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Abstract. The problem of completing a low-rank matrix from a subset of its entries is often
encountered in the analysis of incomplete data sets exhibiting an underlying factor model with
applications in collaborative filtering, computer vision, and control. Most recent work has been
focused on constructing efficient algorithms for exact or approximate recovery of the missing matrix
entries and proving lower bounds for the number of known entries that guarantee a successful recovery
with high probability. A related problem from both the mathematical and algorithmic points of view
is the distance geometry problem of realizing points in a Euclidean space from a given subset of their
pairwise distances. Rigidity theory answers basic questions regarding the uniqueness of the realization
satisfying a given partial set of distances. We observe that basic ideas and tools of rigidity theory can
be adapted to determine uniqueness of low-rank matrix completion, where inner products play the
role that distances play in rigidity theory. This observation leads to efficient randomized algorithms
for testing necessary and sufficient conditions for local completion and for testing sufficient conditions
for global completion. Crucial to our analysis is a new matrix, which we call the completion matrix,
that serves as the analogue of the rigidity matrix.
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1. Introduction. Can the missing entries of an incomplete real valued matrix
be recovered? Clearly, a matrix can be completed in an infinite number of ways
by replacing the missing entries with arbitrary values. In order for the completion
question to be of any value, we must restrict the matrix to belong to a certain class of
matrices. A popular class of matrices is the matrices of limited rank, and the problem
of completing a low-rank matrix from a subset of its entries has received a great deal of
attention lately. The completion problem comes up naturally in a variety of settings.
One of these is the Netflix problem [1], where users submit rankings for only a small
subset of movies, and one would like to infer their preference of unrated movies. The
data matrix of all user ratings may be approximately low-rank because it is believed
that only a few factors contribute to an individual’s preferences. The completion
problem also arises in computer vision, in the problem of inferring three-dimensional
structure from motion [36], as well as in many other data analysis, machine learning
[33], control [29], and other problems that are modeled by a factor model. Numerous
completion algorithms have been proposed over the years; see, e.g., [5, 13, 14, 22, 34],
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1622 AMIT SINGER AND MIHAI CUCURINGU

and references therein. Many of the algorithms relax the nonconvex rank constraint
by the convex set of positive semidefinite matrices and solve a convex optimization
problem using semidefinite programming (SDP) [37]. Recently, using techniques from
compressed sensing [6, 12], Candès and Recht [7] proved that if the pattern of missing
entries is random, then the minimization of the convex nuclear norm (the �1 norm
of the singular values vector) finds (with high probability) the exact completion of
most nα× n matrices of rank d as long as the number of observed entries m satisfies
m ≥ C(α)dn1.2 logn, where C(α) is some function. Even more recently, Keshavan,
Oh, and Montanari [24, 25] improved the bound to C(α)dn log n and also provided
an efficient completion algorithm.

These fascinating recent results do not provide, however, a solution to the more
practical case in which the pattern of missing entries is nonrandom. Given a specific
pattern of missing entries, it would be extremely desirable to have an algorithm that
can determine the uniqueness of a rank-d matrix completion. Prior to running any
of the numerous existing completion algorithms such as SDP it is important for the
analyst to know if such a completion is indeed unique.

Building on ideas from rigidity theory (see, e.g., [31]) we propose an efficient ran-
domized algorithm that determines whether or not it is possible to uniquely complete
an incomplete matrix to a matrix of specified rank d. Our proposed algorithm does not
attempt to complete the matrix but only determines whether a unique completion is
possible. We introduce a new matrix, which we call the completion matrix that serves
as the analogue of the rigidity matrix in rigidity theory. The rank of the completion
matrix determines a property which we call infinitesimal completion. Whenever the
completion matrix is large and sparse, its rank can be efficiently determined using
iterative methods such as LSQR [30]. As in rigidity theory, we will also make the
distinction between local completion and global completion. The analogy between
rigidity and completion is quite striking, and we believe that many of the results in
rigidity theory can be usefully translated to the completion setup. Our randomized
algorithm for testing local completion is based on a similar randomized algorithm for
testing local rigidity that was suggested by Hendrickson [19].

While the local rigidity theory translates smoothly into the local completion setup,
we find the global theory to be more subtle. A full characterization of globally rigid
frameworks exists due to Connelly [9] who proved sufficient conditions for global rigid-
ity and conjectured necessary conditions that were recently proved by Gortler, Healy,
and Thurston [17]. Here we conjecture sufficient conditions for global completion,
but we were not able to come up with suitable necessary conditions. Based on our
conjectured sufficient conditions, we propose a randomized algorithm that tests for
sufficient conditions but not for necessary conditions for global completion. As a re-
sult, applying our algorithms for testing local and global completion in conjunction
classifies missing entry patterns into three classes. The first class contains matrices
that did not pass the local completion test and are clearly not globally completable.
The second class contains matrices that passed both the local completion and the
global completion tests and are therefore guaranteed to be globally completable. The
third class contains matrices that passed the local completion test but did not pass
the global completion test, and since the latter only checks for sufficient conditions,
we cannot determine whether such matrices are globally completable or not.

The organization of the paper is as follows. Section 2 contains a glossary of defi-
nitions and results in rigidity theory on which our algorithms are based. In section 3
we analyze the low-rank matrix completion problem for the particular case of positive
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semidefinite Gram matrices and present algorithms for testing local and global com-
pletion of such matrices. In section 4 the analysis is generalized to the more common
completion problem of general low-rank rectangular matrices, and corresponding al-
gorithms are provided. Section 5 is concerned with the combinatorial characterization
of entry patterns that can be either locally completable or globally completable. In
particular, we present a simple combinatorial characterization for rank-1 matrices and
comment on the rank-2 and rank-d (d ≥ 3) cases. In section 6 we detail the results of
extensive numerical simulations in which we tested the performance of our algorithms
while verifying the theoretical bounds of [7, 24, 25] for matrices with random missing
patterns. Finally, section 7 is a summary and discussion.

2. Rigidity theory: Basic definitions and results. Rigidity theory tries to
answer whether a given partial set of distances dij = ‖pi − pj‖ between n points in
R

d uniquely determines the coordinates of the points p1, . . . , pn up to rigid trans-
formations (translations, rotations, reflections). This section is a self-contained but
extremely selective and incomplete collection of basic definitions and results in rigid-
ity theory from the literature (e.g., [10, 17, 19, 31], and references therein). Readers
who are unfamiliar with rigidity theory may wish to skip this section at first reading
and use it as a glossary.

A bar and joint framework in R
d is an undirected graphG = (V,E) (|V | = n, |E| =

m) and a configuration p which assigns a point pi in R
d to each vertex i of the graph.

The edges of the graph correspond to distance constraints; that is, (i, j) ∈ E iff there
is a bar of length dij between pi and pj . Consider a motion of the configuration
with pi(t) being the displacement vector of vertex i at time t. Any smooth motion
that instantaneously preserves the distance dij must satisfy d

dt‖pi − pj‖2 = 0 for all
(i, j) ∈ E. Denoting the instantaneous velocity of the ith point by ṗi, it follows that

(2.1) (pi − pj)
T (ṗi − ṗj) = 0 for all (i, j) ∈ E.

Given a framework G(p) in R
d, a solution ṗ = [ṗT1 ṗT2 · · · ṗTn ]T with ṗi in R

d to the
system of linear equations (2.1) is called an infinitesimal motion. This linear system
consisting of m equations in dn unknowns can be brought together as RG(p)ṗ = 0,
where RG(p) is the so-called m× dn rigidity matrix.

