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Abstract

Many statistical learning problems have recently been shown to be amenable to Semi-Definite Pro-
gramming (SDP), with community detection and clustering in Gaussian mixture models as the most
striking instances [60]. Given the growing range of applications of SDP-based techniques to machine
learning problems, and the rapid progress in the design of efficient algorithms for solving SDPs, an
intriguing question is to understand how the recent advances from empirical process theory can be put
to work in order to provide a precise statistical analysis of SDP estimators.

In the present paper, we borrow cutting edge techniques and concepts from the learning theory liter-
ature, such as fixed point equations and excess risk curvature arguments, which yield general estimation
and prediction results for a wide class of SDP estimators. From this perspective, we revisit some clas-
sical results in community detection from [54] and [23], and we obtain statistical guarantees for SDP
estimators used in signed clustering, group synchronization and MAXCUT.
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1 Introduction

Many statistical learning problems have recently been shown to be amenable to Semi-Definite Programming
(SDP), with community detection and clustering in Gaussian mixture models as the most striking instances
where SDP performs significantly better than other current approaches [60]. SDP is a class of convex
optimisation problems generalising linear programming to linear problems over semi-definite matrices [94],
[107], [21], and which proved an important tool in the computational approach to difficult challenges in
automatic control, combinatorial optimisation, polynomial optimisation, data mining, high dimensional
statistics and the numerical solution to partial differential equations. The goal of the present paper is to
introduce a new fixed point approach to the statistical analysis of SDP-based estimators and illustrate our
method on four current problems of interest, namely MAX-CUT, community detection, signed clustering,
angular group synchronization. The rest of this section gives some historical background and presents the
mathematical definition of SDP based estimators.

1.1 Historical background

SDP is a class of optimisation problems which includes linear programming as a particular case and can
be written as the set of problems over symmetric (resp. Hermitian) positive semi-definite matrix variables,
with linear cost function and affine constraints, i.e. optimization problems of the form

max
Zľ0

`〈
A,Z

〉
:
〈
Bj , Z

〉
“ bj for j “ 1, . . . ,m

˘

(1.1)
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where A,B1, . . . , Bm are given matrices. SDPs are convex programming problems which can be solved in
polynomial time when the constraint set is compact and it plays a paramount role in a large number of
convex and nonconvex problems, for which it often appear as a convex relaxation [6].

We will sometimes use the notation Sn,` (resp. Sn,´) for the cone of positive semi-definite matrices
(resp. negative semi-definite matrices).

1.1.1 Early history

Early use of Semi-Definite programming to statistics can be traced back to [88] and [42]. In the same year,
Shapiro used SDP in factor analysis [89]. The study of the mathematical properties of SDP then gained
momentum with the introduction of Linear Matrix Inequalities (LMI) and their numerous applications in
control theory, system identification and signal processing. The book [20] is the standard reference of these
type of results, mostly obtained in the 90’s.

1.1.2 The Goemans-Williamson SDP relaxation of Max-Cut and its legacy

A notable turning point is the publication of [49] where SDP was shown to provide a 0.87 approximation to
the NP-Hard problem known as Max-Cut. The Max-Cut problem is a clustering problem on graphs which
consists in finding two complementary subsets S and Sc of nodes such that the sum of the weights of the
edges between S and Sc is maximal. In [49], the authors approach this difficult combinatorial problem by
using what is now known as the Goemans-Williamson SDP relaxation and use the Choleski factorization
of the optimal solution to this SDP in order to produce a randomized scheme achieving the .87 bound
in expectation. Moreover, this problem can be seen as a first instance where the Laplacian of a graph is
employed in order to provide an optimal bi-clustering in a graph and certainly represents the first chapter
of a long and fruitful relationship between clustering, embedding and Laplacians. Other SDP schemes for
approximating hard combinatorial problems are, to name a few, for the graph coloring problem [61], for
satisfiability problem [49, 48]. These results were later surveyed in [70, 47] and [106]. The randomized
scheme introduced by Goemans and Williamson was then further improved in order to study more general
Quadratically Constrained Quadratic Programmes (QCQP) in various references, most notably [79, 110]
and further extended in [56]. Many applications to signal processing are discussed in [81], [74]; one specific
reduced complexity implementation in the form of an eigenvalue minimisation problem and its application
to binary least-squares recovery and denoising is presented in [27].

1.1.3 Relaxation of machine learning and high dimensional statistical estimation problems

Applications of SDP to problems related with machine learning is more recent and probably started with
the SDP relaxation of K-means in [83, 82] and later in [5]. This approach was then further improved
using a refined statistical analysis by [87] and [46]. Similar methods have also been applied to community
detection [55, 3] and for the weak recovery viewpoint, [54]. This last approach was also re-used via the
kernel trick for the point cloud clustering [28]. Another incarnation of SDP in machine learning is the
extensive use of nuclear norm-penalized least-square costs as a surrogate for rank-penalization in low-rank
recovery problems such as matrix completion in recommender systems, matrix compressed sensing, natural
language processing and quantum state tomography; these topics are surveyed in [35].

The problem of manifold learning was also addressed using SDP and is often mentioned as one of the
most accurate approaches to the problem, let aside its computational complexity; see [103, 105, 104, 57].
Connections with the design of fast converging Markov-Chains were also exhibited in [93].

In a different direction, A. Singer and collaborators have recently promoted the use of SDP relaxation
for estimation under group invariance, an active area with many applications [92, 8]. SDP-based relaxations
have also been considered in [30] in the context of synchronization over Z2 in signed multiplex networks
with constraints, and [31] in the setting of ranking from inconsistent and incomplete pairwise comparisons
where an SDP-based relaxation of angular synchronization over SO(2) outperformed a suite of state-of-
the-art algorithms from the literature. Phase recovery using SDP was studied in e.g. [102] and [40]. An
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extension to multi-partite clustering based on SDP was then proposed in [61]. Other important applications
of SDP are, information theory [73], estimation in power networks [67], quantum tomography [77], [50]
and polynomial optimization via Sums-of-squares relaxations [66, 14]. Sums of squares relaxations were
recently applied to statistical problems in [38, 58, 39]. Extension to the field of complex numbers, with〈
¨, ¨
〉

denoting the Hermitian inner product, has been less extensively studied but has many interesting
applications and comes with efficient algorithms [49, 45].

1.2 Mathematical formulation of the problem

The general problem we want to study can be stated as follows. Let A be a random matrix in Rnˆn and
C Ă Rnˆn be a constraint. The object that we want to recover, for instance, the community membership
vector in community detection, is related to an oracle defined as

Z˚ P argmax
ZPC

〈
EA,Z

〉
(1.2)

where
〈
A,B

〉
“ TrpAB̄Jq “

ř

AijB̄ij when A,B P Cnˆn where z̄ is the conjugate of z P C. We would like
to estimate Z˚, from which we can ultimately retrieve the object that really matters to us (for instance,
by considering a singular vector associated to the largest singular value of Z˚). To that end, we consider
the following estimator

Ẑ P argmax
ZPC

〈
A,Z

〉
, (1.3)

which is simply obtained by replacing the unobserved quantity EA by the observation A.
As pointed out, in many situations, Z˚ is not the object we want to estimate, but there is a straight-

forward relation between Z˚ and this object. For instance, consider the community detection problem,
where the goal is to recover the class community vector x˚ P t´1, 1un of n nodes. Here, when C is well
chosen, there is a close relation between Z˚ and x˚, given by Z˚ “ x˚px˚qJ. We therefore need a final
step to estimate x˚ using Ẑ, for instance, by letting x̂ denote a top eigenvector of Ẑ, and then using the
Davis-Kahan ”sin-theta” Theorem [36, 108] to control the estimation of x˚ by x̂ from the one of Z˚ by Ẑ.

When the constraint C is of the form C “ tZ P Rnˆn : Z ľ 0,
〈
Z,Bj

〉
“ bj , j “ 1, . . . ,mu where

B1, . . . , Bm P Rnˆn and Z ľ 0 is notation for “ Z is positive semidefinite” then (1.3) is a semidefinite
programming (SDP) [21].

1.3 Goal of the paper

The aim of the present work is to present a general approach to the study of the statistical properties of
SDP-based estimators defined in (1.3). In particular, using our framework, one is able to obtain new (non-
asymptotic) rates of convergence or exact reconstruction properties for a wide class of estimators obtained
as a solution of a semidefinite program like (1.3). Specifically, our goal is to show that the solution to (1.3)
can be analyzed in a statistical way when EA is only partially and noisily observed in A. Even though the
constraint C may not necessarily be the intersection of the set of PSD (or Hermitian) matrices with linear
spaces – such as in the definition of SDP – in the following, a solution Ẑ of (1.3) will be called a SDP
estimator because in all our examples Ẑ will be solution of a SDP. But for the sake of generality we will only
assume only minimal requirement on the shape of C. We also illustrate our results on a number of specific
machine learning problems such as various forms of clustering problems and angular group synchronization.
Three out of the four examples worked out here are concerned with real-valued matrices. Only the angular
synchronization problem is approached using complex matrices.

2 Main general results for the statistical analysis of SDP estimators

From a statistical point of view, the task remains to estimate in the most efficient way the oracle Z˚, and
to that end Ẑ is our candidate estimator. The point of view we will use to evaluate how far Ẑ is from
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Z˚ is coming from the learning theory literature. We therefore see Ẑ as an empirical risk minimization
(ERM) procedure built on a single observation A, where the loss function is the linear one Z P C Ñ
`ZpAq “ ´

〈
A,Z

〉
, and the oracle Z˚ is indeed the one minimizing the risk function Z P C Ñ E`ZpAq over

C. Having this setup in mind, we can use all the machinery developed in learning theory (see for instance
[99, 63, 76, 97]) to obtain rates of convergence for the ERM (here Ẑ) toward the oracle (here Z˚).

There is one key quantity driving the rate of convergence of the ERM: a fixed point complexity param-
eter. This type of parameter carries all the statistical complexity of the problem, and even though it is
usually easy to set up, its computation can be tedious since it requires to control, with large probability,
the supremum of empirical processes indexed by “localized classes”. We now define this complexity fixed
point related to the problem we are considering here.

Definition 1. Let 0 ă ∆ ă 1. The fixed point complexity parameter at deviation 1´∆ is

r˚p∆q “ inf

¨

˝r ą 0 : P

»

– sup
ZPC:

〈
EA,Z˚´Z

〉
ďr

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr

fi

fl ě 1´∆

˛

‚. (2.1)

Fixed point complexity parameters have been extensively used in learning theory since the introduction
of the localization argument [76, 64, 97, 13]. When they can be computed, they are preferred to the
(global) analysis developed by Chervonenkis and Vapnik [99] to study ERM, since the latter analysis
always yields slower rates given that the Vapnik-Chervonenkis bound is a high probability bound on
the non-localized empirical process supZPC

〈
A ´ EA,Z ´ Z˚

〉
, which is an upper bound for r˚p∆q since

tZ P C :
〈
EA,Z˚ ´ Z

〉
ď ru Ă C. The gap between the two global and local analysis can be important

since fast rates cannot be obtained using the VC approach, whereas the localization argument resulting
in fixed points such as the one in Definition 1 may yield fast rates of convergence or even exact recovery
results.

An example of a Vapnik-Chervonenkis’s type of analysis of SDP estimators can be found in [54] for the
community detection problem. An improvement of the latter approach has been obtained in [41] thanks
to a localization argument – even though it is not stated in these words (we elaborate more on the two
approaches from [54, 41] in Section 3). Somehow, a fixed point such as (2.1) is a sharp way to measure
the statistical performances of ERM estimators and in particular for the SDP estimators that we are
considering here. They can even be proved to be optimal (in a minimax sense) when the noise A´ EA is
Gaussian [69] and under mild conditions on the structure of C.

Before stating our general result, we first recall a definition of a minimal structural assumption on the
constraint C.

Definition 2. We say that the set C is star-shaped in Z˚ when for all Z P C, the segment rZ,Z˚s is in C.

This is a pretty mild assumption satisfied, for instance, when C is convex, which is the setup we
will always encounter in practical applications, given that SDP estimators are usually introduced after a
“convex relaxation” argument. Our main general statistical bound on SDP estimators is as follows.

Theorem 1. We assume that the constraint C is star-shaped in Z˚. Then, for all 0 ă ∆ ă 1, with
probability at least 1´∆, it holds true that

〈
EA,Z˚ ´ Ẑ

〉
ď r˚p∆q.

Theorem 1 applies to any type of setup where an oracle Z˚ is estimated by an estimator Ẑ such as in
(1.3). Its result shows that Ẑ is almost a maximizer of the true objective function Z Ñ

〈
EA,Z

〉
over C up

to r˚p∆q. In particular, when r˚p∆q “ 0, Ẑ is exactly a maximizer such as Z˚ and, in that case, we can
work with Ẑ as if we were working with Z˚ without any loss.

Theorem 1 may be applied in many different settings; in the following, we study four such instances.
We will apply Theorem 1 (or one of its corollary stated below) to some popular problems in the networks
and graph signal processing literatures, namely, community detection [43] (we will mostly revisit the results
in [54] and [41] from our perspective), signed clustering [32], group synchronization [90] and MAX-CUT.
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The proof of Theorem 1 is straightforward (mostly because the loss function is linear). Its importance
stems from the fact that it puts forward two important concepts originally introduced in Learning Theory,
namely that the complexity of the problem comes from the one of the local subset CXtZ :

〈
EA,Z˚´Z

〉
ď

r˚p∆qu and that the “radius” r˚p∆q of the localization is solution of a fixed point equation. For a setup
given by a random matrix A and a constraint C, we should try to understand how these two ideas apply
to obtain estimation properties of SDP estimators such as Ẑ. That is to understand the shape of the
local subsets C X tZ :

〈
EA,Z˚ ´ Z

〉
ď ru, r ą 0 and the maximal oscillations of the empirical process

Z Ñ
〈
A´EA,Z´Z˚

〉
indexed by these local subsets. We will consider this task in three distinct problem

instances. We now provide a proof for Theorem 1.
Proof of Theorem 1. Denote r˚ “ r˚p∆q. Assume first that r˚ ą 0 (the case r˚ “ 0 is analyzed

later). Let Ω˚ be the event onto which for all Z P C if
〈
EA,Z˚´Z

〉
ď r˚ then

〈
A´EA,Z´Z˚

〉
ď p1{2qr˚.

By Definition of r˚, we have PrΩ˚s ě 1´∆.
Let Z P C be such that

〈
EA,Z˚´Z

〉
ą r˚ and define Z 1 such that Z 1´Z˚ “

`

r˚{
〈
EA,Z˚ ´ Z

〉˘
pZ´Z˚q.

We have
〈
EA,Z˚ ´ Z 1

〉
“ r˚ and Z 1 P C because C is star-shaped in Z˚. Therefore, on the event Ω˚,〈

A´ EA,Z 1 ´ Z˚
〉
ď p1{2qr˚ and so

〈
A´ EA,Z ´ Z˚

〉
ď p1{2q

〈
EA,Z˚ ´ Z

〉
. It therefore follows that on

the event Ω˚, if Z P C is such that
〈
EA,Z˚ ´ Z

〉
ą r˚ then〈

A,Z ´ Z˚
〉
ď p´1{2q

〈
EA,Z˚ ´ Z

〉
ă ´r˚{2

which implies that
〈
A,Z ´ Z˚

〉
ă 0 and therefore Z does not maximize Z Ñ

〈
A,Z

〉
over C. As a

consequence, we necessarily have
〈
EA,Z˚´ Ẑ

〉
ď r˚ on the event Ω˚ (which holds with probability at least

1´∆).
Let us now assume that r˚ “ 0. There exists a decreasing sequence prnqn of positive real numbers

tending to r˚ “ 0 such that for all n ě 0, PrΩns ě 1´∆ where Ωn is the event Ωn “ tψprnq ď θ{2u where
for all r ą 0,

ψprq “
1

r
sup

ZPC:
〈
EA,Z˚´Z

〉
ďr

〈
A´ EA,Z ´ Z˚

〉
.

