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Abstract

Consider an unknown smooth function f : [0,1] — R, and say we are given n noisy mod 1
samples of f, i.e., y; = (f(z;)+mn;) mod 1 for z; € [0, 1], where 7; denotes noise. Given the sam-
ples (x;,y;)!_;, our goal is to recover smooth, robust estimates of the clean samples f(z;) mod 1.
We formulate a natural approach for solving this problem which works with angular embeddings
of the noisy mod 1 samples over the unit complex circle, inspired by the angular synchronization
framework. Our approach amounts to solving a quadratically constrained quadratic program
(QCQP) which is NP-hard in its basic form, and therefore we consider its relaxation which
is a trust region sub-problem and hence solvable efficiently. We demonstrate its robustness to
noise via extensive numerical simulations on several synthetic examples, along with a detailed
theoretical analysis. To the best of our knowledge, we provide the first algorithm for denoising
mod 1 samples of a smooth function, which comes with robustness guarantees.

1 Introduction

The problem of recovering a function f from noisy samples of its mod 1 values has received recent
interest both in the literature and the media (MIT News [15]). This recent surge of interest was
motivated by a new family of analog-to-digital converters (ADCs). Traditional ADCs have voltage
limits in place that cut off the signal at the maximum allowed voltage, whenever it exceeds the
limit. In very recent work, the authors of [2] introduced a technique, denoted as unlimited sampling
that is able to accurately digitize signals whose voltage peaks are much larger than the voltage
limits of an ADC. Their work was inspired by a new type of experimental ADC with a modulo
architecture (the so-called self-reset ADC, that has already been prototyped) which captures not
the voltage of a signal but its modulo, by having the voltage reset itself whenever it crosses a pre-
specified threshold. In other words, the ADC captures the remainder obtained when the voltage of
an analog signal is divided by the maximum voltage of the ADC.

The multi-dimensional version of this problem has a long history in the geosciences literature,
often dubbed as the phase unwrapping problem. Phase unwrapping refers to the process of re-
covering unambiguous phase values from phase data that are measured modulo 27 rad (wrapped
data). Instances of this problem arise in many applications, with an initial spike of interest in
early 1990s spurred by the synthetic aperture radar interferometry (InSAR) technology for deter-
mining the surface topography and deformation of the Earth, which motivated the development
of two-dimensional phase unwrapping algorithms. Most of the commonly used phase unwrapping
algorithms relate the phase values by first differentiating the phase field and subsequently reinte-
grating, adding back the missing integral cycles with the end goal of obtaining a more continuous
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result [22]. Other approaches explored in the literature include combinations of least-squares tech-
niques [17], methods exploiting measures of data integrity to guide the unwrapping process [4],
and several techniques employing neural network or genetic algorithms [6]. The three-dimensional
version of the problem [11] has received relatively little attention, a recent line of work in this
direction being [16].

As a word of caution to the reader, we note that this problem is different from the celebrated
phase retrieval, a classical problem in optics that has attracted a surge of interest in recent years
[5, 12], which attempts to recover an unknown signal from the magnitude (intensity) of its Fourier
transform. Just like phase retrieval, the recovery of a function from mod 1 measurements is, by its
very nature, an ill-posed problem, and one needs to incorporate prior structure on the signal, which
in our case is smoothness of f (in an analogous way to how enforcing sparsity renders the phase
retrieval problem well-posed). While there have been a variety of approaches to phase retrieval,
recent progress in the compressed sensing and convex optimization-based signal processing have
inspired new potential research directions. The approach we pursue in this paper is inspired by
developments in the trust region sub-problem [1] and group synchronization [20, [7] literatures.

At a high level, one would like to recover denoised samples (i.e., smooth, robust estimates) of
f from its noisy mod 1 versions. A natural mode of attack for this problem is the following two
stage approach. In the first stage, one recovers denoised mod 1 samples of f, and then in the
(unwrapping) second stage, one uses these samples to recover the original real-valued samples of f.
In this paper, we mainly focus on the first stage, which is a challenging problem in itself. To the
best of our knowledge, we provide the first algorithm for denoising modl samples of a function,
which comes with robustness guarantees. In particular, we make the following contributions.

