wG(u, v)(x2u + x2v)

)
·
(∑

uv∈Esame
G

wG(u, v)(xu + xv)2 +
∑

uv∈Edif
G

wG(u, v)(x2u + x2v)
)

≥
(∑

uv∈Esame
G
|xu − xv||xu + xv|+

∑
uv∈Edif

G
wG(u, v)(x2u + x2v)

)2
=

(∑
uv∈Esame

G
|x2u − x2v|+

∑
uv∈Edif

G
wG(u, v)(x2u + x2v)

)2
.

Furthermore, notice that (xu + xv)2 ≤ 2x2u + 2x2v since 2x2u + 2x2v − (xu + xv)2 = (xu − xv)2 ≥ 0. So, we have∑
uv∈Esame

G

wG(u, v)(xu + xv)2 +
∑

uv∈Edif
G

wG(u, v)(x2u + x2v)

≤2

 ∑
uv∈Esame

G

wG(u, v)(x2u + x2v) +
∑

uv∈Edif
G

wG(u, v)(x2u + x2v)


= 2xTDx ≤ 4xTLDG

x,

where D is the diagonal of LG and the last inequality comes from Lemma 2. Combining the last two inequalities
we get:

xTLGx

xTLHx
≥ 1

2 ·

(∑
uv∈Esame

G
|x2

u−x
2
v|+

∑
uv∈Edif

G

wG(u,v)(x2
u+x2

v)
xTLHx

)

·

(∑
uv∈Esame

G
|x2

u−x
2
v|+

∑
uv∈Edif

G

wG(u,v)(x2
u+x2

v)
xTLDG

x

)
.

By Lemma 3, we have that the first factor is bounded by 1
2φ(G,H) and the second factor bounded by 1

2φ(G,DG).
Hence we get

xTLGx

xTLHx
≥ 1

4
φ(G,H)φ(G,DG). (9)



10 Additional Experiments

PACM graph. We again consider the (very) noisy ensemble NoisyKnn(n = 436, kg = 30, lg = 15). Figure
10 shows a random instance of the clustering returned by each of the methods, with 125 constraints. Figure
11 shows the accuracy and running times of all three methods on this example. Again, our approach returns
superior results when compared to CSP, and it is somewhat better than COSf. In this example, our running
time is larger than that of both COSf and CSP, which is due to the small size of the problem (n = 426). For
such small problems a full eigenvalue decomposition is faster due to its better utilization of the FPU, as well
as some overheads of the iterative method (e.g. preconditioning). In principle we can use the full eigenvalue
decomposition to speed-up our algorithm for these smaller problems and at least match the performance of CSP.
However the running times are already very small.
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Figure 10: Top: Segmentation for a random instance of the PACM data set with 125 labels produced by CSP
(left), COSf (middle) and FAST-GE (right)
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Figure 11: Leftmost plots illustrate the accuracy and running times for the Four-Moons data set, where the
underlying graph given by the model NoisyKnn(n = 1500, k = 30, l = 15), for varying number of constraints. The
rightmost two plots show similar statistics for the PACM data set, with the noise model given by NoisyKnn(n =
426, k = 30, l = 15). We average all results over 20 runs.