Note that for every skew-symmetric d × d matrix A (with AT = −A) and for
every b ∈ R

d we have that ṗi = Api + b is an infinitesimal motion, where A ac-
counts for some orthogonal transformation and b accounts for some translation. Such
infinitesimal motions are called trivial because they are the derivative of rigid trans-
formations. A framework G(p) is infinitesimally rigid if all infinitesimal motions are
trivial, and infinitesimally flexible otherwise. Observe that the trivial infinitesimal
motions span a (d(d+1)/2)-dimensional subspace of Rdn, combining the d degrees of
freedom of translations with the d(d − 1)/2 degrees of freedom of orthogonal trans-
formations. Therefore, the dimensionality of the null space of the rigidity matrix of a
given framework determines whether it is infinitesimally rigid or infinitesimally flex-
ible: If dimnull(RG(p)) > d(d + 1)/2, then G(p) is infinitesimally flexible; otherwise
dimnull(RG(p)) = d(d+ 1)/2 and G(p) is infinitesimally rigid.

A framework G(p) is said to be locally rigid if there exists a neighborhood U of
G(p) such that G(p) is the only framework in U with the same set of edge lengths,
up to rigid transformations. In other words, there is no continuous deformation that
preserves the edge lengths.

A configuration is generic if the coordinates do not satisfy any nonzero polyno-
mial equation with integer coefficients (or equivalently algebraic coefficients). Generic
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1624 AMIT SINGER AND MIHAI CUCURINGU

configurations are not an open set of configurations in R
dn, but they do form a dense

set of full measure.
The following rigidity predictor was introduced by Gluck [15] and extensively used

in Asimow and Roth [2].
Theorem 2.1 (Gluck [15], Asimow and Roth [2]). If a generic framework G(p)

of a graph G with d+1 or more vertices is locally rigid in R
d, then it is infinitesimally

rigid; otherwise dimnull(RG(p)) > d(d+ 1)/2.
Since the dimension of the null space of the rigidity matrix is the same at every

generic point, local rigidity in R
d is a generic property. That is, either all generic

frameworks of the graph G are locally rigid or none of them are. This is a condition
for generic local rigidity in R

d which can be considered as a property of the graph G.
Hendrickson [19] observed that generic local rigidity can therefore be tested ef-

ficiently in any dimension using a randomized algorithm: Simply randomize the dis-
placement vectors p1, . . . , pn while ignoring the specific distance constraints that they
have to satisfy, construct the rigidity matrix corresponding to the framework of the
original graph with the randomized points, and check its rank. With probability one,
the rank of the rigidity matrix that corresponds to the unknown true displacement
vectors equals the rank of the randomized rigidity matrix. A similar randomized
algorithm for generic local rigidity was described in [17, Algorithm 3.2].

Since generic local rigidity is a combinatorial property of the graph, it is natural
to search for a combinatorial characterization of such graphs. Such a combinatorial
characterization exists for rigidity in the plane (d = 2). The total number of degrees of
freedom for n points in the plane is 2n. How many distance constraints are necessary
to limit a framework to having only the trivial motions? Or equivalently, how many
edges are necessary for a graph to be rigid? Each edge can remove a single degree
of freedom. Rotations and translations will always be possible, so at least 2n − 3
edges are necessary for a graph to be rigid. For example, a graph with n = 3 and
|E| = 2n − 3 = 3 edges is the triangle which is rigid. Similarly, a graph with n = 4
and |E| = 2n − 3 = 5 is K4 minus one edge which is also locally rigid. However,
the graph on n = 5 vertices consisting of K4 plus one dangling node has 2n− 3 = 7
edges but it is not rigid. Such edge counting considerations had already been made by
Maxwell [28] in the nineteenth century. Laman [26] was the first to prove the precise
combinatorial characterization of rigid frameworks in the plane.

A framework is minimally rigid, if it is infinitesimally flexible once an edge is
removed. A framework is redundantly rigid, or equivalently edge-2-rigid, if it is in-
finitesimally rigid upon the removal of any single edge.

Theorem 2.2 (Laman [26]). A graph with n vertices is generically minimally
rigid in two dimensions iff it has 2n−3 edges and no subgraph of n′ vertices has more
than 2n′ − 3 edges. A graph is generically rigid if it contains a Laman graph with n
vertices.

In other words, the Laman condition for minimally rigid graphs says that the graph
needs to have at least 2n− 3 “well-distributed” edges. Generic rigidity is a property of
the graph connectivity, not of the geometry. The pebble game algorithm of Jacobs and
Hendrickson [23] applies Laman’s theorem to determine generic local rigidity of a given
graph in atmostO(n2) steps. Laman graphs (i.e., genericminimally rigid graphs) are an
instance of tight sparse graphs. A graph with n vertices andm edges is said to be (k, l)-
sparse if every subset of n′ ≤ n vertices spans atmost kn′−l edges. If, furthermore,m =
kn− l, the graph is called tight (see, e.g., [27]). Thus the (2, 3)-sparse tight graphs are
the Laman graphs. Unfortunately, an exact combinatorial characterization of locally
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generic rigid graphs is currently not available in higher dimensions (d ≥ 3). The “edge-
counting” condition is necessary but not sufficient.

Local generic rigidity does not imply unique realization of the framework. For
example, consider the two-dimensional rigid graph with n = 4 vertices and m = 5
edges consisting of two triangles that can be folded with respect to their joint edge.
A framework G(p) is globally rigid in R

d if all frameworks G(q) in R
d which are G(p)-

equivalent (have all bars the same length as G(p)) are congruent to G(p) (that is,
they are related by a rigid transformation).

Hendrickson proved two key necessary conditions for global rigidity of a framework
at a generic configuration.

Theorem 2.3 (Hendrickson [19]). If a framework G(p), other than a simplex, is
globally rigid for a generic configuration p in R

d, then:
• The graph G is vertex (d+ 1)-connected;
• The framework G(p) is edge-2-rigid (or, redundantly rigid), in the sense that
removing any one edge leaves a graph which is infinitesimally rigid.

A graph G is generically globally rigid in R
d if G(p) is globally rigid at all generic

configurations p [8, 9]. Only recently it was demonstrated that global rigidity is a
generic property in this sense for graphs in each dimension [9, 17]. The conditions of
Hendrickson as stated in Theorem 2.3 are necessary for generic global rigidity. They
are also sufficient on the line and in the plane [20]. However, by a result of Connelly
[8], K5,5 in 3-space is generically edge-2-rigid and 5-connected but is not generically
globally rigid.

The critical technique used for proving global rigidity of frameworks uses stress
matrices. A stress is an assignment of scalars wij to the edges such that for each
i ∈ V

(2.2)
∑

j: (i,j)∈E

ωij(pi − pj) = 0.

Alternatively, a stress is a vector w in the left null space of the rigidity matrix:
RG(p)

Tw = 0. A stress vector can be rearranged into an n× n symmetric matrix Ω,
known as the stress matrix, such that for i �= j, the (i, j) entry of Ω is Ωij = −ωij , and
the diagonal entries for (i, i) are Ωii =

∑
j: j �=i ωij . Note that all row and column sums

are now zero from which it follows that the all-ones vector (1 1 · · · 1)T is in the null
space of Ω as well as each of the coordinate vectors of the configuration p. Therefore,
for generic configurations the rank of the stress matrix is at most n − (d + 1). The
key connection for global rigidity is the following pair of results.