Since C is star-shapped in Z˚, ψ is a non-increasing function and so pΩnqn is a decreasing sequence (i.e.
Ωn`1 Ă Ωn for all n ě 0). It follows that PrXnΩns “ limn PrΩns ě 1 ´∆. Let us now place ourselves on
the event XnΩn. For all n, since Ωn holds and rn ą 0, we can use the same argument as in first case to
conclude that

〈
EA,Z˚ ´ Ẑ

〉
ď rn. Since the latter inequality is true for all n (on the event XnΩn) and

prnqn tends to zero, we conclude that
〈
EA,Z˚ ´ Ẑ

〉
ď 0 “ r˚.

The main conclusion of Theorem 1 is that all the information for the problem of estimating Z˚ via Ẑ
is contained in the fixed point r˚p∆q. We therefore have to compute or upper bound such a fixed point.
This might be difficult in great generality but there are some tools that can help to find upper bounds on
r˚p∆q.

A first approach is to understand the shape of the local sets C X tZ :
〈
EA,Z˚ ´ Z

〉
ď ru, r ą 0 and

to that end it is helpful to characterize the curvature of the excess risk Z Ñ
〈
EA,Z˚ ´ Z

〉
around its

maximizer Z˚. This type of local characterization of the excess risk is also a tool used in Learning theory
that goes back to classical conditions such as the Margin assumption [96, 75] or the Bernstein condition [11].
The latter condition was initially introduced as an upper bound of the variance term by its expectation:
for all Z P C, Ep`ApZq ´ `ApZ

˚qq2 ď c0Ep`ApZq ´ `ApZ
˚qq for some absolute constant c0, but it has now

been better understood as a way to discriminate the oracle from the other points in the model C. These
assumptions were global assumption in the sense that they concern all Z in C. It has been recently shown
[26] that only the local curvature of the excess risk needs to be understood. We now introduce this tool in
our setup.

We characterize the local curvature of the excess risk by some function G : Rnˆn Ñ R. Most of the
time the G function is a norm like the `1-norm or a power of a norm such as the `2 norm to the square.
The radius defining the local subset onto which we need to understand the curvature of the excess risk is
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also solution of a fixed point equation:

r˚Gp∆q “ inf

˜

r ą 0 : P

«

sup
ZPC:GpZ˚´Zqďr

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr

ff

ě 1´∆

¸

. (2.2)

The difference between the two fixed points r˚p∆q and r˚Gp∆q is that the local subsets are not defined using
the same proximity function to the oracle Z˚; the first one uses the excess risk as a proximity function
while the second one uses the G function as a proximity function. The G function should play the role of
a simple description of the curvature of the excess risk function locally around Z˚; that is formalized in
the next assumption.

Assumption 1. For all Z P C, if
〈
EA,Z˚ ´ Z

〉
ď r˚Gp∆q then

〈
EA,Z˚ ´ Z

〉
ě GpZ˚ ´ Zq.

Typical examples of curvature function G will have the form GpZ˚ ´ Zq “ θ }Z˚ ´ Z}κ for some
κ ě 1, θ ą 0 and some norm }¨}. In that case, the parameter κ was initially called the margin parameter
[95, 75]. Even though the relation given in Assumption 1 has been typically referred to as a margin
condition or Bernstein condition in the learning theory literature, we will rather call it a local curvature
assumption, following [54] and [26], since this type of relation describes the behavior of the risk function
locally around its oracle. The main advantage for finding a local curvature function G is that r˚Gp∆q
should be easier to compute than r˚p∆q and r˚p∆q ď r˚Gp∆q because of the definition of r˚Gp∆q and
tZ P C :

〈
EA,Z˚ ´ Z

〉
ď r˚Gp∆qu Ă tZ P C : GpZ˚ ´ Zq ď r˚Gp∆qu (thanks to Assumption 1). We can

therefore state the following corollary.

Corollary 1. We assume that the constraint C is star-shaped in Z˚ and that the “local curvature” As-
sumption 1 holds for some 0 ă ∆ ă 1. With probability at least 1´∆, it holds true that

r˚Gp∆q ě
〈
EA,Z˚ ´ Ẑ

〉
ě GpZ˚ ´ Ẑq.

When it is possible to describe the local curvature of the excess risk around its oracle by some G
function and when some estimate of r˚Gp∆q can be obtained, Corollary 1 applies and estimation results of

Z˚ by Ẑ (w.r.t. to both the ”excess risk” metric
〈
EA,Z˚ ´ Ẑ

〉
and the G metric) follow. If not, either

because understanding the local curvature of the excess risk or the computation of r˚Gp∆q is difficult, it is
still possible to apply Theorem 1 with the global VC approach which boils down to simply upper bound
the fixed point r˚p∆q used in Theorem 1 by a global parameter that is a complexity measure of the entire
set C:

r˚p∆q ď inf

ˆ

r ą 0 : P
„

sup
ZPC

〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr



ě 1´∆

˙

. (2.3)

Interestingly, if the latter last resort approach is used then, following the approach form [54], Grothendieck’s
inequality [51, 85] appears to be a powerful tool to upper bound the right-hand side of (2.3) in the case of
the community detection problem such as in [53] as well as in the MAX-CUT problem. Of course, when it
is possible to avoid this ultimate global approach one has to do it because the local approach will always
provide better results.

Finally, proving a “local curvature” property such as in Assumption 1 may be difficult because it
requires to understand the shape of the local subsets C X tZ :

〈
EA,Z˚ ´ Z

〉
ď ru, r ą 0. It is however

possible to simplify this assumption if getting estimation results of Z˚ only w.r.t. the G function (and not
necessarily an upper bound on the excess risk

〈
EA,Z˚ ´ Ẑ

〉
) is enough. In that case, Assumption 1 may

be replaced by the following one.

Assumption 2. For all Z P C, if GpZ˚ ´ Zq ď r˚Gp∆q then
〈
EA,Z˚ ´ Z

〉
ě GpZ˚ ´ Zq.

Assumption 2 assumes a curvature of the excess risk function in a G neighborhood of Z˚ unlike As-
sumption 1 which grants this curvature in an “ excess risk neighborhood”. The shape of a neighborhood
defined by the G function may be easier to understand (for instance when G is a norm, a neighborhood
defined by G is the ball of a norm centered at Z˚ with radius r˚Gp∆q). In general, the latter assumption

and Assumption 1 do not compare. If Assumption 2 holds then Ẑ can estimate Z˚ w.r.t. the G function.
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Theorem 2. We assume that the constraint C is star-shaped in Z˚ and that the “local curvature” As-
sumption 2 holds for some 0 ă ∆ ă 1. We assume that the G function is continuous, Gp0q “ 0 and
GpλpZ˚ ´ Zqq ď λGpZ˚ ´ Zq for all λ P r0, 1s, Z P Z˚ ´ C. With probability at least 1 ´∆, it holds true
that GpZ˚ ´ Ẑq ď r˚Gp∆q.

Proof of Theorem 2. Let r˚ “ r˚Gp∆q. First assume that r˚ ą 0. Let Z P C be such that
GpZ˚ ´ Zq ą r˚. Let f : λ P r0, 1s Ñ GpλpZ˚ ´ Zqq. We have fp0q “ Gp0q “ 0, fp1q “ GpZ˚ ´ Zq ą r˚

and f is continuous. Therefore, there exists λ0 P p0, 1q such that fpλ0q “ r˚. We let Z 1 be such that
Z 1 ´ Z˚ “ λ0pZ ´ Z˚q. Since C is star-shapped in Z˚ and λ0 P r0, 1s we have Z 1 P C. Moreover,
GpZ˚ ´ Z 1q “ r˚. As a consequence, on the event Ω˚ such that for all Z P C if GpZ˚ ´ Zq ď r˚ then〈
A´ EA,Z ´ Z˚

〉
ď p1{2qr˚, we have

〈
A´ EA,Z 1 ´ Z˚

〉
ď p1{2qr˚. The latter and Assumption 2 imply

that, on Ω˚,

p1{2qr˚ ě
〈
A,Z 1 ´ Z˚

〉
`
〈
EA,Z˚ ´ Z 1

〉
ě

〈
A,Z 1 ´ Z˚

〉
`GpZ˚ ´ Z 1q ě

〈
A,Z 1 ´ Z˚

〉
` r˚

and so
〈
A,Z 1 ´ Z˚

〉
ď ´r˚{2. Finally, using the definition of Z 1, we obtain〈

A,Z ´ Z˚
〉
“ p1{λ0q

〈
A,Z 1 ´ Z˚

〉
ď ´r˚{p2λ0q ă 0.

In particular, Z cannot be a maximizer of Z Ñ
〈
A,Z

〉
over C and so necessarily, on the event Ω˚,

GpZ˚ ´ Ẑq ď r˚.
Let us now consider the case where r˚ “ 0. Using the same approach as in the proof of Theorem 1, we

only have to check that the function

ψ : r ą 0 Ñ
1

r
sup

ZPC:GpZ˚´Zqďr

〈
A´ EA,Z ´ Z˚

〉
is non-increasing. Let 0 ă r1 ă r2. W.l.o.g. we may assume that there exists some Z2 P C such that
GpZ˚´Z2q ď r2 and ψpr2q “

〈
A´EA,Z2´Z

˚
〉
{r2. If GpZ˚´Z2q ď r1 then ψpr2q ď pr1{r2qψpr1q ď ψpr1q.

If GpZ˚´Z2q ą r1 then there exists λ0 P p0, 1q such that for Z1 “ Z˚`λ0pZ2´Z
˚q we have GpZ˚´Z1q “ r1

and Z1 P C. Moreover, r1 “ Gpλ0pZ
˚ ´ Z2qq ď λ0GpZ

˚ ´ Z2q ď λ0r2 and so λ0 ě r1{r2. It follows that

ψpr2q “
1

r2

〈
A´ EA,Z2 ´ Z

˚
〉
“

1

λ0r2

〈
A´ EA,Z1 ´ Z

˚
〉
ď

r1

λ0r2
ψpr1q ď ψpr1q

where we used that ψprq ą 0 for all r ą 0 because Z˚ P tZ P C : GpZ˚ ´ Zq ď ru for all r ą 0.

As a consequence, Theorem 1, Corollary 1 and Theorem 2 are the three tools at our disposal to study
the performance of SDP estimators depending on the deepness of understanding we have on the problem.
The best approach is given by Theorem 1 when it is possible to compute efficiently the complexity fixed
point r˚p∆q. If the latter approach is too complicated (likely because understanding the geometry of the
local subset C X tZ :

〈
EA,Z˚ ´ Z

〉
ď ru, r ą 0 may be difficult) then one may resort to find a curvature

function G of the excess risk locally around Z˚. In that case, both Corollary 1 and Theorem 2 may apply
depending on the hardness to find a local curvature function G on an “excess risk neighborhood” (see
Assumption 1) or a “G-neighborhood” (see Assumption 2). Finally, if no local approach can be handled
(likely because describing the curvature of the excess risk in any neighborhood of Z˚ or controlling the
maximal oscillations of the empirical process Z Ñ

〈
EA ´ A,Z˚ ´ Z

〉
locally are too difficult) then one

may resort ultimately to a global approach which follows from Theorem 1 as explained in (2.3). In the
following, we will use these tools for various problems.

Results like Theorem 1, Corollary 1 and Theorem 2 appeared in many papers on ERM in learning
theory such as in [64, 11, 76, 69]. In all these results, typical loss functions such as the quadratic or logistic
loss functions were not linear one such as the one we are using here. From that point of view our problem
is easier and this can be seen by the simplicity to prove our three general results from this section. What is
much more complicated here than in other more classical problems in Learning Theory is the computation
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of the fixed point because 1) the stochastic processes Z Ñ
〈
A ´ EA,Z ´ Z˚

〉
may be far from being a

Gaussian process if the noise matrix A´EA is complicated and 2) the local sets tZ P C :
〈
EA,Z˚´Z

〉
ď ru

or tZ P C : GpZ˚ ´ Zq ď ru for r ą 0 maybe very hard to describe in a simple way. Fortunately, we will
rely on several previous papers such as [41] to solve such problems.

3 Revisiting two results from the community detection literature [41,
54]

The rapid growth of social networks on the Internet has lead many statisticians and computer scientists
to focus their research on data coming from graphs. One important topic that has attracted particular
interest during the last decades is that of community detection [43, 86], where the goal is to recover
mesoscopic structures in a network, the so-called called communities. A community consists of group of
nodes that are relatively densely connected to each other, but sparsely connected to other dense groups
present within the network. The motivation for this line of work stems not only from the fact that finding
communities in a network is an interesting and challenging problem of its own as it leads to understanding
structural properties of networks, but community detection is also used as a data pre-processing step for
other statistical inference tasks on large graphs, as it facilitates parallelization and allows one to distribute
time consuming processes on several smaller subgraphs (i.e., the extracted communities).

One challenging aspect of the community detection problem arises in the setting of sparse graphs.
Many of the existing algorithms, which enjoy theoretical guarantees, do so in the relatively dense regime
for the edge sampling probability, where the expected average degree is of the order Θplog nq. The prob-
lem becomes challenging in very sparse graphs with bounded average degree. To this end, Guédon and
Vershynin proposed a semidefinite relaxation for a discrete optimization problem [54], an instance of which
encompasses the community detection problem, and showed that it can recover a solution with any given
relative accuracy even in the setting of very sparse graphs with average degree of order Op1q.

A subset of the existing literature for community detection and clustering relies on spectral methods,
which consider the adjacency matrix associated to a graph, and employ its eigenvalues, and especially
eigenvectors, in the analysis process or to propose efficient algorithms to solve the task at hand. Along
these lines, Can et al. [68] proposed a general framework for optimizing a general function of the graph
adjacency matrix over discrete label assignments by projecting onto a low-dimensional subspace spanned
by vectors that approximate the top eigenvectors of the expected adjacency matrix. The authors consider
the problem of community detection with k “ 2 communities, which they frame as an instance of their
proposed framework, combined with a regularization step that shifts each entry in the adjacency matrix
by a small constant τ , which renders their methodology applicable in the sparse regime as well.

In the remainder of this section, we focus on the community detection problem on random graphs under
the general stochastic block model. We will mostly revisit the work in [54] and [41] from the perspective
given by Theorem 1, which simplifies the proof in [41] since the peeling argument is no longer required, and
neither is the upper bound from [54] unlike [41], thanks to the homogeneity argument hidden in Theorem 1
(which underlies the localization argument).

We first recall the definition of the generalized stochastic block model (SBM). We consider a set of
vertices V “ t1, ¨ ¨ ¨ , nu, and assume it is partitioned into K communities C1, ¨ ¨ ¨ , CK of arbitrary sizes
|C1| “ l1, ¨ ¨ ¨ , |CK | “ lK .

Definition 3. For any pair of nodes i, j P V , we denote by i „ j when i and j belong to the same
community (i.e., there exists k P t1, . . . ,Ku) such that i, j P Ck), and we denote by i  j if i and j do not
belong to the same community.

For each pair pi, jq of nodes from V , we draw an edge between i and j with a fixed probability pij
independently from the other edges. We assume that there exist numbers p and q satisfying 0 ă q ă p ă 1,
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such that
$

&

%

pij ą p, if i „ j and i ‰ j,
pij “ 1, if i “ j,
pij ă q, otherwise.

(3.1)

We denote by A “ pAi,jq1ďi,j,ďn the observed symmetric adjacency matrix, such that, for all 1 ď i ď j ď n,
Aij is distributed according to a Bernoulli of parameter pij . The community structure of such a graph is
captured by the membership matrix Z̄ P Rnˆn, defined by Z̄ij “ 1 if i „ j, and Z̄ij “ 0 otherwise. The
main goal in community detection is to reconstruct Z̄ from the observation A.

Spectral methods for community detection are very popular in the literature [54, 41, 100, 15, 29]. There
are many ways to introduce such methods, one of which being via convex relaxations of certain graph cut
problems aiming to minimize a modularity function such as the RatioCut [80]. Such relaxations often lead
to SDP estimators, such as those introduced in Section 1.