1. We formulate a general framework for denoising the mod 1 samples of f; it involves mapping
the noisy mod 1 values (lying in [0,1)) to the angular domain (i.e. in [0,27)), and leads to a
QCQP formulation which is NP-hard. We show a relaxation to this QCQP which is a trust
region sub-problem, and hence solvable efficiently.

2. We provide a detailed theoretical analysis for the above approach, which demonstrates its
robustness to noise for the arbitrary bounded noise model (see (2.3)),(5.1))).

3. We test the above method on several synthetic examples which demonstrate that it performs
well for reasonably high noise levels. To complete the picture, we also implement the second
stage with a simple recovery method for recovering the (real valued) samples of f, and show
that it performs surprisingly well via extensive simulations.

Outline of paper. Section[2]formulates the problem formally, and introduces notation. Section [3]
sets up the mod 1 denoising problem as a (NP-hard) smoothness regularized least-squares problem
in the angular domain. Section [4| describes its relaxation to a trust-region sub-problem, and some
possible approaches for recovering the samples of f, along with our complete two-stage algorithm.
Section [5] contains approximation guarantees for our algorithm for recovering the denoised mod 1
samples of f. Section [f] contains numerical experiments on different synthetic examples. Section
[7] summarizes our results and contains a discussion of possible future research directions. Finally,
the Appendix contains supplementary material related to the proofs and additional numerical
experiments.



2 Problem setup

Consider a smooth, unknown function f : [0,1] — R, and a uniform grid on [0, 1],

— 1
0:x1<m2<-~<xn:1withxizl T (2.1)
n—

We assume that we are given mod 1 samples of f on the above grid. Note that for each sample

f(xl) =q; +r; €R, (2.2)

with p; € Z and r; € [0,1), we have r; = f(z;) mod 1. The modulus is fixed to 1 without loss
of generality since % = % mod 1. This is easily seen by writing f = sq + r, with ¢ € Z, and

observing that % mod 1 = # mod1 = % = @. In particular, we assume that the mod 1

samples are noisy, and consider the following noise models.

1. Arbitrary bounded noise

yi = (f(zi) + ;) mod 1; |;] € (0,1/2), Vi. (2.3)

2. Gaussian noise

yi = (f(z;) +n;) mod 1;Vi (2.4)
where n; ~ N(0,0?) i.i.d.

We will denote f(x;) by f; for convenience. Our aim is to recover smooth, robust estimates (up
to a global shift) of the original samples (f;);-; from the measurements (x;,y;) ;. We will assume
f to be Holder continuous meaning that for constants M > 0, a € (0, 1],

[f(@) = fy)l < M|z —y|* ¥V z,yel0,1]. (2.5)

The above assumption is quite general and reduces to Lipschitz continuity when o = 1.

Notation. Scalars and matrices are denoted by lower case and upper cases symbols respectively,
while vectors are denoted by lower bold face symbols. Sets are denoted by calligraphic symbols (eg.,
N), with the exception of [n] = {1,...,n} for n € N. The imaginary unit is denoted by ¢ = /—1.
The notation introduced throughout Sections [3] and [4] is summarized in Table

3 Smoothness regularized least squares in the angular domain
Our algorithm essentially works in two stages.

1. Denoising stage. Our goal here is to denoise the mod 1 samples, which is also the main
focus of this paper. In a nutshell, we map the given noisy mod 1 samples to points on the
unit complex circle, and solve a smoothness regularized, constrained least-squares problem.
The solution to this problem, followed by a simple post-processing step, gives us denoised
mod 1 samples of f.

2. Unwrapping stage. The second stage takes as input the above denoised mod 1 samples,
and recovers an estimate to the original real-valued samples of f (up to a global shift).
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Figure 1: Motivation for the angular embedding approach.

We start the denoising stage by mapping the mod 1 samples to the angular domain, with
hi := exp(2mef;) = exp(2mir;), z; = exp(2mwey;) (3.1)

denoting the respective representations of the clean mod 1 and noisy mod 1 samples on the unit
circle in C, where the first equality is due to the fact that f; = ¢; + r;, with ¢; € Z.