Theorem 2.4 (Connelly [9]). If p is a generic configuration in R
d, such that

there is a stress, where the rank of the associated stress matrix Ω is n− (d+ 1), then
G(p) is globally rigid in R

d.
Theorem 2.5 (Gortler, Healy, and Thurston [17]). Suppose that p is a generic

configuration in R
d, such that G(p) is globally rigid in R

d. Then either G(p) is
a simplex or there is a stress where the rank of the associated stress matrix Ω is
n− (d+ 1).

Based on their theorem, Gortler, Healy, and Thurston also provided a randomized
polynomial algorithm for checking generic global rigidity of a graph [17, Algorithm
3.3]. If the graph is generically locally rigid, then their algorithm picks a random stress
vector of the left null space of the rigidity matrix, converts it into a stress matrix,
and computes the rank of the stress matrix which is compared with n − (d + 1) to
determine generic global rigidity.
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Rigidity properties of random Erdős–Rényi G(n, β) graphs, where each edge is
chosen with probability β have been recently analyzed for the two-dimensional case.

Theorem 2.6 (Jackson, Servatius, and Servatius [21]). Let G = G(n, β), where
β = (logn+ k log log n+ w(n))/n, and limn→∞ w(n) = +∞.

• If k = 2, then G is asymptotically almost surely (a.a.s) generically locally
rigid.

• If k = 3, then G is a.a.s. generically globally rigid.
The bounds on β given in Theorem 2.6 are the best possible in the sense that if

G = G(n, β) and β = (logn + k log logn + c)/n for any constant c, then G does not
a.a.s. have minimum degree at least k. The emergence of large rigid components was
also studied by Theran in [35].

Supplied with this rigidity theory background, we are ready to analyze the low-
rank matrix completion problem.

3. Gram matrices. We start by analyzing the completion problem of low-rank
positive semidefinite Gram matrices with missing entries. We make extensive use of
the terminology and results summarized in the glossary section 2 which the reader is
advised to consult whenever needed.

For a collection of n vectors p1, p2, . . . , pn ∈ R
d there corresponds an n×n Gram

matrix J of rank (at most) d whose entries are given by the inner products

(3.1) Jij = pTi pj , i, j = 1, . . . , n.

An alternative way of writing J is through its Cholesky decomposition J = PTP ,
where P is a d× n matrix given by P =

[
p1 p2 · · · pn

]
, from which it is clear

that rank(J) ≤ d. If J is fully observed (no missing entries), then the Cholesky
decomposition of J reveals P up to a d× d orthogonal matrix O (OOT = I), as J =
PTP = (OP )T (OP ). Now, suppose that only a few of the entries of J are observed
by the analyst. The symmetry of the matrix J implies that the set of observed entries
defines an undirected graph G = (V,E) with n vertices where (i, j) ∈ E is an edge
iff the entry Jij is observed. The graph may include self-loop edges of the form (i, i)
corresponding to observed diagonal elements Jii. For an incomplete Gram matrix J
with an observed pattern that is given by the graph G, we would like to know if it is
possible to uniquely complete the missing entries of J so that the resulting completed
matrix is of rank d.

For example, consider the three planar points

(3.2) p1 =

(
0
1

)
, p2 =

(
1
2

)
, p3 =

(
2
3

)
: P =

(
0 1 2
1 2 3

)
,

whose corresponding 3-by-3 Gram matrix J is of rank 2

(3.3) J = PTP =

⎛
⎝ 1 2 3

2 5 8
3 8 13

⎞
⎠ .

The following three different missing entry patterns demonstrate that a matrix may
have a unique completion, a finite number of possible completions, or an infinite
number of possible completions:

(3.4)

⎛
⎝ 1 2 3

2 5 8
3 8 ?

⎞
⎠ ,

⎛
⎝ 1 2 ?

2 5 8
? 8 13

⎞
⎠ ,

⎛
⎝ 1 2 3

2 ? 8
3 8 ?

⎞
⎠ .
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For the left matrix, the missing diagonal element is uniquely determined by the fact
that det J = 0. For the middle matrix, the vanishing determinant constraint is a
quadratic equation in the missing entry and there are two different possible comple-
tions (the reader may check that J13 = J31 = 3.4 is a valid completion). For the
right matrix, the vanishing determinant constraint is a single equation for the two
unknown diagonal elements, and so there is an infinite number of possible comple-
tions. We want to go beyond 3-by-3 matrices and develop techniques for the analysis
of much larger matrices with arbitrary patterns of missing entries.

3.1. The completion matrix and local completion. We now adapt rigidity
theory to the matrix completion problem. We start by considering motions pi(t) that
preserve the inner products Jij = pTi pj for all (i, j) ∈ E. Differentiating (3.1) with
respect to t yields the set of m = |E| linear equations for the unknown velocities

(3.5) pTi ṗj + pTj ṗi = 0 for all (i, j) ∈ E.

This linear system can be brought together as CG(p)ṗ = 0, where CG(p) is an m× dn
coefficient matrix which we call the completion matrix. The completion matrix is
sparse as it has only 2d nonzero elements per row. The locations of the nonzero
entries are solely determined by the graph G, while their values are determined by the
particular realization p. The solution space of (3.5) is at least d(d− 1)/2 dimensional,
due to orthogonal transformations that preserve inner products. Indeed, substituting
into (3.5) the ansatz ṗi = Api (for all i = 1, . . . , n) with A being a constant d × d
matrix yields pTi (A + AT )pj = 0. Therefore, any choice of a skew-symmetric matrix
A = −AT leads to a possible solution. We refer to these as the trivial infinitesimal
motions. The number of trivial degrees of freedom in the completion problem is
d(d − 1)/2 which differs from its rigidity theory counterpart, because translations
preserve distances but not inner products.

The rank of the completion matrix will help us determine whether a unique com-
pletion of the Gram matrix J is possible. Indeed, if

(3.6) dimnull(CG(p)) > d(d− 1)/2,

that is, if the dimensionality of the null space of CG(p) is greater than d(d − 1)/2,
then there exist nontrivial solutions to (3.5). In other words, there are nontrivial
infinitesimal motions that preserve the inner products. The rank of the completion
matrix thus determines whether the framework is infinitesimally completable. The
counterpart of the Asimow–Roth theorem would imply that there exists a nontrivial
transformation that preserves the inner products and that the matrix is not generically
locally completable. The rank of the completion matrix equals the size of its maximal
nonzero minor. The minors are polynomials with integer coefficients of the coordinates
of the configuration p. Either such polynomials are zero for all reals or they define an
algebraic variety of singular configurations for which they are zero and are nonzero
on the complement, which is an open dense subset of Rdn. For that reason, almost all
completion matrices for a given graph have the same rank, generic local completion
is a property of the graph itself, and we do not need any advance knowledge of the
realization of the matrix that we are trying to complete. Instead, we can simply
construct a completion matrix from a randomly chosen realization. With probability
one, the dimensionality of the null space of the randomized completion matrix will be
the same as that of the completion matrix of the true realization, and this rank will
determine whether the Gram matrix is generically locally completable or not. The
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resulting randomized algorithm for testing local completion is along the same lines of
the randomized algorithms for testing local rigidity [17, 19].

Algorithm 1. Local completion of n× n rank-d Gram matrices.

Require: Graph G = (V,E) with n vertices and m edges corresponding to known
matrix entries (self-loops are possible).

1: Randomize a realization p1, . . . , pn in R
d.