Considering a random graph distributed according to the generalized stochastic block model, and its
associated adjacency matrix A (i.e. A “ AJ and Aij „ Bernppijq for 1 ď i ď j ď n and pij as defined in
(3.1)), we will estimate its membership matrix Z̄ via the following SDP estimator

Ẑ P argmax
ZPC

〈
A,Z

〉
,

where C “ tZ P Rnˆn, Z ľ 0, Z ě 0,diagpZq ĺ In,
řn
i,j“1 Zij ď λu and λ “

řn
i,j“1 Z̄ij “

řK
k“1 |Ck|2

denotes the number of nonzero elements in the membership matrix Z̄. The motivation for this approach
stems from the fact that the membership matrix Z̄ is actually the oracle, i.e., Z˚ “ Z̄ (see Lemma 7.1 in
[54] or Lemma 1 below), where

Z˚ P argmax
ZPC

〈
EA,Z

〉
.

Following the strategy from Theorem 1 and from our point of view, the upper bound on r˚p∆q from
[54] is the one that is based on the global approach – that is, without localization. Indeed, [54] uses the
observation that, for all r ą 0, it holds true that

sup
ZPC:

〈
EA,Z˚´Z

〉
ďr

〈
A´ EA,Z ´ Z˚

〉 paq
ď sup

ZPC

〈
A´ EA,Z ´ Z˚

〉 pbq
ď 2KG }A´ EA}cut , (3.2)

where }¨}cut is the cut-norm1 and KG is the Grothendieck constant (Grothendieck’s inequality is used in
(b), see [85, 100]). Therefore, the localization around the oracle Z˚ by the excess risk “band” B˚r :“
tZ :

〈
EA,Z˚ ´ Z

〉
ď ru is simply removed in inequality (a). As a consequence, the resulting statis-

tical bound is based on the complexity of the entire class C whereas, in a localized approach, only the
complexity of C X B˚r matters. Next step in the proof of [54] is a high probability upper bound on
}A´ EA}cut which follows from Bernstein’s inequality and a union bound since one has }A´ EA}cut “

maxx,yPt´1,1un
〈
A ´ EA, xyJ

〉
, then for all t ą 0, }A´ EA}cut ď tnpn ´ 1q{2 with probability at least

1 ´ exp
`

2n log 2´ pnpn´ 1qt2q{p16p̄` 8t{3q
˘

where p̄
def
“ 2{rnpn ´ 1qs

ř

iăj pijp1 ´ pijq. The resulting
upper bound on the fixed point obtained in [54] is,

r˚p∆q ď p8{3qKGp2n logp2q ` logp1{∆qq. (3.3)

Finally, under the assumption of Theorem 1 in [54] (i.e., for some some ε P p0, 1q, n ě 5.104{ε2, maxppp1´
pq, qp1 ´ qqq ě 20{n, p “ a{n ą b{n “ q and pa ´ bq2 ě 2.104ε´2pa ` bq), for ∆ “ e35´n we obtain (using
the general result in Theorem 1) with probability at least 1´∆, the bound

〈
EA,Z˚´ Ẑ

〉
ď r˚p∆q ď εn2 “

ε }Z˚}22, which is the result from Theorem 1 in [54]. Finally, [54] uses a (global) curvature property of the
excess risk in its Lemma 7.2:

1The cut-norm }¨}cut of a real matrix A “ paijqiPR,jPC with a set of rows indexed by R and a set of columns indexed by
C, is the maximum, over all I Ă R and J Ă C, of the quantity |

ř

iPI,jPJ aij |. It is also the operator norm of A from `8 to `1
and the “injective norm” in the orginal Grothendieck “résumé” [52, 85]
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Lemma 1 (Lemma 7.2 in [54]). For all Z P C,
〈
EA,Z˚ ´ Z

〉
ě rpp´ qq{2s }Z˚ ´ Z}1.

Therefore, a (global– that is for all Z P C) curvature assumption holds for a G function which is here the
`nˆn1 norm, a margin parameter κ “ 1 and θ “ pp ´ qq{2 for the community detection problem. However
this curvature property is not use to compute a “better” fixed point parameter but only to have a `nˆn1

estimation bound since

›

›

›
Ẑ ´ Z˚

›

›

›

1
ď

ˆ

2

p´ q

˙ 〈
EA,Z˚ ´ Ẑ

〉
ď

16KGp2n logp2q ` logp1{∆qq

3pp´ qq
.

The latter bound together with the sin-Theta theorem allow the authors from [54] to obtain estimation
bound for the community membership vector x˚.

The approach from [41] improves upon the one in [54] because it uses a localization argument: the
curvature property of the excess risk function from Lemma 1 is used to improve the upper bound in (3.3)
obtained following a global approach. Indeed, the authors from [41] obtain high probability upper bound
on the quantity

sup
ZPC:}Z˚´Z}1ďr

〈
A´ EA,Z ´ Z˚

〉
depending on r. This yields to exact reconstruction result in the “dense” case and exponentially decaying
rates of convergence in the “sparse” case. This is a typical example where the localization argument shows
its advantage upon the global approach. The price to pay is usually a more technical proof for the local
approach compare with the global one. However, the argument from [41] also uses an unnecessary peeling

argument together with an unnecessary a priori upper bound on
›

›

›
Ẑ ´ Z˚

›

›

›

1
(which is actually the one from

[54]). It appears that this peeling argument and this a priori upper bound on
›

›

›
Ẑ ´ Z˚

›

›

›

1
can be avoided

thanks to our approach from Theorem 1. This improves the probability estimate and simplifies the proofs
(since the result from [54] is not required anymore neither is the peeling argument). For the sign clustering
problem we consider below as an application of our main results, we will mostly adapt the probabilistic
tools from [41] (in the “dense” case) to the methodology associated with Theorem 1 (without this two
unnecessary arguments).

4 Contributions of the paper

4.1 Application to signed clustering

Much of the clustering literature, including both spectral and non-spectral methods, has focused on un-
signed graphs, where each edge carries a non-negative scalar weight that encodes a measure of affinity
(similarity, trust) between pairs of nodes. However, in numerous instances, the above-mentioned affinity
takes negative values, and encodes a measure of dissimilarity or distrust. Such applications arise in social
networks where users relationships denote trust-distrust or friendship-enmity, shopping bipartite networks
which capture like-dislike relationships between users and products [10], online news and review websites,
such as Epinions [1] and Slashdot [2], that allow users to approve or denounce others [71], and clustering
financial or economic time series data [4]. Such applications have spurred interest in the analysis of signed
networks, which has recently become an increasingly important research topic [72], with relevant lines of
work in the context of clustering signed networks including, in chronological order, [65, 24, 32].

The second application of our proposed methodology is an extension of the community detection and
clustering problems to the setting of signed graphs, where, for simplicity, we assume that an edge connecting
two nodes can take either ´1 or `1 values.
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4.1.1 A Signed Stochastic Block Model (SSBM)

We focus on the problem of clustering a K-weakly balanced graphs2. We consider a signed stochastic block
model (SSBM) similar to the one introduced in [32], where we are given a graph G with n nodes t1, . . . , nu
which are divided into K communities, tC1, ¨ ¨ ¨ , CKu, such that, in the noiseless setting, edges within each
community are positive and edges between communities are negative.

The only information available to the user is given by a nˆ n sparse adjacency matrix A constructed
as follows: A is symmetric, with Aii “ 1 for all i “ 1, . . . , n, and for all 1 ď i ă j ď n, Aij “ sijp2Bij ´ 1q
where

Bij „

"

Bernppq if i „ j
Bernpqq if i  j

and sij „ Bernpδq,

for some 0 ď q ă 1{2 ă p ď 1 and δ P p0, 1q. Moreover, all the variables Bij , sij for 1 ď i ă j ď n are
independent.

We remark that this SSBM model is similar to the one considered in [32], which was governed by
two parameters, the sampling probability δ as above, and the noise level η, which may flip entries of the
adjacency matrix.

Our aim is to recover the community membership matrix or cluster matrix Z̄ “ pZ̄ijqnˆnwhere Z̄ij “ 1
when i „ j and Z̄ij “ 0 when i  j using only the observed censored adjacency matrix A.

Our approach is similar in nature to the one used by spectral methods in community detection. We
first observe that for α :“ δpp` q ´ 1q and J “ p1qnˆn we have Z̄ “ Z˚ where

Z˚ P argmax
ZPC

〈
EA´ αJ,Z

〉
(4.1)

and C “ tZ P Rnˆn : Z ľ 0, Zij P r0, 1s, Zii “ 1, i “ 1, . . . , nu. The proof of (4.1) is recalled in Section 8.
Since we do not know EA and α, we should estimate both of them. We will estimate EA with A but,

for simplicity, we will assume that α is known. The resulting estimator of the cluster matrix Z̄ is

Ẑ P argmax
ZPC

〈
A´ αJ,Z

〉
(4.2)

which is indeed a SDP estimator and therefore Theorem 1 (or Corollary 1 and Theorem 2) may be used
to obtain statistical bounds for the estimation of Z˚ from (4.1) by Ẑ.

We will use the following notations: s :“ δpp´qq2, θ :“ δpp´qq, ρ :“ δmaxt1´δp2p´1q2, 1´δp2q´1q2u,
ν :“ maxt2p ´ 1, 1 ´ 2qu, rms :“ t1, ¨ ¨ ¨ ,mu for all m P N, lk :“ |Ck| for all k P rKs, λ2 :“

řK
k“1 l

2
k,

C` :“
K
Y
k“1
pCk ˆ Ckq and C´ :“ Y

k‰k1
pCk ˆ Ck1q. We also use the notation c0, c1, . . . , to denote absolute

constants whose values may change from one line to another.

4.1.2 Main result for the estimation of the cluster matrix in signed clustering

Our main result concerns the reconstitution of the K communities from the observation of the matrix A.
In order to avoid solutions with some communities of degenerated size (too small or too large) we consider
the following assumption.

Assumption 3. Up to constant, the elements of the partition C1 \ ¨ ¨ ¨ \ CK of t1, . . . , nu are of same size
(up to constants): there are absolute constant c0, c1 ą 0 such that for any k P rKs, n{pc1Kq ď |Ck| “ lk ď
c0n{K.

We are now ready to state the main result on the estimation of the cluster matrix Z˚ from (4.1) by the
SDP estimator Ẑ from (4.2).

2A signed graph is K-weakly balanced if and only if all the edges are positive, or the nodes can be partitioned into K P N
disjoint sets such that positive edges exist only within clusters, and negative edges are only present across clusters [37].
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Theorem 3. There is an absolute positive constant c0 such that the following holds. Grant Assumption
3. Assume that

nνδ ě log n, (4.3)

pp´ qq2nδ ě c0K
2ν (4.4)

K logp2eKnq

n
ď max

ˆ

θ2

ρ
,
9ρ

32

˙

. (4.5)

Then, with probability at least 1´ expp´δνnq ´ 3{p2eKnq, exact recovery holds true, i.e., Ẑ “ Z˚.

Therefore, we have exact reconstruction in the dense case (that is under assumption (4.3)), which
stems from condition (4.5). The latter condition is in the same spirit as the one in Theorem 1 of [41],
it measures the SNR (signal-to-noise ratio) of the model which captures the hardness of the SSBM. As
mentioned in [41], it is related to the Kesten-Stigum threshold [78]. The last condition (4.5) basically
requires that the number of clusters K is at most n{ log n. If this condition is dropped out then we do
not have anymore exact reconstruction but only a certified rate of convergence: with probability at least
1´ expp´δνnq ´ 3{p2eKnq,

›

›

›
Z˚ ´ Ẑ

›

›

›

1
ď

n

c1δpp´ qqK
.

This shows that there is a phase transition in the dense case: exact reconstruction is possible when
K À n{ log n and, otherwise, when K Á n{ log n we only have a control of the estimation error.

4.2 Application to angular group synchronization

In this section, we introduce the group synchronization problem as well as a stochastic model for this prob-
lem. We consider a SDP relaxation of the original problem (which is exact) and construct the associated
SDP estimator such as (1.3).

The angular synchronization problem consists of estimating n unknown angles θ1, ¨ ¨ ¨ , θn (up to a
global shift angle) given a noisy subset of their pairwise offsets pθi ´ θjqr2πs, where r2πs is the modulo 2π
operation. The pairwise measurements can be realized as the edge set of a graph G, typically modeled as
an Erdös-Renyi random graph [90].

The aim of this section is to show that the angular synchronization problem can be analyzed using our
methodology. In order to keep the presentation as simple as possible, we assume that all pairwise offsets
are observed up to some Gaussian noise: we are given pθi ´ θj ` σgijqr2πs for all 1 ď i ă j ď n where
pgij : 1 ď i ă j ď nq are npn´ 1q{2 i.i.d. standard Gaussian variables and σ ą 0 is the noise variance. We
may rewrite the problem as follows: we observe a nˆ n complex matrix A defined by

A “ S ˝ rx˚px˚qJs where S “ pSijqnˆn, Sij “

$

&

%

eισgij if i ă j
1 if i “ j

e´ισgij if i ą j
, (4.6)

ι denotes the imaginary number such that ι2 “ ´1, x˚ “ px˚i q
n
i“1 P Cn, x˚i “ eιθi , i “ 1, . . . , n, x̄ denotes

the conjugate vector of x and S ˝ rx˚px˚qJs is the element-wise product pSijxix̄jqnˆn. In particular, S is
a Hermitian matrix (i.e. S̄J “ S) and ESij “ expp´σ2{2q for i ‰ j and ESii “ 1 if i “ j. We want to
estimate pθ1, . . . , θnq (up to a global shift) from the matrix of data A. Unlike classical statistical models
the noise here is multiplicative; we show that our approach covers this type of problem as well.

The first step is to find an (vectorial) optimization problem which solutions are given by pθiq
n
i“1 (up to

global angle shift) or some bijective function of it. Estimating pθiq
n
i“1 up to global angle shift is equivalent

to estimating the vector x˚ “ peιθiqni“1. The latter is, up to a global rotation of its coordinates, the unique
solution of the following maximization problem

argmax
xPCn:|xi|“1

 

x̄J EA x
(

“ tpeιpθi`θ0qqni“1 : θ0 P r0, 2πqu. (4.7)
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A proof of (4.7) is given in Section 6. Let us now rewrite (4.7) as a SDP problem. For all x P Cn,
we have x̄JEAx “ trpEAXq “

〈
EA,X

〉
where X “ xx̄J and tZ P Cnˆn : Z “ xx̄T , |xi| “ 1u “

tZ P Hn : Z ľ 0,diagpZq “ 1n, rankpZq “ 1u where Hn is the set of all n ˆ n Hermitian matrices and
1n P Cn is the vector with all coordinates equal to 1. It is therefore straightforward to construct a SDP
relaxation of (4.7) by dropping the rank constraint. It appears that this relaxation is exact since, for
C “ tZ P Hn : Z ľ 0,diagpZq “ 1nu,

argmax
ZPC

〈
EA,Z

〉
“ tZ˚u, (4.8)

where Z˚ “ x˚px˚qJ. A proof of (4.8) can be found in Section 6. Finally, as we only observe A, we consider
the following SDP estimator of Z˚

Ẑ P argmax
ZPC

〈
A,Z

〉
. (4.9)

In the next section, we use the strategy from Corollary 1 to obtain statistical guarantees for the estimation
of Z˚ by Ẑ.

Intuitively, the above maximization problem (4.8) attempts to preserve the given angle offsets as best
as possible

argmax
θ1,...,θnPr0,2πq

n
ÿ

i,j“1

e´ιθiAije
ιθj , (4.10)

where the objective function is incremented by `1 whenever an assignment of angles θi and θj perfectly
satisfies the given edge constraint δij “ pθi ´ θjqr2πs (i.e., for a clean edge for which σ “ 0), while the
contribution of an incorrect assignment (i.e., of a very noisy edge) will be almost uniformly distributed on
the unit circle in the complex plane. Due to non-convexity of optimization in (4.10), it is difficult to solve
computationally [109]; one way to overcome this problem is to consider the SDP relaxation from (4.8) but
it is also possible to consider a spectral relaxation such as the one proposed by Singer [90] which replaces
the individual constraints that all zi’s should have unit magnitude by the much weaker single constraint
řn
i“1 |zi|

2 “ n, leading to

argmax
z1,...,znPC;

řn
i“1 |zi|

2“n

n
ÿ

i,j“1

z̄iAijzj . (4.11)

The solution to the resulting maximization problem is simply given by a top eigenvector of the Hermitian
matrix A, followed by a normalization step. We remark that the main advantage of the SDP relaxation
(4.8) is that it explicitly imposes the unit magnitude constraint for eιθi , which we cannot otherwise enforce
in the spectral relaxation solved via the eigenvector method in (4.11). The above SDP program (4.8) is
very similar to the well-known Goemans-Williamson SDP relaxation for the seminal MAX-CUT problem
of finding the maximal cut of a graph (the MAX-CUT problem is one of the four applications considered
in this work, see Section 4.3), with the main difference being that here we optimize over the cone of
complex-valued Hermitian positive semidefinite matrices, not just real symmetric matrices.