The choice of representing the mod 1 samples in is very natural for the following reason.
For points z;, z; sufficiently close, the samples f;, f; will also be close (by Holder continuity of f).
While the corresponding wrapped samples f; mod 1, f; mod 1 can still be far apart, the complex
numbers exp(:27 f;) and exp(:27 f;) will necessarily be close to each othe This is illustrated in
the toy example in Figure

Figure [2] is the analogue of Figure [1} but for a noisy instance of the problem, making the point
that the angular representation facilitates the denoising process. For points x;, z; sufficiently close,
the corresponding samples f;, f; will also be close in the real domain, by Holder continuity of f.
When measurements get perturbed by noise, the distance in the real domain between the noisy mod
1 samples can greatly increase and become close to 1 (in this example, the point B gets perturbed
by noise, hits the floor and "resets” itself). However, in the angular embedding space, the two
points still remain close to each other, as depicted in Figure

Figure [10] is the analogue of Figure [3] but for the Gaussian noise model. The plots in the top
row provide intuition for the interplay between the change in y (the observed noisy f mod 1 values)
versus change in [ (the noisy quotient). The bottom three rows show the clean, noisy and denoised
(via QCQP) mod 1 samples, for increasing levels of noise.

Consider the graph G = (V, E) with V = {1,2,...,n} where index i corresponds to the point
x; on our grid, and E = {(i,j) € ([Z]) : |t — j| < k} denotes the set of edges for a suitable
parameter k£ € N. A natural approach for recovering smooth estimates of (h;)*; would be to solve
the following optimization problem

n

min Z]gi—zi|2+)\ Z lgi — g;]*- (3.2)

o esgn€Cslgi|=1 4
g1;--:9n |g:] i=1 (i.j)EE

Here, A > 0 is a regularization parameter, which along with k, controls the smoothness of the
solution. Let us denote L € R™ " to be the Laplacian matrix associated with GG, defined as

*Indeed, |exp(:27fi) — exp(e27f;)| = |1 — exp(2n(f; — fi))| = 2|sin(7(f; — fi))| < 27|f; — fi| (since |sinz| < |z
Vz € R).
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Figure 2: Motivation for the angular embedding approach. Noise perturbations may take nearby points
(mod 1 samples) far away in the real domain, yet the points will remain close in the angular domain.
deg(i) ; i=j
L= -1 ; (i,j) € FEor (j,i) € E (3.3)
0 ; otherwise
Denoting g = [g1 g2 ... gn]’ € C", the second term in (3.2)) can be simplified to
MO D deg(i)lgil® = > (9ig] + 979j) | = Ae"ALg. (3.4)
eV (i,7)EFE
Next, denoting z = [21 22 ... 2,]7 € C", we can further simplify the first term in (3.2)) as
follows.
n n
S olgi =zl =D (gl + |z — gz — g =) (3.5)
i=1 i=1
= 2n — 2Re(g"z). (3.6)
This gives us the following equivalent form of ([3.2)
(3.7)

min  Ag*Lg — 2Re(g"z).
geCn:lg;|=1

4 A trust region based relaxation for denoising modulo 1 samples

Unfortunately, the nature of the constraints render (3.7) NP-hard [3l, [13]. Hence, we relax these
constraints to one where the points lie on a sphere of radius n, resulting in the following optimization

problem

min  Ag*Lg — 2Re(g*z). (4.1)
geCn:[lgl|>=n



Symbol Description

unknown real-valued function
clean f mod 1
clean reminder ¢ = f —r
noisy f mod 1
clean signal in angular domain
noisy signal in angular domain
free complex-valued variable
real-valued version of h
real-valued version of z
real-valued version of g

n x n Laplacian matrix of graph G
2n x 2n block diagonal version of L

o N R N B e 3

Table 1: Summary of frequently used symbols in the paper.

It is straightforward to reformulate (4.1)) in terms of real variables. We do so by introducing
the following notation for the real-valued versions of the variables h (clean signal), z (noisy signal),
and g (free variable)

o (1) = (502)- - (1) e

and the corresponding block-diagonal Laplacian

. AL 0 . 10 2nx2n
H_(O )\L)_/\(O 1)®L eR . (4.3)

In light of this, the optimization problem (4.1]) can be equivalently formulated as

T r7= _T—
geRQg}\l\IngQ:ng Hg — 2g' z, (4.4)

which is formally shown in the appendix for completeness. Let us note that the Laplacian
matrix L is positive semi-definite (p.s.d), with its smallest eigenvalue A\ (L) = 0 with multiplicity
1 (since G is connected). Therefore, H is also p.s.d, with smallest eigenvalue A\;(H) = 0 with
multiplicity 2.