2: Construct the sparse completion matrix CG(p) of size m× dn.
3: Check if there is a nontrivial infinitesimal motion ṗ satisfying CG(p)ṗ = 0.
4: If a nontrivial infinitesimal motion exists, then G cannot be locally completable;

otherwise G is locally completable.

In order for Algorithm 1 to be feasible for large-scale problems, the approach
sketched above requires a fast method to determine the existence of a nontrivial
infinitesimal motion, which is equivalent to checking that the rank of the completion
matrix satisfies rank(CG(p)) < dn − d(d − 1)/2. This is not a straightforward check
from the numerical linear algebra point of view. Note that the rank of a matrix can
be determined only up to some numerical tolerance (like machine precision), because
the matrix may have arbitrarily small nonzero singular values. The full singular value
decomposition (SVD) is the most reliable way to compute the rank of the completion
matrix (e.g., using MATLAB’s rank function), but it is also the most time-consuming
and is computationally prohibitive for large matrices. The completion matrix is often
sparse, in which case, sparse LU, sparse QR, and rank-revealing factorizations (see
[18, 11], and references within) are much more efficient. However, due to nonzero fill-
ins, such methods quickly run out of memory for large-scale problems. Our numerical
experimentation with Gotsman and Toledo’s sparse LU MATLAB function nulls [18]
and Davis’s SuiteSparseQRMATLAB library and spqr function [11] encountered some
memory issues for n ≥ 6000. Therefore, for large-scale sparse completion matrices we
use iterative methods that converge fast and do not have special storage requirements.
The iterative procedure has several steps:

1. Use different choices of skew-symmetric d× d matrices A to construct d(d−
1)/2 linearly independent trivial infinitesimal motions (recall that trivial mo-
tions are given by ṗi = Api, i = 1, . . . , n), and store the trivial motions in a
dn× d(d− 1)/2 matrix T .

2. Compute the QR factorization of T = QR (see, e.g., [16]) such that the
columns of the dn × d(d − 1)/2 matrix Q form an orthogonal basis for the
subspace of trivial motions; i.e., the two column spaces are the same col(Q) =
col(T ) and QTQ = Id(d−1)/2.

3. Randomize a unit size vector b ∈ R
dn in the orthogonal subspace of trivial mo-

tions, b ∈ col(Q)⊥. This is performed by randomizing a vector v ∈ R
dn with

independently and identically distributed standard Gaussian entries (vi ∼
N (0, 1)), projecting v onto the orthogonal subspace using w = (I − QQT )v
(the matrix QQT is never formed), and normalizing b = w/‖w‖. It is easy to
check that QT b = 0 and that b has the desired normal distribution.

4. Attempt to solve the linear system CG(p)
Tx = b for the unknown x using

an iterative method such as LSQR [30] that minimizes the sum of squares
residual. The linear system may or may not have a solution. Numerically,
a tolerance parameter tol must be supplied to the LSQR procedure. Set the
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tolerance parameter to be tol = εn−1/2, with a small ε, e.g., ε = 10−4. If
the residual cannot be made smaller than tol, then conclude that the linear
system has no solution. In such a case b �∈ col(CG(p)

T ) and by the fun-
damental theorem of linear algebra it follows that the projection of b onto
null(CG(p)) is nonzero. Since b is orthogonal to all trivial motions, it follows
that null(CG(p)) contains a nontrivial infinitesimal motion and the matrix is
not locally completable. On the other hand, if the linear system CG(p)x = b
has a solution in the sense that the residual is smaller than εn−1/2, then the
projection of b on null(CG(p)) is smaller than εn−1/2. If a nontrivial infinites-
imal motion ṗ exists, then the projection of b onto it is normally distributed
with zero mean and variance n−1, that is, bT ṗ/‖ṗ‖ ∼ N (0, n−1). Therefore,
with probability at least 1− 2ε√

2π
all infinitesimal motions are trivial.

The LSQR procedure consists of applying the sparse completion matrix CG and its
transpose CT

G to vectors with no special need for storage. The number of nonzero en-
tries in the completion matrix is 2dm which is also the computational cost of applying
it to vectors. The number of LSQR iterations depends on the nonzero singular values
and in particular on the ratio of the largest singular value and the smallest nonzero
singular value (condition number). Arbitrarily small singular values may cause our
iterative algorithm with its preset tolerance to fail. In practice, however, at least for
moderate values of n, the full SVD revealed that such small singular values are rare.

We conclude this section by general remarks on the iterative procedure described
above. First, note that the same iterative procedure can be used to determine lo-
cal rigidity of bar and joint frameworks, and perhaps it can also be useful in other
applications where the existence of nontrivial null space vector is sought to be de-
termined. Second, iterative methods can often be accelerated by a proper choice of
a preconditioner matrix. This leads to the interesting question of designing a suit-
able preconditioner for completion and rigidity matrices, which we defer for future
investigation.

3.2. Global completion and stress matrices. Generically local completion
of a framework means that the realization cannot be continuously deformed while sat-
isfying the inner product constraints. However, as the middle matrix in example (3.4)
shows, local completion does not exclude the possibility of having a nontrivial discon-
tinuous deformation that satisfies the inner product constraints, where by nontrivial
we mean that the deformation is not an orthogonal transformation. We say that
the framework is globally completable if the only deformations that preserve the inner
products are the trivial orthogonal transformations (rotations and reflections). While
local completion allows for a finite number of different completions, global completion
is a stronger property that certifies that completion is unique.

A completion stress ω for a framework is an assignment of weights ωij on the
edges of the graph such that for every vertex i ∈ V

(3.7)
∑

j: (i,j)∈E

ωijpj = 0.

Equivalently, a completion stress ω is a vector in the left null space of the completion
matrix CG(p), i.e., CG(p)

Tω = 0. A stress matrix Ω is a symmetric n × n matrix
obtained by the following rearrangement of the completion stress vector entries: Ωij =
wij for (i, j) ∈ E, and Ωij = 0 for (i, j) �∈ E.

It follows from (3.7) that if ω is a stress for the framework of p1, . . . , pn, then
it is also a stress for the framework of Ap1, . . . , Apn, where A is any d × d linear
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transformation. In other words, the d coordinate vectors and their linear combinations
are in the null space of the stress matrix Ω and dim null(Ω) ≥ d.

In the rigidity case, Theorem 2.4 by Connelly gives a sufficient condition for
generic global rigidity, while the recently proved Theorem 2.5 by Gortler, Healy, and
Thurston provides the necessary condition. Based on Theorems 2.4 and 2.5 a ran-
domized algorithm for testing global rigidity was suggested in [17].

However, unlike the local rigidity theory that goes through without too much
difficulty to the completion case, the global theory turns out to be more subtle. Per-
haps the main difference between the two cases is that while prescribing the inner
product between two points does not prevent them from getting arbitrarily far apart,
it is obviously not the case when fixing the distance between the points. Despite this
difference, it seems that the Theorem 2.4 by Connelly can be naturally translated
to give sufficient conditions for global completion. Since the proof of this claim is
outside the scope of this paper, it will not be given here, and the reader may want
to consider the last statement as a conjecture. As for necessity, we did not find an
obvious counterpart of Theorem 2.5 by Gortler, Healy, and Thurston that would give
necessary conditions for global completion. In fact, it is possible to come up with ex-
amples of generically globally completable frameworks with stresses whose null space
is of dimension greater than d. For example, the first missing entry pattern in (3.4)
(the 3 × 3 matrix with a single missing diagonal entry) was noted to be globally
completable for d = 2 (by the vanishing determinant consideration), but it has no
nontrivial stresses (the stress must satisfy w3,3 = 0 due to the location of the missing
entry, from linear independence of p1 and p2 in R

2 it follows that w3,1 = w3,2 = 0,
and by similar considerations all the other entries of the stress must vanish). The
dimension of the null space of the zero stress matrix is 3, which is strictly greater
than d = 2.