4.2.1 Main results for phase recovery in the synchronization problem

Our main result concerns the estimation of the matrix of offsets Z˚ “ x˚px˚qJ from the observation of the
matrix A. This result is then used to estimate (up to global phase shift) the angular vector x˚.

Theorem 4. Let 0 ă ε ă 1. If σ ď
a

logpεn4q then, with probability at least 1´ expp´εσ4npn´ 1q{2q, it
holds true that

pe´σ
2{2{2q }Z˚ ´ Z}22 ď

〈
EA,Z˚ ´ Z

〉
ď p128{3q

?
εσ4N. (4.12)

Once we have an estimator Ẑ for the oracle Z˚, we can extract an estimator x̂ for the vector of phases
x˚ by considering a top eigenvector (i.e. an eigenvector associated with the largest eigenvalue) of Ẑ. It is
then possible to quantify the estimation properties of x˚ by x̂ using a sin-theta theorem and Theorem 4.
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Corollary 2. Let x̂ be a top eigenvector of Ẑ with Euclidean norm }x̂}2 “
?
n. Let 0 ă ε ă 1 and assume

that σ ď
a

logpεn4q. We have the existence of a universal constant c0 ą 0 (which is the constant in the
Davis-Kahan Theorem for Hermitian matrices) such that, with probability at least 1´expp´εσ4npn´1q{2q,
it holds true that

min
zPC:|z|“1

}x̂´ zx˚}2 ď 8c0

a

2{3ε1{4eσ
2{4σ2?n. (4.13)

It follows from Corollary 2 that we can estimate x˚ (up to a global rotation z P C : |z| “ 1) with
a `n2 -estimation error of the order of σ2?n with exponential deviations. Given that }x˚}2 “

?
n, this

means that a constant proportion of the entries are well estimated. For a values of ε „ 1{n2, the rate of
estimation is like σ2, we therefore get a much better estimation of x˚ but only with constant probability.
It is important to recall that Ẑ and x̂ can be both efficiently computed by solving a SDP problem and
then by considering a top eigenvector of its solution (for instance, using the power method).

4.3 Application to the MAX-CUT problem

Let A0 P t0, 1unˆn be the adjacency (symmetric) matrix of an undirected graph G “ pV,E0q, where
V :“ t1, . . . , nu is the set of the vertices and the set of edges is E0 :“ E Y EJ Y tpi, iq : A0

ii “ 1u where
E :“ tpi, jq P V 2 : i ă j and A0

ij “ 1u and EJ “ tpj, iq : pi, jq P Eu. We assume that G has no self

loop so that A0
ii “ 0 for all i P V . A cut of G is any subset S of vertices in V . For a cut S Ă V , we

define its weight by cutpG,Sq :“ p1{2q
ř

pi,jqPSˆS̄ A
0
ij , that is the number of edges in E between S and its

complement S̄ “ V zS. The MAX-CUT problem is to find the cut with maximal weight:

S˚ P argmax
SĂV

cutpG,Sq. (4.14)

The MAX-CUT problem is a NP-complete problem but [49] constructed a 0.878 approximating solution
via a SDP relaxation. Indeed, one can write the MAX-CUT problem in the following way. For a cut S Ă V ,
we define the membership vector x P t´1, 1un associated with S by setting xi :“ 1 if i P S and xi “ ´1
if i R S for all i P V . We have cutpG,Sq “ p1{4q

řn
i,j“1A

0
ijp1´ xixjq :“ cutpG, xq and so solving (4.14) is

equivalent to solve

x˚ P argmax
xPt´1,1un

cutpG, xq. (4.15)

Since pxixjqi,j “ xxJ, the latter problem is also equivalent to solve

max

˜

1

4

n
ÿ

i,j“1

A0
ijp1´ Zijq : rankpZq “ 1, Z ľ 0, Zii “ 1

¸

(4.16)

which admits a SDP relaxation by removing the rank 1 constraint. This yields the following SDP relaxation
problem of MAX-CUT from [49]:

Z˚ P argmin
ZPC

〈
A0, Z

〉
(4.17)

where C :“ tZ P Rnˆn : Z ľ 0, Zii “ 1,@i “ 1, . . . , nu.
Unlike the other examples from the previous sections, the SDP relaxation in (9.1) is not exact, except

for bipartite graphs; see [62, 44] for more details. Nevertheless, thanks to the approximation result from
[49] we can use our methodology to estimate Z˚ and then deduce some approximate optimal cut. But
first, we introduce a stochastic model because in many situations the adjacency matrix A0 is only partially
observed but still it might be interesting to find an approximating solution to the MAX-CUT problem.

We observe A “ S ˝A0 “ psijA
0
ijq1ďi,jďn a “masked” version of A0, where S P Rnˆn is symmetric with

upper triangular matrix filled with i.i.d. Bernoulli entries: for all i, j P V such that i ď j, Sij “ Sji “ sij
where psijqiďj is a family of i.i.d. Bernoulli random variables with parameter p P p1{2, 1q. Let B :“ ´p1{pqA
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so that ErBs “ ´A0. We can write Z˚ as an oracle since Z˚ P argmaxZPC
〈
EB,Z

〉
and so we estimate

Z˚ via the SDP estimator Ẑ P argmaxZPC
〈
B,Z

〉
. Our first aim is to quantify the cost we pay by using Ẑ

instead of Z˚ in our final choice of cut. It appears that the fixed point used in Theorem 1 may be used to
quantify this loss:

r˚p∆q “ inf

¨

˝r ą 0 : P

»

– sup
ZPC:

〈
EB,Z˚´Z

〉
ďr

〈
B ´ EB,Z ´ Z˚

〉
ď p1{2qr

fi

fl ě 1´∆

˛

‚. (4.18)

Our second result is an explicit high probability upper bound on the latter fixed point.

4.3.1 Main results for the MAX-CUT problem

In this section, we gather the two results on the estimation of Z˚ from Ẑ and on the approximate optimality
of the final cut constructed from Ẑ. Let us now explicitly provide the construction of this cut. We consider
the same strategy as in [49]. Assume that Ẑ has been constructed. Let Ĝ be a centered Gaussian vector
with covariance matrix Ẑ. Let x̂ be the sign vector of Ĝ. Using the statistical properties of Ẑ, it is possible
to prove near optimality of x̂.

We denote the optimal values of the maxcut problem and its SDP relaxation by

SDPpGq :“ p1{4q
〈
A0, J ´ Z˚

〉
“ max

ZPC

1

4

ÿ

i,j

A0
i,jp1´ Zijq and MAXCUTpGq :“ cutpG,S˚q

where S˚ is a solution of (4.14) and J “ p1qnˆn. Our first result is to show how the 0.878 approximating
result from [49] is downgraded by the incomplete information we have on the graph (we only partially
observed the adjacency matrix A0 via A).

Theorem 5. For all 0 ă ∆ ă 1. With probability at least 1´∆ (with respect to the masked S),

SDPpGq ě E
”

cutpG, x̂q|Ẑ
ı

ě 0.878SDPpGq ´
0.878r˚p∆q

4
.

To precise the notation, x̂ is the sign vector of Ĝ which is a centered Gaussian variable with covariance

Ẑ. In that context, E
”

cutpG, x̂q|Ẑ
ı

is the conditional expectation according to Ĝ for a fixed Ẑ. Moreover,

the probability at least 1´∆ that we obtain is w.r.t. the mask that is to the randomness in A.
Let us put Theorem 5 into some perspective. If we had known the entire adjacency matrix (which is

the case when p “ 1), then we could have use Z˚ instead of Ẑ. In that case, for x‹ the sign vector of
G‹ „ N p0, Z˚q, we know from [49] that

SDPpGq ě E rcutpG, x‹qs ě 0.878SDPpGq. (4.19)

Therefore, Theorem 5 characterizes the price we pay for not observing the entire adjacency matrix A0 but
only a masked version A of it. It is an interesting output of Theorem 5 to observe that the fixed point
r˚p∆q measures, in a quantitative way, this loss. If we were able to identify scenarii of p and E for which
r˚p∆q “ 0 that would prove that there is no loss for partially observing A0 in the MAX-CUT problem.
Unfortunately, the approach we use to control r˚p∆q is the global one which does not allow for exact
reconstruction (that is to show that r˚p∆q “ 0).

Let us now turn to an estimation result of Z˚ by Ẑ via an upper bound on r˚p∆q.

Theorem 6. With probability at least 1´ 4´n:

〈
EB,Z˚ ´ Ẑ

〉
ď r˚p4´nq ď 2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3
.
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In particular, it follows from the approximation result from Theorem 5 and the high probability upper
bound on r˚p∆q from Theorem 6 that, with probability at least 1´ 4´n,

E
”

cutpG, x̂q|Ẑ
ı

ě 0.878SDPpGq ´
0.878

4

˜

2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3

¸

. (4.20)

This result is none trivial only when the right-hand side term is strictly larger than p0.5qSDPpGq which
is the performance of a random cut. As a consequence, (4.20) shows that one can still do better than
randomness even in an incomplete information setup for the MAX-CUT problem when p, n and SDPpGq
are such that

0.378SDPpGq ą
0.878

4

˜

2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3

¸

.

For instance, when p is like a constant, it requires SDPpGq to be larger than c0n
3{2 (for some absolute

constant c0) and when p “ 1´ 1{n, it requires SDPpGq to be at least c0n (for some absolute constant c0).

5 Proof of Theorem 3 (signed clustering)

The aim of this paper is to put forward a methodology developed in learning theory for the study of SDP
estimators. In each example, we follow this methodology. For a problem, such as the signed clustering,
where it is possible to characterize the curvature of the excess risk, we start to identify this curvature
because the curvature function G, coming out of it, defines the local subsets of C driving the complexity
of the problem. Then, we turn to the stochastic part of the proof which is entirely summarized into the
complexity fixed point r˚Gp∆q from (2.2). Finally, we put the two pieces together and apply the main
general result from Corollary 1 to obtain estimation results for the SDP estimator (4.2) in the signed
clustering problem; which is Theorem 3.

5.1 Curvature equation

In this section, we show that the objective function Z P C Ñ
〈
Z,EA´αJ

〉
satisfies a curvature assumption

around its maximizer Z˚ with respect to the `nˆn1 -norm given by GpZ˚´Zq “ θ }Z˚ ´ Z}1 with parameter
θ “ δpp´ qq (and margin exponent κ “ 1).

Proposition 1. For θ “ δpp´ qq, we have for all Z P C,
〈
EA´ αJ,Z˚ ´ Z

〉
“ θ }Z˚ ´ Z}1.

Proof. Let Z be in C. We have〈
Z˚ ´ Z,EA´ αJ

〉
“

n
ÿ

i,j“1

pZ˚ ´ ZqijpEAij ´ αq

“
ÿ

pi,jqPC`
pZ˚ij ´ Zijqpδp2p´ 1q ´ αq `

ÿ

pi,jqPC´
pZ˚ij ´ Zijqpδp2q ´ 1q ´ αq

“ δpp´ qq

»

–

ÿ

pi,jqPC`
pZ˚ ´ Zqij ´

ÿ

pi,jqPC´
pZ˚ ´ Zqij

fi

fl .

Moreover, for all pi, jq P C`, Z˚ij “ 1 and 0 ď Zij ď 1, so pZ˚ ´ Zqij “ |pZ
˚ ´ Zqij |. We also have for all

pi, jq P C´, pZ˚ ´ Zqij “ ´Zij “ ´|pZ
˚ ´ Zqij | because in that case Z˚ij “ 1 and 0 ď Zij ď 1. Hence,

〈
Z˚ ´ Z,EA´ αJ

〉
“ δpp´ qq

»

–

ÿ

pi,jqPC`
|pZ˚ ´ Zqij | `

ÿ

pi,jqPC´
|pZ˚ ´ Zqij |

fi

fl “ θ }Z˚ ´ Z}1 .
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5.2 Computation of the complexity fixed point r˚Gp∆q

Define W :“ A´EA the noise matrix of the problem. Since W is symmetric, its entries are not independent.
In order to work only with independent random variables, we define the following matrix Ψ P Rnˆn:

Ψij “

"

Wij if i ď j
0 otherwise,

(5.1)

where 0 entries are considered as independent Bernoulli variables with parameter 0 and therefore, Ψ has
independent entries, and satisfies the relation W “ Ψ`ΨJ.

In order to obtain upper bounds on the fixed point complexity parameter r˚Gp∆q associated with the
signed clustering problem, we need to prove a high probability upper bound on the quantity

sup
ZPC:}Z´Z˚}1ďr

〈
W,Z ´ Z˚

〉
, (5.2)

and then find a radius r as small as possible such that the quantity in (5.2) is less than pθ{2qr. We denote
Cr :“ C X pZ˚ ` rBnˆn

1 q “ tZ P C : }Z ´ Z˚}1 ď ru where Bnˆn
1 is the unit `nˆn1 -ball of Rnˆn.

We follow the strategy from [41] by decomposing the inner product
〈
W,Z´Z˚

〉
into two parts according

to the SVD of Z˚. This observation is a key point in the work of [41] compared to the analysis from [54].
This allows to perform the localization argument efficiently. Up to a change of index of the nodes, Z˚ is a
block matrix with K diagonal blocks of 1’s. It therefore admits K singular vectors U‚k :“ Ipi P Ckq{

a

|Ck|
with multiplicity lk associated with the singular value lk for all k P rKs. We can therefore write

Z˚ “
K
ÿ

k“1

lkU‚k b U‚k “ UDUJ,

where U P RnˆK has K column vectors given by U‚k, k “ 1, . . . ,K and D “ diagpl1, . . . , lKq. We define
the following projection operator

P : M P Rnˆn Ñ UUTM `MUUT ´ UUTMUUT

and its orthogonal projection PK by

PK : M P Rnˆn ÑM ´ PpMq “ pIn ´ UUT qMpIn ´ UUT q “
n
ÿ

k“K`1

〈
M,U‚k b U‚k

〉
U‚k b U‚k

where U‚k P Rn, k “ K ` 1, . . . , n are such that pU‚k : k “ 1, . . . , nq is an orthonormal basis of Rn.
We use the same decomposition as in [41]: for all Z P C,〈

W,Z ´ Z˚
〉
“

〈
W,PpZ ´ Z˚q ` PKpZ ´ Z˚q

〉
“

〈
PpZ ´ Z˚q,W

〉
looooooooomooooooooon

S1pZq

`
〈
PKpZ ´ Z˚q,W

〉
loooooooooomoooooooooon

S2pZq

.

The next step is to control with large probability the two terms S1pZq and S2pZq uniformly for all Z P
C X pZ˚ ` rBnˆn

1 q. To that end we use the two following propositions where we recall that ρ “ δmaxp1´
δp2p´ 1q2, 1´ δp2q ´ 1q2q and ν “ maxp2p´ 1, 1´ 2qq. The proof of Proposition 2 and 3 can be found in
Section 8, it is based on [41].

Proposition 2. There are absolute positive constants c0, c1, c2 and c3 such that the following holds. If
rc1rK{ns ě 2eKn expp´p9{32qnρ{Kq then we have

P

»

– sup
ZPCXpZ˚`rBnˆn1 q

S1pZq ď c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

fi

fl ě 1´ 3

˜

r c1rKn s

2eKn

¸r
c1rK
n

s

.
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Proposition 3. There exists an absolute constant c0 ą 0 such that the following holds. When nνδ ě log n,
with probability at least 1´ expp´δνnq,

sup
ZPCXpZ˚`rBnˆn1 q

S2pZq ď c0Kr

c

δν

n
.