(4.4) is actually an instance of the so called trust region sub problem (TRS) with equality
constraint (which we denote by T'SR— from now on), where one minimizes a general quadratic
function (not necessarily convex), subject to a sphere constraint. For completeness, we also mention
the closely related trust region sub problem with inequality constraint (denoted by T'SR<), where
we have a fo ball constraint. There exist several algorithms that efficiently solve T'SR< (cf.,
[211, 14), 191 18, @, [I]) and also some which explicitly solve TSR— (cf., [I0,1]). In particular, we note
the recent work in [I] which showed that trust region sub-problems can be solved to high accuracy
via a single generalized eigenvalue problem. In our experiments, we employ their algorithm for
solving .

Rather surprisingly, one can fully characteriz{] the solutions to both T'SR— and T'SR<. The
following Lemma characterizes the solution for ; it follows directly from [2I, Lemma 2.4, 2.8]
(also [10, Lemma 1]).

TDiscussed in detail in the appendix for completeness.



Lemma 1. g is a solution to (&.4) iff || g ||>= n and 3u* such that (a) 2H 4+ p*I = 0 and (b)
(2H + p*I)g = 2z. Moreover, if 2H + p*I = 0, then the solution is unique.

Let {\;j(H )} T, with M (H) < Xo(H) < --- Agp(H), and {qj}?zl denote the eigenvalues, re-
spectively elgenvectors of H. Note that A\;(H) = X\2(H) =0, and A3(H) > 0 since G is connected.
Let us denote the null space of H by N(H), so N(H) = span{q1,q2}. We can now analyze the
solution to with the help of Lemma (1} I, by considering the following two cases.

Case 1. z ,K z / N(H). The solution is given by

2 .
g(u) =22H + p*I) "'z = Zm% (4.5)
]:

for a unique p* € (0,00) satisfying || g(u*) [|>= n. Indeed, denoting é(u) =| g(u) ||*>=

4 Z %M)Q, we can see that ¢(u) has a pole at u = 0 and decreases monotonically to 0 as

1 — oo. Hence, there exists a unique pu* € (0, 00) such that || g(u*) ||>= n. The solution g(u*) will
be unique by Lemma [I} since 2H + p*I > 0 holds.

Case 2. z L N(H). This second scenario requires additional attention. To begin with, note
that

z 2n z,q;)>
- 42 q” = z; ij’(‘};; (4.6)
p

is now well defined, i.e., 0 is not a pole of ¢(u) anymore. If ¢(0) > n, then as before, we can again
find a unique p* € (0, 00) satisfying ¢(u*) = n. The solution is given by g(u*) = 2(2H + p*I)~*
and is unique since 2H + p*I > 0 (by Lemma |[1f).

In case ¢(0) < n, we set u* = 0 and define our solution to be of the form

g0,v)=(H)'z+0v; veN(H),|v|=1, (4.7)

where § denotes pseudo-inverse and ¢ € R. In particular, for any given v € N(H),|| v |=1, we
obtain g(6*,v), g(—0*,v) as the solutions to (&.4]), with +6* being the solutions to the equation

Ig@.v) I’=n& | (H)'z|*+6* =n (4.8)
=¢(0)<n

Hence the solution is not unique if ¢(0) < n.

4.1 Recovering the denoised mod 1 samples

The solution to is a vector g € R?*. Let g € C" be the complex representation of g as per
so that g = [Re(g)” Im(g)T]”. Denoting g; € C to be the i*® component of g, note that |g;|
Is not necessarily equal to one. On the other hand, recall that h; = exp(t2mf; mod 1), Vi =14,...,n
for the ground truth h € C". We obtain our final estimate f; mod 1 to f; mod 1 by projecting g;
onto the unit complex disk

exp(ﬂw(ﬁ mod 1)) = 2. i=1,...,n. (4.9)

|9l

In order to measure the distance between ]/"; mod 1 and f; mod 1, we will use the so called
wrap-around distance on [0, 1] denoted by d,, : [0, 1]? — [0, 1/2], where



d(t1,t2) == min {|t; — ta|, 1 — [t; — ta} (4.10)

for t1,25 € [0,1]. We will now show that if g; is sufficiently close to h; for each i =1,...,n, then
each dy,(f; mod 1, f; mod 1) will be correspondingly small. This is stated precisely in the following
lemma, its proof being deferred to the appendix.