Having these considerations in mind, we propose Algorithm 2, which is a ran-
domized algorithm for testing sufficiency conditions for global completion. That is,
the output of Algorithm 2 is one of two possibilities: (1) G is generically globally
completable, or (2) global completion of G is undecided. Algorithm 2 cannot be used
to conclude that a matrix is not globally completable.

Algorithm 2. Global completion of n× n rank-d Gram matrices.

Require: Graph G = (V,E) with n vertices and m edges corresponding to known
matrix entries (self-loops are possible).

1: Check local completion using Algorithm 1. Proceed only if framework is locally
completable.

2: Randomize a realization p1, . . . , pn in R
d.

3: Construct the sparse completion matrix CG(p) of size m× dn.
4: Compute a random completion stress vector ω in the left null space of CG(p)

satisfying CG(p)
Tω = 0.

5: Rearrange ω into a completion stress matrix Ω.
6: Check if the null space of Ω contains vectors which are not linear combinations of

the d coordinate vectors.
7: If no such other null space vectors exist (i.e., if dimnull(Ω) = d), then G is globally

completable; otherwise global completion of G is undecided.

Algorithm 2 also uses iterative methods in order to ensure its scalability to large
scale matrices. In stage 4 of Algorithm 2 we use LSQR, which when initialized with a
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random starting vector converges to a random left null space solution, rather than to
the zero vector. Here we use LSQR with a very small tolerance as we are guaranteed
the existence of a nontrivial stress.

In stage 6 we again apply LSQR, this time similarly to the way it is applied in
the local completion case (Algorithm 1). Specifically, we first find a random vector b
which is perpendicular to the subspace of coordinate vectors, and then we try to solve
Ωx = b. Here Ω is symmetric (compared to CG). For moderate scale problems (e.g.,
n ≤ 5000) we use sparse QR to compute the rank of Ω as it runs faster than LSQR,
but it cannot handle much larger values of n due to memory problems (fill-ins).

Before moving to the completion problem of general rectangular matrices, we
comment on two other aspects of the Gram matrix case. First, note that not every
partially observed matrix can be completed into a positive semidefinite matrix. For
example, if all diagonal entries are given and are set to be negative (e.g., Jii = −1 for
i = 1, . . . , n), then the matrix cannot be completed to a semidefinite positive matrix,
because its trace is negative so at least one of its eigenvalues must be negative. If
the matrix can be completed to some positive semidefinite matrix and the number of
observed entries m ≤ ( r+2

2 )− 1, then from [3, Theorem 1.1] it follows that the matrix
can be completed to a matrix of rank r (or lower). Second, when the diagonal entries
of the Gram matrix are known, then both local and global completion problems
are equivalent to the standard rigidity and global rigidity problem. The graph is
essentially the cone on the graph [10] determined by the off-diagonal entries, since the
diagonal elements give the distances of the vertices from the origin (the extra vertex),
while the off-diagonal inner products are translated into distances using the diagonal
entries. The generic rigidity and generic global rigidity of a graph in dimension d is
equivalent to the generic rigidity and generic global rigidity of the cone on the graph
in dimension d+ 1.

4. General rectangular low rank matrices. A general n1×n2 rank-d matrix
X can be written as X = UV T where U is n1 × d and V is n2 × d given by U =[
u1 u2 · · · un1

]T
and V =

[
v1 v2 · · · vn2

]T
, where the n1 + n2 vectors

u1, . . . , un1 , v1, . . . , vn2 are in R
d. Entries of X are inner products of these vectors:

(4.1) Xij = uT
i vj .

The observed entries Xij define a bipartite graph G = (V,E) with n1 +n2 vertices as
we never observe inner products of the form uT

i ui′ or vTj vj′ . Differentiation of (4.1)
with respect to t yields the set of linear equations

(4.2) uT
i v̇j + vTj u̇i = 0, (i, j) ∈ E

for the unknown velocities u̇i and v̇j . The corresponding completion matrix CG(u, v)
has m rows and d(n1 + n2) columns, but only 2d nonzero elements per row.

The decomposition X = UV T is not unique: If W is an invertible d × d matrix,
then X = UWV T

W with UW = UW and VW = V (W−1)T . It follows that there are
d2 degrees of freedom in choosing W , because the general linear group GL(d,R) of
d× d invertible matrices is a Lie group over R of dimension d2. Indeed, substituting
in (4.2) the ansatz u̇i = Aui (for i = 1, . . . , n1) and v̇j = Bvj (for j = 1, . . . , n2) gives
uT
i (B + AT )vj = 0, which is trivially satisfied whenever B = −AT . These are the

trivial infinitesimal motions, and they span a subspace of dimension d2.
Similar to local rigidity and local completion of Gram matrices, a condition for

local completion for general rectangular matrices is dimnull(CG(u, v)) = d2. If the
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dimension of the null space of the completion matrix is greater than d2, then there
are nontrivial deformations that preserve all observed elements of the matrix, where a
trivial deformation is any invertible linear transformation of Rd. The local completion
testing algorithm for general rectangular matrices is given in Algorithm 3.

Algorithm 3. Local completion of n1 × n2 rank-d matrices.

Require: Bipartite graphG = (V,E) with n1+n2 vertices andm edges corresponding
to known matrix entries.

1: Randomize a realization u1, . . . , un1 and v1, . . . , vn2 in R
d.

2: Construct the sparse completion matrix CG(u, v) of size m× d(n1 + n2).
3: Check if there is a nontrivial infinitesimal motion ṗ satisfying CG(p)ṗ = 0, where

there are d2 trivial motions.
4: If a nontrivial infinitesimal motion exists, then G cannot be locally completable;

otherwise G is locally completable.

The implementation of the steps in Algorithm 3 is very similar to the implemen-
tation of the steps in Algorithm 1 for testing local completion of Gram matrices.

As in the Gram case, local completion does not imply global completion. A stress
ω for the general rectangular matrix case is an assignment of weights ωij on the edges
of the bipartite graph that satisfy

(4.3)
∑

j: (i,j)∈E

ωijvj = 0 for all i = 1, . . . , n1

and

(4.4)
∑

i: (i,j)∈E

ωijui = 0 for all j = 1, . . . , n2.

The stress ω is in the left null space of the completion matrix, i.e., CG(u, v)
Tω = 0.

The stress weights can be viewed as the entries of an n1 × n2 matrix Ω̃ that
satisfies Ω̃V = 0 and Ω̃TU = 0; therefore

(4.5) rank Ω̃ = rank Ω̃T ≤ min(n1, n2)− d.

The stress matrix is the (n1 + n2)× (n1 + n2) symmetric matrix Ω defined via

(4.6) Ω =

(
0 Ω̃

Ω̃T 0

)
,

and from (4.5) it follows that rankΩ ≤ 2min(n1, n2)− 2d, or equivalently

(4.7) dim null(Ω) ≥ n1 + n2 − (2min(n1, n2)− 2d) = 2d+ |n1 − n2|.