It follows from Proposition 2 and Proposition 3 that when nνδ ě log n, for all r such that rc1rK{ns ě

2eKn expp´p9{32qnρ{Kq we have, for ∆ “ ∆prq :“ expp´δνnq´3
`

r c1rKn s{p2eKnq
˘r
c1rK
n

s
, with probability

at least 1´∆,

sup
ZPCXpZ˚`rBnˆn1 q

〈
W,Z ´ Z˚

〉
ď c0Kr

c

δν

n
` c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

.

Moreover, we have

c0Kr

c

δν

n
` c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

ď
θ

2
r (5.3)

for θ “ δpp ´ qq when K
?
ν À

?
nδpp ´ qq and rc1rK{ns ě 2eKn expp´θ2n{pKρqq. In particular, when

pp ´ qq2nδ ě K2ν and 1 ě 2eKnmax
`

expp´θ2n{pKρqq, expp´p9{32qnρ{Kq
˘

, we conclude that for all
0 ă r ď n{pc1Kq (5.3) is true. Therefore, one can take r˚Gp∆p0qq “ 0 meaning that we have exact
reconstruction of Z˚: if pp ´ qq2nδ ě K2ν and n Á K maxpρ{θ2 logp2eK2ρ{θ2q, p1{ρq logp2eK2{ρqq then
with probability at least 1´ expp´δνnq ´ 3{p2eKnq, Ẑ “ Z˚.

If pp ´ qq2nδ ě K2ν and 1 ă 2eKnmax
`

expp´θ2n{pKρqq, expp´p9{32qnρ{Kq
˘

then we do not have
exact reconstruction anymore and we have to take r such that c1rK{n ě 1. In that case, (5.3) holds when
r “ n{pc1Kq and so r˚Gp∆pn{pc1Kqqq ď n{pc1Kq. Therefore, it follows from Corollary 1 that

›

›

›
Z˚ ´ Ẑ

›

›

›

1
ď

n

c1δpp´ qqK
.

6 Proofs of Theorem 4 and Corollary 2 (angular synchronization)

Proof of (4.7): For all γ1, . . . , γn P r0, 2πq we have γi ´ γj “ δij for all i ‰ j P rns if and only if

eσ
2{2EAijeιγj ´ eιγi “ 0 for all i ‰ j P rns. We therefore have

argmin
xPCn:|xi|“1

#

ÿ

i‰j

|eσ
2{2EAijxj ´ xi|2

+

“ tpeιpθi`θ0qqni“1 : θ0 P r0, 2πqu. (6.1)

Moreover, for all x “ pxiq
n
i“1 P Cn such that |xi| “ 1 for i “ 1, . . . , n, we have

ÿ

i‰j

|eσ
2{2EAijxj ´ xi|2 “

ÿ

i‰j

|x˚i x̄
˚
j xj ´ xi|

2 “

n
ÿ

i,j“1

|x˚i x̄
˚
j ´ xix̄j |

2

“ 2n2 ´ 2<

˜

n
ÿ

i,j“1

x˚i x̄
˚
j xj x̄i

¸

“ 2n2 ´ 2|
〈
x˚, x

〉
|2

where <pzq denotes the real part of z P C. On the other side, we have

x̄Jpeσ
2{2EAqx “

ÿ

i‰j

x̄ix
˚
i x̄
˚
j xj `

n
ÿ

i“1

x̄ie
σ2{2xi “ npeσ

2{2 ´ 1q ` |
〈
x˚, x

〉
|2.

Hence, minimizing xÑ
řn
i‰j |e

σ2{2EAijxj ´ xi|2 over all x “ pxiqi P Cn such that |xi| “ 1 is equivalent to

maximize xÑ x̄JEAx over all x “ pxiqi P Cn such that |xi| “ 1. This concludes the proof with (6.1).
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Proof of (4.8): Let C1 “ tZ P Cnˆn : |Zij | ď 1,@i, j P rnsu. We first prove that C Ă C1. Let Z P C. Since
Z ľ 0, there exists X P Cnˆn such that Z “ XX̄J. For all i P t1, . . . , nu, denote by Xi‚ the i-th row
vector of X. We have }Xi‚}

2
2 “

〈
Xi‚, Xi‚

〉
“ Zii “ 1 since diagpZq “ 1n. Moreover, for all i, j P rns, we

have |Zij | “ |
〈
Xi‚, Xj‚

〉
| ď }Xi‚}2 }Xj‚}2 ď 1. This proves that Z P C1 and so C Ă C1.

Let Z 1 P argmax
`

<p
〈
EA,Z

〉
q : Z P C1

(

. Since C1 is convex and the objective function Z Ñ <p
〈
EA,Z

〉
q

is linear (for real coefficients), Z 1 is one of the extreme points of C1. Extreme points of C1 are matrices
Z P Cnˆn such that |Zij | “ 1 for all i, j P rns. We can then write each entry of Z 1 as Z 1ij “ eιβij for some
0 ď βij ă 2π and now we obtain

<p
〈
EA,Z 1

〉
q “ <

˜

n
ÿ

i,j“1

EAijZ 1ij

¸

“ <

˜

n
ÿ

i‰j

e´σ
2{2eιδije´ιβij

¸

` <

˜

n
ÿ

i“1

eιδiie´ιβii

¸

“
ÿ

i‰j

eσ
2{2 cospδij ´ βijq `

ÿ

i

cospδii ´ βiiq ď eσ
2{2pn2 ´ nq ` n.

The maximal value eσ
2{2pn2 ´ nq ` n is attained only for βij “ δij for all i, j P rns, that is for Z 1 “

peιδij qi,j“1,...,n “ Z˚. But we have Z˚ P C and C Ă C1, so Z˚ is the only maximizer of Z Ñ <p
〈
EA,Z

〉
q on

C. But for all Z P C we have
〈
EA,Z

〉
“ x˚

J
Zx˚ P R, then Z˚ is the only maximizer of Z Ñ

〈
EA,Z

〉
over

C.

6.1 Curvature of the objective function

Proposition 4. For θ “ e´σ
2{2{2, we have for all Z P C,

〈
EA,Z˚ ´ Z

〉
ě θ }Z˚ ´ Z}22.

Proof. Let Z “ pzije
ιβij qni,j“1q P C where zij P R and 0 ď βij ă 2π for all i, j P rns. Since Z˚ii “ Zii “ 1 for

all i P rns, we have, on one side,
〈
EA,Z˚ ´ Z

〉
“ e´σ

2{2x˚
J
pZ˚ ´ Zqx˚ P R, and so

〈
EA,Z˚ ´ Z

〉
“ <

`〈
EA,Z˚ ´ Z

〉˘
“ <

˜

n
ÿ

i,j“1

EAijpZ˚ ´ Zqij

¸

“ <

˜

n
ÿ

i,j“1

e´σ
2{2eιδij pe´ιδij ´ zije

´ιβij q

¸

“ e´σ
2{2<

˜

n
ÿ

i,j“1

1´ zije
ιpδij´βijq

¸

“ e´σ
2{2

n
ÿ

i,j“1

p1´ zij cospδij ´ βijqq. (6.2)

On the other side, we proved in the proof of (4.8) that C Ă tZ P Cnˆn : |Zij | ď 1,@i, j P rnsu. So we have
|zij | ď 1 for all i, j P rns and

}Z˚ ´ Z}22 “
n
ÿ

i,j“1

|pZ˚ ´ Zqij |
2 “

n
ÿ

i,j“1

|eιδij ´ zije
ιβij |2 “

n
ÿ

i,j“1

|1´ zije
ιp´δij`βijq|2

“

n
ÿ

i,j“1

p1´ zij cospβij ´ δijqq
2 ` z2

ij sin2pβij ´ δijq “
n
ÿ

i,j“1

1´ 2zij cospβij ´ δijq ` z
2
ij

ď 2
n
ÿ

i,j“1

p1´ zij cospβij ´ δijqq. (6.3)

We conclude with (6.2) and (6.3).

In fact, it follows from the proof of Proposition 4 that we have the following equality: for all Z P C,〈
EA,Z˚ ´ Z

〉
“ θ

´

}Z˚ ´ Z}22 `
›

›|Z˚|2 ´ |Z|2
›

›

1

¯

where |Z|2 “ p|Zij |
2q1ďi,jďn (in particular, |Z˚|2 “ p1qnˆn). We therefore know exactly how to characterize

the curvature of the excess risk for the angular synchronization problem in terms of the `2 (to the square)
and the `1 norms. Nevertheless, we will not use the extra term

›

›|Z˚|2 ´ |Z|2
›

›

1
in the following.
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6.2 Computation of the complexity fixed point r˚Gp∆q

It follows from the (global) curvature property of the excess risk for the angular synchronization problem
obtained in Proposition 4 that for the curvature G function defined by GpZ˚ ´Zq “ θ }Z˚ ´ Z}22 ,@Z P C,
we just have to compute the r˚Gp∆q fixed point and then apply Corollary 1 in order to obtain statistical

properties of Ẑ (w.r.t. to both the excess risk and the G function). In this section, we compute the
complexity fixed point r˚Gp∆q for 0 ă ∆ ă 1.

Following Proposition 4, the natural “local” subsets of C around Z˚ which drive the statistical com-
plexity of the synchronization problem are defined for all r ą 0 by Cr “ tZ P C : }Z ´ Z˚}2 ď ru “
C X pZ˚ ` rBnˆn

2 q.
Let Z P Cr. Denote by bRij (resp. bIij) the real (resp. imaginary) part of bij “ Z˚ijZij ´ Z

˚
ij for all

i, j P rns. Since }Z ´ Z˚}2 ď r we also have
ř

i,jpb
R
ijq

2 ` pbIijq
2 ď r2 and so

〈
A´ EA,Z ´ Z˚

〉
“

〈
pS ´ ESq ˝ Z˚, Z ´ Z˚

〉
“ 2<

˜

ÿ

iăj

pSij ´ ESijqbij

¸

“ 2
ÿ

iăj

pcospσgijq ´ E cospσgijqqb
R
ij ´ sinpσgijqb

I
ij ď 2r

d

ÿ

iăj

pcospσgijq ´ E cospσgijqq2 ` psinpσgijqq2

ď 2r

g

f

f

e1´ e´σ2
` 2e´σ2{2

˜

ÿ

iăj

E cospσgijq ´ cospσgijq

¸

where we used that E cospσgq “ <pEeιgq “ e´σ
2{2 for g „ N p0, 1q. Now its remains to get a high probability

upper bound on the sum of the centered cosinus of σgij . We use Bernstein’s inequality (see Equation 7.3
below) to get such a bound. For all t ą 0, with probability at least 1´ expp´tq,

1
?
N

ÿ

iăj

E cospσgijq ´ cospσgijq ď
?

2V t`
2t

3
?
N
ď p1´ e´σ

2
q
?
t`

2t

3
?
N

for N “ npn´1q{2 and V “ E cos2pσgq´pE cospσgqq2 “ p1{2qp1´e´σ
2
q2 (because E cos2pσgq “ p1{2qEp1`

cosp2σgqq “ p1{2qp1` e´2σ2
q when g „ N p0, 1q).

We now have all the ingredients to compute the fixed point r˚Gp∆q for 0 ă ∆ ă 1: for θ “ e´σ
2{2{2 and

t “ logp1{∆q,

r˚Gp∆q ď
4

θ

ˆ

1´ e´σ
2
` 2e´σ

2{2

ˆ

p1´ e´σ
2
q
?
tN `

2t

3

˙˙

“
32t

3
` 8p1´ e´σ

2
qpeσ

2{2 ` 2
?
tNq.

In particular, using 1 ´ e´σ
2
ď σ2 and for t “ εσ4N (where N “ npn ´ 1q{2) for some 0 ă ε ă 1, if

eσ
2{2 ď 2σ2?εN then r˚Gp∆q ď p128{3qσ4N

?
ε.

6.3 End of the proof of Theorem 4 and Corollary 2: application of Corollary 1

Take ∆ “ expp´εσ4Nq (for N “ npn ´ 1q{2), we have r˚Gp∆q ď p128{3q
?
εσ4N when eσ

2{2 ď 2
?
εσ2N

(which holds for instance when σ ď
a

logpεN2q) and so it follows from Corollary 1 (together with the
curvature property in Section 6.1 and the computation of the fixed point r˚Gp∆q from Section 6.2), that

with probability at least 1 ´ expp´εσ4npn ´ 1q{2q, θ
〈
Z˚ ´ Z

〉2

2
ď

〈
EA,Z˚ ´ Z

〉
ď p128{3q

?
εσ4N , which

is the statement of Theorem 4.
Proof of Corollary 2: The oracle Z˚ is the rank one matrix x˚x˚

J
which has n for largest eigenvalue

and associated eigenspace tλx˚ : λ P Cu. In particular, Z˚ has a spectral gap g “ n. Let x̂ P Cn be
a top eigenvector of Ẑ with norm }x̂}2 “

?
n. It follows from Davis-Kahan Theorem (see, for example,

Theorem 4.5.5 in [100] or Theorem 4 in [101]) that there exists an universal constant c0 ą 0 such that

min
zPC:|z|“1

›

›

›

›

x̂
?
n
´ z

x˚
?
n

›

›

›

›

2

ď
c0

g

›

›

›
Ẑ ´ Z˚

›

›

›

2
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where g “ n is the spectral gap of Z˚. We conclude the proof of Corollary 2 using the upper bound on
›

›

›
Ẑ ´ Z˚

›

›

›

2
from Theorem 4.

7 Proofs of Theorem 5 and 6 (MAX-CUT)

In this section, we prove the two main results from Section 4.3 using our general methodology for Theorem 6
and the technique from [49] for Theorem 5.

7.1 Proof of Theorem 5

The proof of Theorem 5 follows the one from [49] up to a minor modification due to the fact that we use
the SDP estimator Ẑ instead of the oracle Z˚. It is based on two tools. The first one is Grothendieck’s
identity: let g „ N p0, Inq and u, v P Sn´1

2 , we have:

Ersignp
〈
g, u

〉
qsignp

〈
g, u

〉
qs “

2

π
arcsinp

〈
u, v

〉
q (7.1)

and the identity: for all t P r´1, 1s

1´
2

π
arcsinptq “

2

π
arccosptq ě 0.878p1´ tq. (7.2)

We now have enough tools to prove Theorem 5. The right-hand side inequality is trivial since MAXCUTpGq ď
SDPpGq. For the left-hand side, we denote by X̂1, . . . , X̂n (resp. X˚1 , . . . , X

˚
n) the n columns vectors in

Sn´1
2 of Ẑ (resp. Z˚). We also consider the event Ω˚ onto which〈

EB,Z˚ ´ Ẑ
〉
ď r˚p∆q

which hold with probability at least 1´∆ according to Theorem 1. On the event Ω˚, we have

E
”

cutpG, x̂q|Ẑ
ı

“ E

«

1

4

n
ÿ

i,j“1

A0
ijp1´ x̂ix̂jq

ff

“
1

4

n
ÿ

i,j“1

A0
ij

´

1´ Ersignp
〈
X̂i, g

〉
qsignp

〈
X̂j , g

〉
qs

¯

piq
“

1

4

n
ÿ

i,j“1

A0
ij

ˆ

1´
2

π
arcsinp

〈
X̂i, X̂j

〉
q

˙

“
1

2π

n
ÿ

i,j“1

A0
ij arccosp

〈
X̂i, X̂j

〉
q

piiq
ě

0.878

4

n
ÿ

i,j“1

A0
ijp1´

〈
X̂i, X̂j

〉
q “

0.878

4

n
ÿ

i,j“1

A0
ijp1´

〈
X˚i , X

˚
j

〉
q `

0.878

4

n
ÿ

i,j“1

A0
ijp

〈
X˚i , X

˚
j

〉
´
〈
X̂i, X̂j

〉
q

“
0.878

4

〈
A0, J ´ Z˚

〉
`

0.878

4

〈
A0, Z˚ ´ Ẑ

〉
“ 0.878SDPpGq ´

0.878

4

〈
EB,Z˚ ´ Ẑ

〉
ě 0.878 SDPpGq ´

0.878

4
r˚p∆q

where we used (7.1) in (i) and (7.2) in (ii).