The notion of a shared stress kernel was recently defined in [17, section 4] as
the intersection of all stress kernels, and it was used to prove a stronger version of
Connelly’s sufficient condition for global rigidity (Theorem 2.4). Shared stress kernels
seem to play a crucial role in the theory of global completion of rectangular matrices.
In particular, it is conjectured here that a sufficient condition for global completion of
rectangular matrices is that the dimension of the shared stress kernel is 2d, which is
in general smaller than 2d+ |n1−n2| that appears in (4.7). As with the Gram matrix
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case, we have not been able to conjecture necessary conditions for global completion
of rectangular matrices. In particular, having a shared stress kernel of dimension 2d
is not a necessary condition, as there exist counterexamples of globally completable
rectangular matrices with a shared stress kernel of dimension strictly greater than 2d.
As an example,1 consider a 4× 4 general matrix with the following pattern of missing
entries (marked by ?):

(4.8) X =

⎛
⎜⎜⎝

∗ ? ∗ ∗
? ∗ ∗ ∗
? ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞
⎟⎟⎠ .

This matrix is globally completable as a rank-2 matrix (the three missing entries can
be completed using the vanishing determinant consideration: The minor M2,1 gives

the missing value X1,2, M3,2 gives X2,1, and M2,2 gives X3,1). The matrix Ω̃ must be
a rank-1 matrix of the form

(4.9) Ω̃ =

⎛
⎜⎜⎝

0 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎟⎠ = abT ,

with a = (0, a2, a3, a4)
T and b = (0, b2, b3, b4)

T . Indeed, the missing entries X2,1 and
X3,1 imply that w2,1 = w3,1 = 0, and then the linear independence of u1 and u4 in
R

2 yields w1,1 = w4,1 = 0; similarly w1,2 = 0 due to the missing entry X1,2, and
w1,3 = w1,4 = 0 follows from the linear independence of v3 and v4. The vectors a
and b are determined uniquely, up to scale, by the linear dependencies of the vectors
u2, u3, u4 and v2, v3, v4, such that bTV = 0 and aTU = 0. From rank(Ω) = 1 it follows
that rank(Ω̃) = 2 and dimnull(Ω) = 6 > 4 = 2d.

Following the randomized algorithms for global completion of Gram matrices,
Algorithm 4 is a randomized algorithm for testing sufficient conditions for global
completion of rectangular matrices. The shared stress kernel check is made by picking
l different random stresses (the parameter l should be set by the user) and stacking
the different stress matrices in one matrix whose kernel is evaluated.

We remark that Bolker and Roth [4] derived stress matrices of the same form
as the stress matrices in (4.6) in their characterization of rigid (complete) bipartite
graphs.

5. Combinatorial approach for local and global completion. In the pre-
vious sections we observed that the rank of the completion matrices can determine
generically local rank-d completion properties of a given graph. These observations
led to practical algorithms for property testing, but perhaps there is a simple com-
binatorial characterization of locally and/or globally completable graphs? In rigidity
theory, locally and globally rigid graphs have a simple combinatorial characterization
in one and two dimensions (see Theorems 2.2 and 2.3 by Laman and Hendrickson).
In higher dimensions, however, such combinatorial characterizations are still missing,
and only necessary conditions are available. We therefore believe that exact combina-
torial characterization of local and global completion of rank-d matrices for d ≥ 3 is
currently out of reach, and we focus our attention to rank-1 and rank-2 matrices and

1The example is due to Dylan Thurston.
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Algorithm 4. Global completion of n1 × n2 rank-d matrices.

Require: Bipartite graphG = (V,E) with n1+n2 vertices andm edges corresponding
to known matrix entries.

1: Check local completion using Algorithm 3. Proceed only if framework is locally
completable.

2: Randomize a realization u1, . . . , un1 and v1, . . . , vn2 in R
d.

3: Construct the sparse completion matrix CG(u, v) of size m× d(n1 + n2).
4: Compute l ≥ 1 random completion stress vectors ω1, . . . , ωl in the left null space

of CG(u, v) satisfying CG(u, v)
Tωi = 0 (i = 1, . . . , l).

5: Rearrange ω1, . . . , ωl into (n1+n2)×(n1+n2) symmetric completion stress matri-
ces Ω1, . . . ,Ωl and stack them into a single matrix Ω of size l(n1+n2)× (n1+n2)
given by Ω = (Ω1Ω2 · · ·Ωl)

T .
6: Check if the null space of Ω contains a vector outside the column space of

(
U 0
0 V

)
(equivalently, check if the null space of Ω contains more than 2d linearly indepen-
dent vectors).

7: If dimnull(Ω) = 2d, then G is globally completable; otherwise (dim null(Ω) > 2d)
global completion of G is undecided.

to finding only necessary conditions for d ≥ 3. We begin by observing some properties
of locally completable graphs.

Proposition 5.1. In any Gram locally completable rank-d matrix J of size n×n
with n ≥ d, one can delete entries until the resulting matrix is locally completable and

has exactly dn− d(d−1)
2 entries.

Proof. The completion matrix of the system of equations (3.5) pTi ṗj+pTj ṗi = 0 for

all (i, j) ∈ E must have rank dn− d(d−1)
2 , and thus one can drop linearly dependent

equations until only dn− d(d−1)
2 equations remain.

Proposition 5.2. Any Gram locally completable rank-d matrix J with |E(GJ )| =
dn− d(d−1)

2 has the property that for any n′×n′ submatrix J ′ of J , where d ≤ n′ ≤ n,

it holds true that |E(GJ′)| ≤ dn′ − d(d−1)
2 .

Proof. For every (i, j) ∈ E(GJ ) there corresponds an equation pTi ṗj + pTj ṗi = 0.
Given our interpretation of local completion and Proposition 5.1, these equations are
linearly independent. If for some n′ × n′ submatrix J ′ of J , with n′ ≥ d + 1 we

would have that the number of edges |E(GJ′)| > dn′ − d(d−1)
2 , then by the same

Proposition 5.1 there would be dependence among the corresponding dn′ − d(d−1)
2

equations, which is a contradiction.
The result above implies that every locally completable Gram matrix contains an

underlying graph that spans all vertices which is (d, d(d−1)
2 )-tight sparse. It is natural

to ask whether any (d, d(d−1)
2 )-tight sparse graph is Gram locally completable. The

answer to this question turns out to be false even in one dimension; that is, not every
(1, 0)-tight sparse graph is Gram locally completable for d = 1.

Proposition 5.3. A graph G is minimally Gram locally completable in one
dimension iff each connected component of G is a tree plus one edge that contains an
odd cycle.

Proof. First, suppose G = (V,E) is minimally Gram locally completable for
d = 1. Proposition 5.1 implies that G has no redundant edges so |E(G)| = |V (G)|.
Moreover, Proposition 5.2 implies that each connected component H of G satisfies
|E(H)| = |V (H)|, from which it follows that each connected component is a tree plus
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one edge. We show that the cycle formed by the extra edge must be of odd length. Let
L be the length of the cycle and without loss of generality let its vertices be {1, . . . , L}
with the corresponding framework points p1, . . . , pL. The linear system (3.5) attached
to the cycle edges is given by

(5.1) piṗi+1 + pi+1ṗi = 0, i = 1, . . . , L

(with the convention that L+1 is 1). The system (5.1) results in the coefficient matrix

CL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p2 p1 0 0 0 0
0 p3 p2 0 0 0

0 0
. . .

. . . 0 0
0 0 0 pL−1 pL−2 0
0 0 0 0 pL pL−1

pL 0 0 0 0 p1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Expanding by the first column, we get that

detCL = p2
∏
i�=2

pi + (−1)L+1pL
∏
i�=L

pi =
[
1 + (−1)L+1

] L∏
i=1

pi.

For L even the determinant vanishes, from which it follows that there is a linear
dependence (redundancy) among the equations and G cannot be minimally locally
completable. Therefore, the length of the cycle must be odd.

Conversely, if each connected component of G is a tree plus one edge that forms an
odd cycle, then from detCL �= 0 it follows that the only solution to (5.1) is the trivial
one: ṗ1 = ṗ2 = · · · = ṗL = 0. From the connectivity of the connected component we
get that all velocities must vanish; that is, the only solution to CG(p)ṗ = 0 is ṗ = 0
and G is locally completable. Since each connected component is a tree plus one
edge, it follows that |E(G)| = |V (G)| which means that G is also minimally locally
completable.

We remark that Propositions 5.1 and 5.2 implicitly define a matroid on the com-
plete graph of n vertices with a loop at each vertex. The independent sets of the
matroid correspond to sets of linearly independent rows of the completion matrix,

and the rank of the matroid is dn − d(d−1)
2 . As a quick illustration of Proposition

5.3, consider the complete graph on two vertices. Here the (matroid) bases are either
two loops (two diagonal entries) or one loop and the edge between the vertices (one
diagonal entry and the off-diagonal entry). Either way, the cycle is of odd length.

We now turn to the combinatorial characterization of global completion for Gram
matrices in one dimension. Note that the inner products accessible to the analyst are
simply products of the form pipj = Jij for (i, j) ∈ E. Taking the logarithm of the
modulus gives the linear system

(5.2) qi + qj = log |Jij |, (i, j) ∈ E,

where qi = log |pi|. This linear system has much resemblance with the linear system
(3.5) of CG(p)ṗ = 0. Indeed, by substituting p1 = p2 = · · · = pn = 1 in CG(p) the
two coefficient matrices of (3.5) and (5.2) are the same. The only difference between
the systems is that (5.2) is nonhomogenous. Therefore, by following the steps of the
proof of Proposition 5.3 it follows that if G is minimally locally completable, then
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the system (5.2) has a unique solution. That is, if each connected component of
G is a tree plus one edge that forms an odd cycle, then all the |pi|’s are uniquely
determined. This leaves only the signs of the p′is undetermined. Clearly, if G has
more than one connected component, then the relative sign between coordinates of
different components cannot be determined. Therefore, a globally completable graph
must be connected. On the other hand, if G is a single tree plus an edge that forms an
odd cycle, then by similar considerations all bit signs bi = (1− sign pi)/2 ∈ {0, 1} are
determined up to overall negation (reflection), because they satisfy a similar linear
system over Z2:

(5.3) bi ⊕ bj = (1− sign(Jij))/2, (i, j) ∈ E.

This is summarized in the following proposition.
Proposition 5.4. A graph is minimally Gram globally completable in one di-

mension iff it is a tree plus an edge that forms an odd cycle.
We now give the combinatorial characterization of local and global completion

for the case of general rectangular rank-1 matrices. The proofs are very similar to the
Gram case and are therefore omitted. The only differences are the number of degrees
of freedom (d2 instead of d(d − 1)/2, which for d = 1 are 1 and 0, respectively) and
the fact that the underlying graph is bipartite.

Proposition 5.5. A rectangular graph is minimally locally completable in one
dimension iff it is a forest (a disjoint union of trees, or equivalently, a (1, 1)-tight
sparse bipartite graph).

Proposition 5.6. A rectangular graph is minimally globally completable in one
dimension iff it is a tree.

We note that the conditions for local and global completion in one dimension
are much weaker than the condition for local and global rigidity in one dimension,
which are connectedness and 2-connectedness, respectively. Laman theorem for two-
dimensional rigidity leads us to speculate that the combinatorial characterization of
Gram and rectangular rank-2 matrices will perhaps involve (2, 1)-sparse graphs and
bipartite (2, 4)-sparse graphs. However, we currently postpone the investigation of
this interesting question.

6. Numerical simulations. To illustrate the applicability of the above algo-
rithms for testing low-rank matrix completion in practice, we present the outcomes
of several numerical experiments for both Gram and general rectangular rank-d ma-
trices. Let us first investigate the case when J is a Gram matrix of size n × n.
We apply the local completion Algorithm 1 to test the local completion property of
random graphs where each edge (including self-loops) is chosen independently with
probability β, such that the expected number of edges is E[m] =

(
n+1
2

)
β. The con-

ditional probability f(n, d, β) for an n × n rank-d Gram matrix to be locally com-
pletable,

(6.1) f(n, d, β) = Pr{G is Gram n× n rank-d locally completable |β},

is a monotonic function of β. We define the threshold value β∗(n, d) as the value of
β for which f(n, d, β∗) = 1/2. The theoretical bound of Candès and Recht [7] implies
β∗(n, d) ∼ C(d)n−0.8 logn (CR), while that of Keshavan, Oh, and Montanari [25, 24]
gives β∗(n, d) ∼ C(d)n−1 logn (KOM) for large n.

We now describe the numerical simulation and estimation procedure for the
threshold values. The goal is to infer the asymptotic behavior of β∗(n, d) for large
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Fig. 6.1. Local and global completion of rank-d Gram matrices (left) and rectangular matrices
(right): The threshold β∗ as a function of d and n for d = 2, 3, 4.

values of n. For small values of n the running time of the completion Algorithm 1
is not an issue, and it is possible to perform an exhaustive search for the threshold
value. However, for large values of n (e.g., n = 20, 000) an exhaustive search is too
time-consuming.

The way we choose to accelerate the search is by using logistic regression. Sup-
pose that after the (i− 1)th iteration we were able to estimate the threshold value for
ni−1×ni−1 matrices, and now we want to find the threshold for larger matrices of size
ni×ni with ni > ni−1. From the previous threshold estimate β∗(ni−1, d) we can easily
guess a reasonable upper bound βu

i such that with probability one β∗(ni, d) ≤ βu
i (e.g.,

βu
i = β∗(ni−1, d), because β∗ is decreasing with n). Starting from the upper bound

β = βu
i we decrease β in small steps until we encounter enough matrices that are not

completable anymore (say, until we observe 20 consecutive noncompletable matrices).
This gives us a rough confidence interval for β∗. We then subsample this interval to get
a more accurate estimation of the threshold value by collecting more β’s and their cor-
responding binary responses y ∈ {0, 1}, where y = 1 if the matrix is completable and
y = 0 otherwise. We perform a binomial logistic regression in order to estimate numer-
ically the approximate value of β∗. Logistic regression is a model frequently used in
statistics for prediction of the probability of occurrence of an event, by fitting data to
a logistic curve. The logistic function f(β) models the conditional probability (6.1) by

Pr{y = 1|β} ≈ f(β) =
1

1 + e−α∗(β−β∗) ,

where β∗ and α∗ are parameters to be estimated from the set of samples of the ex-
planatory variable β and the corresponding binary responses y. We typically used a
total of about 120 (β, y) sample pairs for the logistic regression (80 samples to find
the lower bound, and another 40 samples to improve the confidence intervals for the
estimate). We performed similar searches and logistic regressions to find the threshold
value for the sufficient condition for global completion of Gram matrices, as well as
local and sufficient conditions for global completion of rectangular matrices.