7.2 Proof of Theorem 6

For the MAX-CUT problem, we do not use any localization argument; we therefore use the (likely sub-
optimal) global approach. The methodology is very close to the one used in [54] for the community detection
problem. In particular, we use both Bernstein and Grothendieck inequalities to compute high probability
upper bound for r˚p∆q. We recall theses two tools now. First Bernstein’s inequality: if Y1, . . . , YN are N
independent centered random variables such that |Yi| ďM a.s. for all i “ 1, . . . , N then for all t ą 0, with
probability at least 1´ expp´tq,

1
?
N

N
ÿ

i“1

Yi ď σ
?

2t`
2Mt

3
?
N

(7.3)
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where σ2 “ p1{Nq
řN
i“1 varpYiq. The second tool is Grothendieck inequality [52] (see also [85] or Theo-

rem 3.4 in [54]): if C P Rnˆn then

sup
ZPC

〈
C,Z

〉
ď KG }C}cut “ KG max

s,tPt´1,1un

n
ÿ

i,j“1

Cijsitj (7.4)

where C “ tZ ľ 0 : Zii “ 1, i “ 1, . . . , nu and KG is an absolute constant, called the Grothendieck
constant.

In order to apply Theorem 1, we just have to compute the fixed point r˚p∆q. As announced, we use
the global approach and Grothendieck inequality (7.4) to get

sup
ZPC:

〈
EB,Z˚´Z

〉
ďr

〈
B ´ EB,Z ´ Z˚

〉
ď sup

ZPC

〈
B ´ EB,Z ´ Z˚

〉
ď 2KG }B ´ EB}cut (7.5)

because Z˚ P C. It follows from Bernstein’s inequality (7.3) and a union bound that for all t ą 0, with
probability at least 1´ 4n expp´tq,

}B ´ EB}cut “ sup
s,tPt˘1un

ÿ

1ďiăjďn

pBij ´ EBijqpsitj ` sjtiq ď 2

d

p1´ pqnpn´ 1qt

p
`

4t

3
.

Therefore, for t “ 2n log 4, with probability at least 1´ 4´n,

r˚p∆q ď }B ´ EB}cut ď 2n

d

p2 log 4qp1´ pqpn´ 1q

p
`

8n log 4

3

for ∆ “ 4´n. Then the result follows from Theorem 1.

8 Annex 1: Signed clustering

8.1 Proof of Equation (4.1)

We recall that the cluster matrix Z̄ P t0, 1unˆn is defined by Zij “ 1 if i „ j and Zij “ 0 when i  j and
α “ δpp` q ´ 1q. For all matrix Z P r0, 1snˆn, we have

〈
Z,EA´ αJ

〉
“

n
ÿ

i,j“1

ZijpEAij ´ αq “
ÿ

pi,jqPC`
ZijpEAij ´ αq `

ÿ

pi,jqPC´
ZijpEAij ´ αq

“ rδp2p´ 1q ´ αs
ÿ

pi,jqPC`:i‰j

Yij ` rδp2q ´ 1q ´ αs
ÿ

pi,jqPC´
Zij ` p1´ αq

n
ÿ

i“1

Zii

“ δpp´ qq

»

–

ÿ

pi,jqPC`
Yij ´

ÿ

pi,jqPC´
Yij

fi

fl` p1´ αq
n
ÿ

i“1

Zii.

The latter quantity is maximal for Z P r0, 1snˆn such that Zij “ 1 for pi, jq P C` and Zij “ 0 for pi, jq P C´,
that is when Z “ Z̄. As a consequence tZ̄u “ argmaxZPr0,1snˆn

〈
Z,EA´αJ

〉
. Moreover, Z̄ P C Ă r0, 1snˆn

so we also have that Z̄ is the only solution to the problem maxZPC
〈
Z,EA´ αJ

〉
and so Z̄ “ Z˚.
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8.2 Proof of Proposition 2: control of S1pZq adapted from [41]

The noise matrix W is symmetric and has been decomposed as W “ Ψ`ΨJ where Ψ has been defined in
(5.1). For all Z P C X pZ˚ ` rBnˆn

1 q, we have

S1pZq “
〈
PpZ ´ Z˚q,W

〉
“

〈
PpW q, Z ´ Z˚

〉
“

〈
UUJW,Z ´ Z˚

〉
`
〈
WUUJ, Z ´ Z˚

〉
´
〈
UUJWUUJ, Z ´ Z˚

〉
“ 2

〈
UUJW,Z ´ Z˚

〉
´
〈
UUJWUUJ, Z ´ Z˚

〉
“ 2

〈
UUJΨ, Z ´ Z˚

〉
` 2

〈
UUJΨJ, Z ´ Z˚

〉
´
〈
UUJpΨ`ΨJqUUJ, Z ´ Z˚

〉
“ 2

〈
UUJΨ, Z ´ Z˚

〉
` 2

〈
UUJΨJ, Z ´ Z˚

〉
´ 2

〈
UUJΨUUJ, Z ´ Z˚

〉
“ 2

〈
UUJΨ, Z ´ Z˚

〉
` 2

〈
UUJΨJ, Z ´ Z˚

〉
´ 2

〈
UUJΨ, pZ ´ Z˚qUUJ

〉
. (8.1)

An upper bound on S1pZq follows from an upper bound on the three terms in the right side of (8.1). Let
us show how to bound the first term. Similar arguments can be used to control the other two terms.

Let V :“ UUTΨ. Let us find a high probability upper bound on the term
〈
UUJΨ, Z´Z˚

〉
“

〈
V,Z´Z˚

〉
uniformly over Z P C X pZ˚ ` rBnˆn

1 q. For all k P rKs, i P Ck and j P rns, we have

Vij “
n
ÿ

t“1

pUUT qitΨtj “
ÿ

tPCk

1

lk
Ψtj “

1

lk

ÿ

tPCk

Ψtj “
1

lk

ÿ

tPCk

Ψtj .

Therefore, given j P rns the Vij ’s are all equal for i P Ck. We can therefore fix some arbitrary index ik P Ck
and have Vij “ Vikj for all i P Ck. Moreover, pVikj : k P rKs, j P rnsq is a family of independent random
variables. We now have〈

V,Z ´ Z˚
〉
“

ÿ

kPrKs

ÿ

iPCk

ÿ

jPrns

VijpZ ´ Z
˚qij “

ÿ

kPrKs

ÿ

jPrns

lkVikj
ÿ

iPCk

pZ ´ Z˚qij
lk

“
ÿ

kPrKs

ÿ

jPrns

lkVikjwkj

which is a weighted sum of nK independent centered random variables Xk,j :“ lkVikj with weights wk,j “
p1{lkq

ř

iPCkpZ ´ Z
˚qij for k P rKs, j P rns. We now idenfity some properties on the weights wkj .

The weights are such that

ÿ

kPrKs

ÿ

jPrns

|wk,j | ď
c1K

n

ÿ

kPrKs

ÿ

jPrns

ÿ

iPCk

|pZ ´ Z˚qij | “ }Z ´ Z
˚}1

c1K

n
ď
c1rK

n

which is equivalent to say that the weights vector w “ pwkj : k P rKs, j P rnsq is in the `Kn1 -ball
pc1rK{nqB

Kn
1 . It is also in the unit `Kn8 -ball since for all k P rKs and j P rns,

|wk,j | ď
ÿ

iPCk

|pZ ´ Z˚qij |

lk
ď }Z ´ Z˚}8 ď 1.

We therefore have w P BKn
8 X pc1rK{nqB

Kn
1 and so

sup
ZPCXpZ˚`rBnˆn1 q

〈
V,Z ´ Z˚

〉
ď sup

wPBKn8 Xpc1rK{nqBKn1

ÿ

kPrKs,jPrns

Xk,jwk,j . (8.2)

It remains to find a high probability upper bound on the latter term. We can use the following lemma to
that end.

Lemma 1. Let Xk,j “
ř

tPCk Ψtj for pk, jq P rKsˆrns. For all 0 ď R ď Kn, if rRs ě 2eKn expp´p9{32qnρ{Kq

then with probability at least 1´ prRs{p2eKnqqrRs,

sup
wPBKn8 XRBKn1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j ď 4
?

8c0R

d

nρ

K
log

ˆ

2eKn

rRs

˙

.
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Proof of Lemma 1. Let N “ Kn and assume that 1 ď R ď N . We denote by X˚1 ě X˚2 ě ¨ ¨ ¨ ,ě X˚N
(resp. w˚1 ě ¨ ¨ ¨ ě w˚N ) the non-decreasing rearrangement of |Xk,j | (resp. |wk,j |) for pk, jq P rKs ˆ rns. We
have

sup
wPBN8XRB

N
1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j ď sup
wPBN8XRB

N
1

N
ÿ

i“1

X˚i w
˚
i ď sup

wPBN8

rRs
ÿ

i“1

X˚i w
˚
i ` sup

wPRBN1

N
ÿ

i“rRs`1

X˚i w
˚
i

ď

rRs
ÿ

i“1

X˚i `RX
˚
rRs`1 ď 2

rRs
ÿ

i“1

X˚i .

Moreover, for all τ ą 0, using a union bound, we have

P

¨

˝

rRs
ÿ

i“1

X˚i ą τ

˛

‚“ P

¨

˝DI Ă rKs ˆ rns : |I| “ rRs and
ÿ

pk,jqPI

|Xk,j | ą τ

˛

‚

“ P

¨

˝ max
IĂrKsˆrns:|I|“rRs

max
uk,j“˘1,pk,jqPI

ÿ

pk,jqPI

uk,jXk,j ą τ

˛

‚

ď
ÿ

IĂrKsˆrns:|I|“rRs

ÿ

uPt˘1urRs

P

¨

˝

ÿ

pk,jqPI

Xk,juk,j ą τ

˛

‚“
ÿ

IĂrKsˆrns:|I|“rRs

ÿ

uPt˘1urRs

P

¨

˝

ÿ

pk,jqPI

ÿ

tPCk

Ψt,juk,j ą τ

˛

‚.

Let us now control each term of the latter sum thanks to Bernstein inequality. The random variables
pΨt,j : t, j P rnsq are independent with variances at most ρ “ δmaxp1 ´ δp2p ´ 1q2, 1 ´ δp2q ´ 1q2q since
VarpΨijq “ 0 when i ą j and VarpΨijq “ VarpAij ´ ErAijsq “ VarpAijq ď ρ for j ě i. Moreover, |Ψij | “ 0
when j ă i and |Ψij | “ |Wij | “ |Aij ´ EAij | ď 2 for j ě i because Aij P t´1, 0, 1u. It follows from
Bernstein’s inequality that for all I Ă rKs ˆ rns satisfying |I| “ rRs and u P t˘1urRs that

P

¨

˝

ÿ

pk,jqPI

ÿ

tPCk

Ψt,juk,j ą τ

˛

‚ď exp

ˆ

´τ2

2rRslkρ` 4τ{3

˙

ď exp

ˆ

´τ2

2rRsc0nρ{K ` 4τ{3

˙

ď exp

ˆ

´τ2

4rRsc0nρ{K

˙

when τ ď p3{2qrRsc0nρ{K. Therefore, supwPBN8XRBN1

ř

Xk,jwk,j ď 2τ with probability at least

1´

ˆ

N

rRs

˙

2rRs exp

ˆ

´τ2

4rRsc0nρ{K

˙

ě 1´ exp

ˆ

´τ2

8rRsc0nρ{K

˙

when

p3{2qrRsc0nρ{K ě τ ě
?

8c0rRs

d

nρ

K
log

ˆ

2eN

rRs

˙

which is a non vacuous condition since rRs ě 2eN expp´p9{32qnρ{Kq. The result follows, in the case
1 ď R ď N , by taking τ “

?
8c0rRs

a

pnρ{Kq log p2eN{rRsq and using that 2R ě rRs when R ě 1.
For 0 ď R ď 1, we have

sup
wPBKn8 XRBKn1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j “ R max
pk,jqPrKsˆrns

|Xk,j |

and using Bernstein inequality as above we get that with probability at least 1 ´ expp´Kτ2{p8c0nρqq,
maxpk,jqPrKsˆrns |Xk,j | ď τ when 3c0nρ{p2Kq ě τ ě

a

8c0nρ logpnKq{K which is a non vacuous condition

when 9c0nρ ě 4K logpnKq. By taking τ “
a

8c0nρ logpnKq{K, we obtain, that for all 0 ď R ď 1, if
9c0nρ ě 4K logpnKq then with probability at least 1´ 1{pnKq,

sup
wPBKn8 XRBKn1

ÿ

pk,jqPrKsˆrns

Xk,jwk,j ď R

c

8c0nρ logpnKq

K
.
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We apply Lemma 1 for R “ c1rK{n to control (8.2):

P

»

– sup
ZPCXpZ˚`rBnˆn1 q

〈
V,Z ´ Z˚

〉
ď c2r

g

f

f

e

Kρ

n
log

˜

2eKn

r c1rKn s

¸

fi

fl ě 1´

˜

r c1rKn s

2eKn

¸r
c1rK
n

s

when rc1rK{ns ě 2eKn expp´p9{32qnρ{Kq.
Using the same methodology, we can prove exactly the same result for supZPCXpZ˚`rBnˆn1 q

〈
UUJΨJ, Z´

Z˚
〉
. We can also use the same method to upper bound supZPCXpZ˚`rBnˆn1 q

〈
UUJΨJ, pZ ´ Z˚qUUJ

〉
, we

simply have to check that the weights vector w1 “ pw1kj : k P rKs, j P rnsq where w1kj “ p1{lkq
ř

iPCkrpZ ´

Z˚qUUJsij is also in BKn
8 X pc1rK{nqB

Kn
1 for any Z P C such that }Z ´ Z˚}1 ď r. This is indeed the

case, since we have for all i P rns, k1 P rKs and j P Ck1 , rpZ ´ Z˚qUUJsij “
řn
p“1pZ ´ Z˚qippUU

Jqpj “
ř

pPCk1
pZ ´ Z˚qip{lk1 which is therefore constant for all elements in j P Ck1 . Therefore, we have

ÿ

kPrKs

ÿ

jPrns

|w1kj | “
ÿ

kPrKs

ÿ

k1PrKs

ÿ

jPCk1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

lklk1

ÿ

iPCk

ÿ

pPCk1
pZ ´ Z˚qip

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

kPrKs

ÿ

k1PrKs

ÿ

jPCk1

1

lklk1

ÿ

iPCk

ÿ

pPCk1
|pZ ´ Z˚qip| ď }Z ´ Z

˚}1
c1K

n
ď
c1rK

n

and for all k1 P rKs and j P Ck1 ,

|w1kj | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

lklk1

ÿ

iPCk

ÿ

pPCk1
pZ ´ Z˚qip

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď }Z ´ Z˚}8 ď 1.

Therefore, w1 P BKn
8 X pc1rK{nqB

Kn
1 and we obtain exactly the same upper bound for the three terms in

(8.1). This concludes the proof of Proposition 2.

8.3 Proof of Proposition 3: control of the S2pZq term from [41]

In this section, we prove Proposition 3. We follow the proof from [41] but we only consider the “dense
case” which is when nδν ě log n – we recall that ν “ maxp2p´ 1, 1´ 2qq. For a similar uniform control of
S2pZq in the “sparse case ”, when c0 ď nδν ď log n for some absolute constant c0, we refer the reader to
[41].

For all Z P C, we have S2pZq “
〈
PKpZ ´ Z˚q,W

〉
“

〈
PKpZq,W

〉
because, by construction of the

projection operator, PKpZ˚q “ 0. Therefore, S2pZq ď
›

›PKpZq
›

›

˚
}W }op where }¨}˚ denotes the nuclear

norm (i.e. the sum of singular values) and }¨}op denotes the operator norm (i.e. maximum of the singular

value). In the following Lemma 2, we prove an upper bound for
›

›PKpZq
›

›

˚
and then, we will obtain a high

probability upper bound onto }W }op.