Figure 6.1 is a log-log plot of the threshold β∗ against n, for rank-d Gram matrices
(left) and rectangular matrices (right), with d = 2, 3, 4. For “rectangular” matrices
we chose for simplicity n1 = n2 = n and run Algorithm 4 with l = 1. The dotted
curves that appear in green are the CR bounds, the blue dashed curves represent global
completion, while the remaining three curves denote local completion. It is interesting
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to note that both in the Gram case and in the rectangular case, the global completion
curves for dimension d coincide with the local completion curves for dimension d +
1. This can perhaps be explained by the following theorem of Gortler, Healy, and
Thurston [17, Theorem 1.17]: If a graph is generically locally rigid but not generically
globally rigid in R

d, then any generic framework can be connected to an incongruent
framework by a path of frameworks in R

d+1 with constant edge lengths. For example,
the graph on four vertices with all possible edges except for one (K4 minus an edge)
is locally rigid in R

2 but is not globally rigid in R
2. This graph can be realized as two

triangles with a common side and has two possible realizations in the plane. Though
it is impossible to continuously deform the framework in the plane, it is possible to
continuously deform it by leaving the plane in the three-dimensional space by folding
one triangle on top of the other. We may expect a similar phenomenon in the matrix
completion problem: If a graph is not globally rank-d completable, then it is not
locally rank-(d+ 1) completable.

Both the CR and the KOM bounds can be written as β∗ ∼ C(d)nα logn or upon
taking the logarithm as log β∗ ∼ α logn+log logn+logC(d). We therefore performed
a simple linear regression in the Gram case with d = 2 of the form log β∗(n) =
a1 logn+ a2 log logn+ a3 to estimate a1, a2, a3 (see Table 6.1). For local completion,
the sampled n take values up to 100,000 while for global completion up to 15,000, in
a geometric progression of rate 1.08. The coefficient a2 may be expected to be 1 (the
coupon collector problem), and Theorem 2.6 for planar rigidity [21] may even shed
light on the higher order corrections. The results for different rank values d = 2, 3, 4
are summarized in Table 6.2. These results may be considered as numerical evidence
for the success of the KOM theoretical bound C(d)n logn. The slight deviation of
a1+2 from unity can be explained by the small bias introduced by the small n values.

The asymptotic behavior β∗ ∼ C(d)dn−1 logn implies that β∗n
d logn tends to a

constant as n → ∞. Figure 6.2 shows β∗n
d log n against logn for different values of d

in the Gram case (left) and in the rectangular matrix case (right) from which the
asymptotic behavior is clear.

Finally, in Tables 6.3 and 6.4 we list the running times in seconds for several of the
numerical simulations. All computations were performed on a PC machine equipped

Table 6.1

Linear regression for local (left column) and global (right column) rank-2 Gram completion:
log β∗ = a1 logn+ a2 log logn+ a3.

Local completion Global completion
Value 95% -conf. interval Value 95% conf. interval

a1 + 2 1.022 [0.99842, 1.0456] 0.99066 [0.94206 1.0393]
a2 0.63052 [0.43626, 0.8247] 0.79519 [0.43446 1.1559]
a3 0.90663 [0.69405, 1.1192] 0.99899 [0.6394 1.3586]
a1 + 2 0.9773 [0.9748 0.9797] 0.9631 [0.95959 0.96668]
a2 = 1 — — — —
a3 0.5039 [0.48295 0.5250] 0.7954 [0.76823 0.82258]

Table 6.2

Linear regression for local Gram completion for d = 2, 3, 4.

d (a1 + 2,a2,a3) (a1 + 2,1,a3)

2 (1.022, 0.63052, 0.90663) (0.9773, 1, 0.5039)
3 (1.0423, 0.40053, 1.394) (0.9636, 1, 0.78538)
4 (1.0382, 0.35039, 1.6725) (0.95289, 1, 1.013)
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Fig. 6.2. A plot of β∗n
d logn

vs. logn for Gram matrices (left) and rectangular matrices (right).

For large values of n we expect β∗n
d log n

to go to the constant C(d) of the KOM bound.

with an Intel(R) Core(TM)2 Duo CPU 3.16GHz with 4 GB RAM. The matrices we
considered were general “rectangular” n-by-n matrices of rank 2. We list the running
times for different values of β = m

n2 as a function of β∗, where m denotes the number
of given entries in the matrix. The algorithm often runs faster as m (alternatively,
β) increases, because the iterative LSQR method converges after a fewer number of
iterations. Note that the values β = 0.75β∗ in the first column in Table 6.3 produce
matrices that are not locally completable. Similarly, in Table 6.4, all values in the
first column were chosen such that the matrix is locally completable, but not globally
completable. In both tables, all the values β = 2β∗ produce matrices that are locally
(and globally) completable. We do this to better illustrate the time difference between

Table 6.3

Running time T (in seconds) in the case of local completion of general n-by-n rectangular
matrices of rank d = 2, for various values of m (number of entries revealed).

n β m T β m T β m T

101 0.75β∗ 598 0.07 β∗ 796 0.05 2β∗ 1592 0.06
498 0.75β∗ 3596 0.24 β∗ 4795 0.32 2β∗ 9590 0.25
1002 0.75β∗ 7792 0.75 β∗ 10390 0.85 2β∗ 20781 0.72
2533 0.75β∗ 21591 2.6 β∗ 28788 2.3 2β∗ 57575 2
5068 0.75β∗ 45982 10.9 β∗ 61309 7.3 2β∗ 122620 10.7
10133 0.75β∗ 99140 28.6 β∗ 132190 12 2β∗ 264370 18.2

Table 6.4

Running time T (in seconds) in the case of global completion of general n-by-n rectangular
matrices of rank d = 2, for various values of m (number of entries revealed).

n β m T β m T β m T

101 0.8β∗ 800 0.17 β∗ 999 0.14 2β∗ 1998 0.14
498 0.8β∗ 4638 1.3 β∗ 5797 0.9 2β∗ 11595 0.88
1002 0.9β∗ 11539 2.2 β∗ 12821 3.1 2β∗ 25642 2.3
2533 0.9β∗ 31078 12 β∗ 34531 10.1 2β∗ 69063 16.1
5068 0.91β∗ 69020 45.2 β∗ 75847 43 2β∗ 151690 59.4
10133 0.92β∗ 143790 179 β∗ 156280 180 2β∗ 312590 288
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the case when the LSQR method converges after a certain relatively small number of
iterations, as opposed to when the residual cannot be made smaller than the threshold.

7. Summary and discussion. In this paper we made the observation that
the rank-d matrix completion problem is tightly related to rigidity theory in R

d,
with inner products replacing the role of distances. Many of the results in rigidity
theory, both classical and recent, give new insights into the completion problem. In
particular, we introduced the completion matrix that enables fast determination of the
generic local completion property of a partially viewed matrix into a rank-d matrix.
We used stresses to conjecture sufficient conditions for generic global completion.
Our algorithms help to determine whether a unique completion is possible without
attempting to complete the entries of the matrix.

Most of the results in rigidity theory translate nicely into the completion setup.
However, occasional differences between completion and rigidity lead to interesting
difficulties and questions, such as what is the generalization of Laman’s theorem to the
completion case and what are the necessary conditions for global completion. Finally,
we note that beyond its mathematical importance, rigidity theory is useful in diverse
applications such as scene analysis and localization of sensor networks, and some of
the recent localization algorithms based on rigidity [32, 38] can be easily adjusted to
the inner products completion setup.
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