Lemma 2. For all Z P C X pZ˚ ` rBnˆn
1 q, we have

›

›PKpZq
›

›

˚
“ TrpPKpZqq ď c1k

n
}Z ´ Z˚}1 ď

c1Kr

n
.

Proof. Since Z ľ 0 so it is for pIn ´ UUJqZpIn ´ UUJq and so PKpZq “ pIn ´ UUJqZpIn ´ UUJq ľ 0
therefore

›

›PKpZq
›

›

˚
“ TrpPKpZqq. Next, we bound the trace of PKpZq.
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Since In ´ UUJ is a projection operator, it is symmetric and pIn ´ UUJq2 “ In ´ UUJ, moreover,
TrpZq “ n “ TrpZ˚q when Z P C so

TrpPKpZqq “ TrpPKpZ ´ Z˚qq “ TrppIn ´ UUJqpZ ´ Z˚qpIn ´ UUJqq
“ TrppIn ´ UUT q2pZ ´ Z˚qq “ TrppIn ´ UUT qpZ ´ Z˚qq “ TrpZq ´ TrpZ˚q ` TrpUUT pZ˚ ´ Zqq

“
ÿ

i,j

pUUT qijpZ
˚ ´ Zqij “

ÿ

kPrKs

ÿ

i,jPCk

1

lk
pZ˚ ´ Zqij

(i)
“

ÿ

kPrKs

1

lk

ÿ

i,jPCk

|pZ˚ ´ Zqij |

ď
c1K

n

ÿ

kPrKs

ÿ

i,jPCk

|pZ˚ ´ Zqij | ď
c1K

n
}Z ´ Z˚}1

where we used in (i) that for i and j in a same community, we have Z˚ij “ 1 and Zij P r0, 1s, thus

pZ˚´Zqij “ |pZ
˚´Zqij |. Finally, when Z is in the localized set CXpZ˚`rBnˆn

1 q, we have }Z ´ Z˚}1 ď r
which concludes the proof.

Now, we obtain a high probability upper bound on }W }op. In the following, we apply this result in

the “dense case” (i.e. nδν ě log n) to get the uniform bound onto S2pZq over Z P C X pZ˚ ` rBnˆn
1 q.

Lemma 3 (Lemma 4 in [41]). With probability at least 1´ expp´δνnq, }W }op ď 16
?
δνn` 168

a

logpnq.

Proof. Let A1 be an independent copy of A and R P Rnˆn be a random symmetric matrix independent
from both A and A1 whose sub-diagonal entries are independent Rademacher random variables. Using a
symmetrization argument (see Chapter 2 in [64] or Chapter 2.3 in [98]), we obtain for W “ A´ EA,

E }W }op “ E
›

›A´ EA1
›

›

op

(i)
ď E

›

›A´A1
›

›

op
(ii)
“ E

›

›pA´A1q ˝R
›

›

op

(iii)
ď 2E }A ˝R}op

where ˝ is the entry-wise matrix multiplication operation, (i) comes from Jensen’s inequality, (ii) occurs
since A´A1 and pA´A1q˝R are identically distributed and (iii) is the triangle inequality. Next, we obtain
an upper bound onto E }A ˝R}op.

We define the family of independent random variables pξij : 1 ď i ď j ď nq where for all 1 ď i ď j ď n

ξij “

$

’

’

&

’

’

%

1?
|EAij |

with probability
EAij

2

´ 1?
|EAij |

with probability
EAij

2

0 with probability 1´ EAij .

(8.3)

We also put bij :“
a

|EAij | for all 1 ď i ď j ď n. It is straightforward to see that pξijbij : 1 ď i ď j ď nq
and pAijRij : 1 ď i ď j ď nq have the same distribution. As a consequence, }A ˝R}op and }X}op have

the same distribution where X P Rnˆn is a symmetric matrix with Xij “ ξijbij for 1 ď i ď j ď n. An
upper bound on E }X}op follow from the next result due to [9].

Theorem 7 (Corollary 3.6 in [9]). Let ξij , 1 ď i ď j ď n be independent symmetric random variables with
unit variance and pbij , 1 ď i ď j ď nq be a family of real numbers. Let X P Rnˆn be the random symmetric

matrix defined by Xij “ ξijbij for all 1 ď i ď j ď n. Let σ :“ max1ďiďn

!b

řn
j“1 b

2
ij

)

. Then, for any

α ě 3,

E }X}op ď e
2
α

„

2σ ` 14α max
1ďiďjďn

!

}ξijbij}2rα logpnqs

)

a

logpnq



where, for any q ą 0, }¨}q denotes the Lq-norm.
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Since pξij : 1 ď i ď j ď nq are independent symmetric such that Varpξijq “ Erξ2
ijs “ 1 we can apply

Lemma 7 to upper bound E }X}op “ E }A ˝R}op. We have }ξijbij}2rα logpnqs ď 1 for any α ě 3 and

b2ij “ |EAij | ď δν. It therefore follows from Lemma 7 for α “ 3 that

E }W }op ď 2e
2
3

”

2
?
nδν ` 42

a

logpnq
ı

ď 8
?
nδν ` 168

a

logpnq. (8.4)

The final step to prove Lemma 3 is a concentration argument showing that }W }op is close to its
expectation with high probability. To that end we rely on a general result for Lipschitz and separately
convex functions from [16]. We first recall that a real-valued function f of N variables is said separately
convex when for every i “ 1, . . . , N it is a convex function of the i-th variable if the rest of the variables
are fixed.

Theorem 8 (Theorem 6.10 in [16]). Let X be a convex compact set in R with diameter B. Let X1, ¨ ¨ ¨ , XN

be independent random variables taking values in X . Let f : XN Ñ R be a separately convex and 1-Lipschitz
function, w.r.t. the `N2 -norm (i.e. |fpxq ´ fpyq| ď }x´ y}2 for all x, y P XN ). Then Z “ fpX1, . . . , XN q

satisfies, for all t ą 0, with probability at least 1´ expp´t2{B2q, Z ď ErZs ` t.

We apply Theorem 8 to Z :“ }W }op “ fpAij ´EAij , 1 ď i ď j ď nq “ 1?
2
}A´ EA}op where f is a 1-

Lipschitz w.r.t. `N2 -norm for N “ npn´1q{2 and separately convex function and pAij´EAij , 1 ď i ď j ď nq
is a family of N independent random variables. Moreover, for each i ě j, pA´EAqij P r´1´ δp2p´ 1q, 1´
δp2q ´ 1qs, which is a convex compact set with diameter B “ 2p1 ` δpp ´ qqq ď 4. Therefore, it follows
from Theorem 8 that for all t ą 0, with probability at least 1´ expp´t2{16q, }W }op ď E }W }op`

?
2t. In

particular, we finish the proof of Lemma 3 for t “ 4
?
δνn and using the bound from (8.4).

It follows from Lemma 3 that when nνδ ě log n, }W }op ď 184
?
nδν with probability at least 1 ´

expp´δνnq. Using this later result together with Lemma 2 concludes the proof of Proposition 3.

9 Annex 2: Solving SDP’s in practice

The practical implementation of our approach to the problems of synchronization, signed clustering and
MAX-CUT resort to solving a convex optimization problem. In the present section, we describe the various
algoritms we used for solving these SDP’s.

9.1 Pierra’s method

For SDP’s with constraints on the entries, we propose a simple modification of the method initially proposed
by Pierra in [84]. Let f : Rnˆn ÞÑ R be a convex function. Let C denote a convex set which can be written
as the intersection of convex sets C “ S1 X ¨ ¨ ¨ X SJ . Let us define H “ Rnˆn ˆ ¨ ¨ ¨ ˆ Rnˆn (J times) and
let D denote the (diagonal) subspace of H of vectors of the form pZ, . . . , Zq. In this new formalism, the
problem can now be formulated as a minimisation problem over the intersection of two sets only, i.e.

min
ZPH

˜

1

J

J
ÿ

j“1

fpZjq : Z “ pZjq
J
j“1 P pS1 ˆ ¨ ¨ ¨ ˆ SJq X D

¸

.

Define F pZq “ 1
J

řJ
j“1 fpZjq. The algorithm proposed by Pierra in [84] consists of performing the

following iterations
Zp`1 “ ProxIS1ˆ¨¨¨ˆSJ`

1
2
εF pB

pq and Bp`1 “ ProjDpZ
p`1q.
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9.1.1 Application to community detection

Let us now present the computational details of Pierra’s method for the community detection problem.
We will estimate its membership matrix Z̄ via the following SDP estimator

Ẑ P argmaxZPCxA,Zy,

where C “ tZ P Rnˆn, Z ľ 0, Z ě 0,diagpZq ĺ In,
ř

Zij ď λu and λ “
řn
i,j“1 Z̄ij “

řK
k“1 |Ck|2 denotes the

number of nonzero elements in the membership matrix Z̄. The motivation for this approach stems from the
fact that the membership matrix Z̄ is actually the oracle, i.e., Z˚ “ Z̄ , where Z˚ P argmaxZPCxErAs, Zy.
The function f to minimize in the Pierra algorithm is defined as fpZq “ ´xA,Zy.

Let us denote by S` the set of symmetric positive semi-definite matrices in Rnˆn. The set C is the
intersection of the sets

S1 “ S` S2 “
 

Z P Rnˆn | Z ě 0
(

S3 “
 

Z P Rnˆn | diagpZq ĺ I
(

and S4 “

#

Z P Rnˆn |
n
ÿ

i,j“1

Zij ď λ

+

We now compute for all B “ pBjq
4
j“1 P pRnˆnq4 and j “ 1, . . . , 4 (J “ 4 here)

ProxIS1ˆ¨¨¨ˆS4`
1
2
εF pBqj “ ProxISj`

1
2J
εf pBjq

We have for J “ 4

ProxISj`
1
2J
εf pBjq “ argminZPSj ´

ε

2J
xA,Zy `

1

2
}Z ´ Bj}

2
F “ PSj

´

Bj `
ε

2J
A
¯

On the other hand, the projections operators PSj , j “ 1, 2, 3, 4 are given by

PS1pZ1q “ U max tΣ, 0uUJ where Z1 has SVD Z1 “ UΣUJ

PS2pZ2q “ max tZ2, 0u PS3pZ3q “ Z3 ´ diagpZ3q `min t1,diagpZ3qu

PS4pZ4q “
λ

ř

ij pZ4qij
Z4.

To sum up, Pierra’s method can be formulated as follows.

For all iterations k in N, compute the SVD of Bk1`
ε

2¨4A “ UkΣkpUkqJ. Then compute for all j “ 1, . . . , 4

Bk`1
j “

1

4

˜

Uk max
!

Σk, 0
)

pUkqJ `max
!

Bk
2 `

ε

2 ¨ 4
A, 0

)

` Bk3 `
ε

2 ¨ 4
A´ diagpBk3 `

ε

2 ¨ 4
Aq

`min
!

1, diagpBk3 `
ε

2 ¨ 4
Aq

)

`
λ

ř

ij pB
k
4 `

ε
2¨4Aqij

Bk4 `
ε

2 ¨ 4
A

¸

.

9.1.2 Application to signed clustering

Let us now turn to the signed clustering problem. We will estimate its membership matrix Z̄ via the
following SDP estimator Ẑ P argmaxZPC xA,Zy, where C “ tZ P Rnˆn : Z ľ 0, Zij P r0, 1s, Zii “ 1, i “
1, . . . , nu. As in the community detection case the function f to minimize in the Pierra algorithm is defined
as fpZq “ ´xA,Zy.

Let us denote by S` the set of symmetric positive semi-definite matrices in Rnˆn. The set C is the inter-
section of the sets S1 “ S`, S2 “ tZ P Rnˆn | Z P r0, 1snˆnu and S3 “ tZ P Rnˆn | Zii “ 1, i “ 1, . . . , nu .
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As before, for j “ 1, . . . , 3

ProxISj`
1
2¨3
εf pBjq “ PSj

´

Bj `
ε

2 ¨ 3
A
¯

and the projection operators PSj , j “ 1, 2 are given by

PS1pZ1q “ U max tΣ, 0uUJ, PS2pZ2q “ min tmax tZ2, 0u , 1u and PS3pZ3q “ Z3 ´ diagpZ3q ` I

To sum up, Pierra’s method can be formulated as follows.

At each iteration k, compute the SVD of Bk1 `
ε

2¨3A “ UkΣkpUkqJ. Then compute for all j “ 1, . . . , 3

Bk`1
j “

1

3

˜

Uk max
!

Σk, 0
)

Uk
t
`min

!

max
!

Bk2 `
ε

2 ¨ 3
A, 0

)

, 1
)

` Bk3 `
ε

2 ¨ 3
A´ diag

´

Bk3 `
ε

2 ¨ 3
A
¯

` I

¸

.

9.2 The Burer-Monteiro approach and the Manopt Solver

To solve the MAX-CUT and Angular Synchronization problems we rely on Manopt, a freely available
Matlab toolbox for optimization on manifolds [17]. Manopt runs the Riemannian Trust-Region method
on corresponding Burer-Monteiro non-convex problem with rank bounded by p as follows. The Burer-
Monteiro approach consists of replacing the optimization of a linear function

〈
A,Z

〉
over the convex set

Z “ tZ ľ 0 : ApZq “ bu with the optimization of the quadratic function
〈
AY, Y

〉
over the non-convex set

Y “ tY P Rnˆp : ApY Y T q “ bu.
In the context of the MAX-CUT problem, the Burer-Monteiro approach amounts to the following

steps. Denoting by Z the positive semidefinite matrix Z “ zzT , note that both the cost function and the
constraints lend themselves to be expressed linearly in terms of Z. Dropping the NP-hard rank-1 constraint
on Z, we arrive at the well-known convex relaxation of MAX-CUT from [49]

Ẑ P argmin
ZPC

〈
A,Z

〉
(9.1)

where C :“ tZ P Rnˆn : Z ľ 0, Zii “ 1,@i “ 1, . . . , nu.

If a solution Ẑ of this SDP has rank 1, then Ẑ “ z˚z˚
T

for some z˚, which then gives the optimal
cut. Recall that in the general case of higher rank Ẑ, Goemans and Williamson [49] introduced the
celebrated rounding scheme that extracts approximately optimal cuts within a ratio of 0.878 from Ẑ. The
corresponding Burer-Monteiro non-convex problem with rank bounded by p is given by

Ŷ P argmin
XPB

〈
AY, Y

〉
(9.2)

where B :“ tY P Rnˆp : diagpY Y T q “ 1u. Note that the constraint diagpY Y T q “ 1 requires each row of Y
to have unit `p2 norm, rendering Y to be a point on the Cartesian product of n unit spheres Sp´1

2 in Rp,
which is a smooth manifold. Also note that the search space of the SDP is compact, since all Z feasible
for the SDP have identical trace equal to n.

If the convex set Z is compact, and m denotes the number of constraints, it holds true that whenever
p satisfies ppp`1q

2 ě m, the two problems share the same global optimum [12, 22]. Building on pioneering
work of Burer and Monteiro [22], Boumal et. al [18] showed that if the set Z is compact and the set Y
is a smooth manifold, then ppp`1q

2 ě m implies that, for almost all cost matrices A, global optimality is
achieved by any Y satisfying a second-order necessary optimality conditions. Following [18], for p “ r

?
2ns,

for almost all matrices A, even though (9.2) is non-convex, any local optimum Y is a global optimum (and
so is Z “ Y Y T ), and all saddle points have an escape (the Hessian has a negative eigenvalues). Note that
for p ą n{2 the same statement holds true for all A, and was previously established by [19].
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10 Numerical experiments

This section contains the outcome of numerical experiments on the three application problems considered:
signed clustering, MAX-CUT, and angular synchronization.

10.1 Signed Clustering

To assess the effectiveness of the SDP relaxation, we consider the following experimental setup. We
generate synthetic networks following the signed stochastic block model (SSBM) previously described in
Section 4.1.1, with K “ 5 communities. To quantify the effectiveness of the SDP relaxation, we compare
the accuracy of a suite of algorithms from the signed clustering literature, before (that is when we perform
these algorithms directly on A) and after the SDP relaxation (that is when we perform the very same
algorithms on Ẑ). To measure the recovery quality of the clustering results, for a given indicator set
x1, . . . , xK , we rely on the error rate consider in [24], defined as

γ “
K
ÿ

c“1

xTc A
´
comxc ` x

T
c L

`
comxc

n2
, (10.1)

where xc denotes a cluster indicator vector, Acom (“ EA) is the complete K-weakly balanced ground truth
network – with 1’s on the diagonal blocks corresponding to inter-cluster edges, and ´1 otherwise – with
Acom “ A`com ´ A´com, and L`com denotes the combinatorial graph Laplacian corresponding to A´com. Note
that xTc A

´
comxc counts the number of violations within the clusters (since negative edges should not be

placed within clusters) and xTc L
`
comxc counts the number of violations across clusters (since positive edges

should not belong to the cut). Overall, (10.1) essentially counts the fraction of intra-cluster and inter-
cluster edge violations, with respect to the full ground truth matrix. Note that this definition can also be
easily adjusted to work on real data sets, where the ground truth matrix Acom is not available, which one
can replace with the empirical observation A.

In terms of the signed clustering algorithms compared, we consider the following algorithms from the
literature. One straightforward approach is to simply rely on the spectrum of the observed adjacency
matrix A. Kunegis et al. [65] proposed spectral tools for clustering, link prediction, and visualization of
signed graphs, by solving a 2-way “signed” ratio-cut problem based on the combinatorial Signed Laplacian
[59] L̄ “ D̄ ´ A, where D̄ is a diagonal matrix with D̄ii “

řn
i“1 |Aij |. The same authors proposed signed

extensions for the case of the random-walk Laplacian L̄rw “ I´D̄´1A, and the symmetric graph Laplacian
L̄sym “ I´D̄´1{2AD̄´1{2, the latter of which is particularly suitable for skewed degree distributions. Finally,
the last algorithm we considered is BNC of Chiang et al. [25], who introduced a formulation based on the
Balanced Normalized Cut objective

mintx1,...,xKuPI

˜

K
ÿ

c“1

xTc pD
` ´Aqxc

xTc D̄xc

¸

. (10.2)

which, in light of the decomposition D`´A “ D`´pA`´A´q “ D`´A``A´ “ L``A´, is effectively
minimizing the number of violations in the clustering procedure.

In our experiments, we first compute the error rate γbefore of all algorithms on the original SSBM
graph (shown in Column 1 of Figure 1), and then we repeat the procedure but with the input to all signed
clustering algorithms being given by the output of the SDP relaxation, and denote the resulting recovery
error by γafter. The third column of the same Figure 1 shows the difference in errors γδ “ γbefore ´ γafter
between the first and second columns, while the fourth column contains a histogram of the error differences
γδ. This altogether illustrates the fact that the SDP relaxation does improve the performance of all signed
clustering algorithms, except L̄, and could effectively be used as a denoising pre-processing step.
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Before After Delta Histogram

A

L̄

L̄rw

L̄sym

BNC

Figure 1: Summary of results for the Signed Clustering problem. The first column denotes the recovery
error before the SDP relaxation step, meaning that we consider a number of signed clustering algorithms
from the literature which we apply directly the initial adjacency matrix A. The second column contains
the results when applying the same suite of algorithms after the SDP relaxation. The third column
shows the difference in errors between the first and second columns, while the fourth column contains a
histogram of the delta errors. This altogether illustrates the fact the SDP relaxation does improve the
performance of all signed clustering algorithms except L̄.
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10.2 Max-Cut

For the MAX-CUT problem, we consider two sets of numerical experiments. First, we consider a version
of the stochastic block model which essentially perturbs a complete bipartite graph

B “

∣∣∣∣0n1ˆn1 1n1ˆn2

1n2ˆn1 0n2ˆn2

∣∣∣∣ , (10.3)

where 1n1ˆn2 (respectively, 0n1ˆn2) denotes an n1 ˆ n2 matrix of all ones, respectively, all zeros. In our
experiments, we set n1 “ n2 “

n
2 , and fix n “ 500. We perturb B by deleting edges across the two

partitions, and inserting edges within each partition. More specifically, we generated the full adjacency
matrix A0 from B by adding edges independently with probability η within each partition (i.e., along the
diagonal blocks in (10.3)). Finally, we denote by A the masked version we observe, A “ A0 ˝ S, where S
denotes the adjacency matrix of an Erdős-Rényi(n, δ) graph. The graph shown in Figure 2 is an instance
of the above generative model. Note that for small values of η we expect the maximum cut to occur across

Figure 2: Illustration of Max-Cut in the setting of a perturbation of a complete bipartite graph.

the initial partition PB in the clean bipartite graph B, which we aim to recover as we sparsify the observed
graph A. The heatmap in the left of Figure 3 shows the Adjusted Rand Index (ARI) between the initial
partition PB and the partition of the Max-Cut SDP relaxation in (9.1), as we vary the noise parameter η
and the sparsity δ. As expected, for a fix level of noise η, we are able to recover the hypothetically optimal
Max-Cut, for suitable levels of the sparsity parameter. The heatmap in the right of Figure 3 shows the
computational running time, as we vary the two parameter, showing that the Manopt solver takes the
longest to solve dense noisy problems, as one would expect.

In the second set of experiments shown in Figure 4, we consider a graph A0 chosen at random from the
collection3 of graphs known in the literature as the Gset, where we vary the sparsity level δ, and show
the Max-Cut value attained on the original full graph A0, but using the Max-Cut partition computed by
the SDP relaxation (9.1) on the sparsified graph A.

10.3 Angular Synchronization

For the angular synchronization problem, we consider the following experimental setup, by assessing the
quality of the recovered angular solution from the SDP relaxation, as we vary the two parameters of
interest. In the x-axis in the plots from Figures 5 and 6 we vary the noise level σ, under two different noise
models, Gaussian and outliers. On the y-axis, we vary the sparsity of the sampling graph.

We measure the quality of the recovered angles via the Mean Squared Error (MSE), defined as follows.
Since a solution can only be recovered up to a global shift, one needs an MSE error that mods out such

3http://web.stanford.edu/~yyye/yyye/Gset/
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(a) Adjusted Rand Index. (b) Running times (MANOPT).

Figure 3: Numerical results for MAX-CUT on a perturbed complete bipartite graph, as we vary the noise
level η and the sampling sparsity δ. Results are averaged over 20 runs.

Figure 4: Max-Cut results for the G53 benchmark graph (from the Gset collection) with n “ 1000 nodes
and average degree « 12. Results are averaged over 20 runs.

a degree of freedom. The following MSE is also more broadly applicable for the case when the underlying
group is the orthogonal group Opdq, as opposed to SOp2q, as in the present work, where one can replace the
unknown angles θ1, . . . , θn with their respective representation as 2ˆ2 rotation matrices h1, . . . , hn P Op2q.
To that end, we look for an optimal orthogonal transformation Ô P Op2q that minimizes the sum of squared
distances between the estimated orthogonal transformations and the ground truth measurements

Ô “ argmin
OPOp2q

n
ÿ

i“1

}hi ´Oĥi}
2
F , (10.4)

where ĥ1, . . . , ĥn P Op2q denote the 2ˆ 2 rotation matrix representation of the estimated angles θ̂1, . . . , θ̂n.
In other words, Ô is the optimal solution to the alignment problem between two sets of orthogonal trans-
formations, in the least-squares sense. Following the analysis of [91], and making use of properties of the
trace, one arrives at

n
ÿ

i“1

}hi ´Oĥi}
2
F “

n
ÿ

i“1

Trace

„

´

hi ´Oĥi

¯´

hi ´Oĥi

¯T


“

n
ÿ

i“1

Trace
”

2I ´ 2Oĥih
T
i

ı

“ 4n´ 2 Trace

«

O
n
ÿ

i“1

ĥih
T
i

ff

. (10.5)

If we let Q denote the 2ˆ 2 matrix

Q “
1

n

n
ÿ

i“1

ĥih
T
i , (10.6)
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it follows from (10.5) that the MSE is given by minimizing

1

n

n
ÿ

i“1

}hi ´Oĥi}
2
F “ 4´ 2TrpOQq. (10.7)

In [7] it is proven that TrpOQq ď TrpV UTQq, for all O P Op3q, where Q “ UΣV T is the singular value
decomposition of Q. Therefore, the MSE is minimized by the orthogonal matrix Ô “ V UT and is given by

MSE
def
“

1

n

n
ÿ

i“1

}hi ´ Ôĥi}
2
F “ 4´ 2 TracepV UTUΣV T q “ 4´ 2pσ1 ` σ2q, (10.8)

where σ1, σ2 are the singular values of Q. Therefore, whenever Q is an orthogonal matrix for which
σ1 “ σ2 “ 1, the MSE vanishes. Indeed, the numerical experiments (on a log scale) in Figures 5 and 6
confirm that for noiseless data, the MSE is very close to zero. Furthermore, as one would expected, under
favorable noise regimes and sparsity levels, we have almost perfect recovery, both by the SDP and the
spectral relaxations, under both noise models.

(a) Spectral relaxation. (b) SDP relaxation (solved via MANOPT).

Figure 5: Recovery rates (MSE (10.8) - the lower the better) for angular synchronization with n “ 500,
under the Gaussian noise model, as we vary the noise level σ and the sparsity p of the measurement graph.
Averaged over 20 runs.

(a) Spectral relaxation. (b) SDP relaxation (solved via MANOPT).

Figure 6: Recovery rates (MSE (10.8) - the lower the better) for angular synchronization with n “ 500,
under the Outlier noise model, as we vary the noise level γ and the sparsity p of the measurement graph.
Averaged over 20 runs.
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11 Conclusions and future work

There are a number of other graph-based problems amenable to SDP relaxations, for which a similar
theoretical analysis of their SDP-based estimators could be suitable. For example, the recent work of
[34] considered a problem motivated by geosciences and engineering applications of recovering a smooth
unknown function f : G Ñ R (where G “ ra, bs is known) from noisy observations of its mod 1 values,
which is also amenable to a solution based on an SDP relaxation solved via a Burer-Monteiro approach.
Another potential application concerns the problem of clustering directed graphs, as in the very recent work
of [33] that proposed a spectral algorithm based on Hermitian matrices; this problem is also amenable to
an SDP relaxation.

Our theoretical and practical findings show that running algorithms (such as spectral methods) directly
on A may be improved by using first a SDP estimator such as Ẑ and running the very same algorithms
on Ẑ (instead of A). Somehow, Ẑ performs a pre-processing de-noising step which improve the recovery
of the hidden signal such as community vectors.
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tute. Guillaume Lecué acknowledges support from a grant of the French National Research Agency (ANR),
“Investissements d’Avenir” (LabEx Ecodec/ANR-11-LABX-0047).

References

[1] Epinions data set. https://snap.stanford.edu/data/soc-Epinions1.html. Accessed: 2010-09-30.

[2] Slashdot data set. https://snap.stanford.edu/data/soc-Slashdot0902.html. Accessed: 2010-09-30.

[3] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block model. IEEE Transac-
tions on Information Theory, 62(1):471–487, 2015.

[4] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clustering–a decade review. Information
Systems, 53:16–38, 2015.

[5] Brendan PW Ames. Guaranteed clustering and biclustering via semidefinite programming. Mathematical Programming,
147(1-2):429–465, 2014.

[6] Miguel F Anjos and Jean B Lasserre. Handbook on semidefinite, conic and polynomial optimization, volume 166. Springer
Science & Business Media, 2011.

[7] K. Arun, T. Huang, and S. Bolstein. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9(5):698–700, 1987.

[8] Afonso S Bandeira, Moses Charikar, Amit Singer, and Andy Zhu. Multireference alignment using semidefinite pro-
gramming. In Proceedings of the 5th conference on Innovations in theoretical computer science, pages 459–470. ACM,
2014.

[9] Afonso S Bandeira, Ramon Van Handel, et al. Sharp nonasymptotic bounds on the norm of random matrices with
independent entries. The Annals of Probability, 44(4):2479–2506, 2016.

[10] Sujogya Banerjee, Kaushik Sarkar, Sedat Gokalp, Arunabha Sen, and Hasan Davulcu. Partitioning signed bipartite
graphs for classification of individuals and organizations. In International Conference on Social Computing, Behavioral-
Cultural Modeling, and Prediction, pages 196–204. Springer, 2012.

[11] Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probab. Theory Related Fields, 135(3):311–334, 2006.

[12] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete & Computational
Geometry, 13(2):189–202, Mar 1995.
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[73] László Lovász. On the shannon capacity of a graph. IEEE Transactions on Information theory, 25(1):1–7, 1979.

[74] Wing-Kin Ken Ma. Semidefinite relaxation of quadratic optimization problems and applications. IEEE Signal Processing
Magazine, 1053(5888/10), 2010.

[75] Enno Mammen and Alexandre B. Tsybakov. Smooth discrimination analysis. Ann. Statist., 27(6):1808–1829, 1999.

[76] Pascal Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics. Springer,
Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With
a foreword by Jean Picard.

[77] David A Mazziotti. Large-scale semidefinite programming for many-electron quantum mechanics. Physical review letters,
106(8):083001, 2011.

[78] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted partition model. Probab.
Theory Related Fields, 162(3-4):431–461, 2015.

[79] Y Nesterov. Semidefinite relaxation and non-convex quadratic optimization. Optimization Methods and Software, 12:1–
20, 1997.

[80] Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices. Physical review E,
74(3):036104, 2006.

[81] Carl Olsson, Anders P Eriksson, and Fredrik Kahl. Solving large scale binary quadratic problems: Spectral methods vs.
semidefinite programming. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE,
2007.

[82] Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite programming. SIAM journal on
optimization, 18(1):186–205, 2007.

[83] Jiming Peng and Yu Xia. A new theoretical framework for k-means-type clustering. In Foundations and advances in
data mining, pages 79–96. Springer, 2005.

[84] Guy Pierra. Decomposition through formalization in a product space. Mathematical Programming, 28(1):96–115, 1984.

[85] Gilles Pisier. Grothendieck’s theorem, past and present. Bulletin of the American Mathematical Society, 49(2):237–323,
2012.

[86] Mason A Porter, Jukka-Pekka Onnela, and Peter J Mucha. Communities in networks. Notices of the AMS, 56(9):1082–
1097, 2009.

[87] Martin Royer. Adaptive clustering through semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1795–1803, 2017.

[88] P Scobey and DG Kabe. Vector quadratic programming problems and inequality constrained least squares estimation.
J. Indust. Math. Soc., 28:37–49, 1978.

[89] Alexander Shapiro. Weighted minimum trace factor analysis. Psychometrika, 47(3):243–264, 1982.

[90] A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal.,
30(1):20–36, 2011.

[91] A. Singer and Y. Shkolnisky. Three-dimensional structure determination from common lines in Cryo-EM by eigenvectors
and semidefinite programming. SIAM Journal on Imaging Sciences, 4(2):543–572, 2011.

[92] Amit Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and computational
harmonic analysis, 30(1):20–36, 2011.

[93] Jun Sun, Stephen Boyd, Lin Xiao, and Persi Diaconis. The fastest mixing markov process on a graph and a connection
to a maximum variance unfolding problem. SIAM review, 48(4):681–699, 2006.

[94] Michael J Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[95] Alexandre B. Tsybakov. Optimal rate of aggregation. In Computational Learning Theory and Kernel Machines (COLT-
2003), volume 2777 of Lecture Notes in Artificial Intelligence, pages 303–313. Springer, Heidelberg, 2003.

[96] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Ann. Statist., 32(1):135–166, 2004.

[97] Sara A. van de Geer. Applications of empirical process theory, volume 6 of Cambridge Series in Statistical and Proba-
bilistic Mathematics. Cambridge University Press, Cambridge, 2000.

[98] Aad W. van der Vaart and Jon A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics.
Springer-Verlag, New York, 1996. With applications to statistics.

[99] Vladimir N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal Processing, Communications,
and Control. John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication.

39



[100] Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cam-
bridge University Press, 2018.

[101] V Vu. Singular vectors under random perturbation. Preprint available in arXiv:104.2000, 2010.
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