Lemma 2. For (0 < e < 1/2, let |g; — hi| < € hold for eachi=1,...,n. Then, for eachi=1,...,n

~ 1
dy(f; mod 1, fi mod 1) < = sin~! <1 < ) . (4.11)
7r

— €

4.2 Unwrapping stage and main algorithm

Having recovered the denoised mod 1 samples ﬁ mod 1 fori =1,...,n, we now move onto the next
stage of our method where the goal is to recover the samples f, for which we discuss two possible
approaches.

1. Quotient tracker (QT) method. The first approach for unwrapping the mod 1 samples
is perhaps the most natural one, we outline it below for the setting where G is a line graph, i.e.,
k = 1. It is based on the idea that provided the denoised mod 1 samples are very close estimates
to the original clean mod 1 samples, then we can sequentially find the quotient terms, by checking
whether \le mod 1 — f; mod 1| > ¢, for a suitable threshold parameter ¢ € (0,1). More formally,
by initializing ¢; = 0 consider the rule

Gi+1 = G + sign(fix1 mod 1 — f; mod 1);

-1; t>¢
signg(t) =4 0; [t <C . (4.12)
1; t<—(¢

Clearly, if ﬁ mod 1 ~ f; mod 1 for each %, then for n sufficiently large, the procedure
will result in correct recovery of the quotients. However, it is also obviously sensitive to noise, and
hence would not be a viable option when the noise level is high.

2. Ordinary least squares (OLS) based method. A robust alternative to the aforemen-
tioned approach is based on directly recovering the function via a simple least squares problem.
Recall that in the noise-free case, f; = ¢; + 1i, ¢; € Z,r; € [0,1), and consider, for a pair of nearby
points (i, 7), the difference f; — f; = ¢ —q; + 7 —rj, i =1,...,n. The OLS formulation we solve
stems from the observation that, if |r; — r;| < ¢ for a small ¢, then ¢; = ¢;. This intuition can be
easily gained from the top plots of Figure |3 especially which pertains to the noisy case (but
in the low noise regime v = 0.15), that plots l;+1 — [; versus y; — y;+1, where [; denotes the noisy
quotient of sample ¢, and y; the noisy remainder. For small enough |y; — yit+1|, we observe that
|li+1—1;| = 0. Whenever y; —y;+1 > ¢, we see that [;41 —1; = 1, while y; —y;+1 < —(, indicates that
lit1 — l; = —1. Throughout all our experiments we set ¢ = 0.5. In Figure [ we also plot the true
quotient g, which can be observed to be piecewise constant, in agreement with our above intuition.

For a graph G = (V, E) with k € N, and for a suitable threshold parameter { € (0,1), this
intuition leads us to estimate the function values f; as the least-squares solution to the overdeter-
mined system of linear equations , without involving the quotients ¢1,...,q,. To this end, we
consider a linear system of equations for the function differences f; — f;, V(i,j) € E



fi—fi=l—1lj+vyi—y; =sign:(vi — y;) +vi — Yy, (4.13)

__and solve it in the least-squares sense. is analogous to , except that we now recover
(fi)?_, collectively as the least-squares solution to . Denoting by T the least-squares matrix
associated with the overdetermined linear system , and letting b; = sign;(yi — y;) + vi — yj,
the system of equations can be written as T'f = b. Note that the matrix T is sparse with only
two non-zero entries per row, and that the all-ones vector 1 = (1,1,..., 1)T lies in the null space
of T, i.e., Tl = 0. Therefore, we will find the minimum norm least-squares solution to , and
recover f only up to a global shift.

Algorithm |1| summarizes our two-stage method for recovering the samples of f (up to a global
shift). Figure |3| shows additional noisy instances of the Uniform noise model. The scatter plots
on the first row show that, as the noise level increases, the function (4.12f) will produce more and
more errors in . The remaining plots show the corresponding f mod 1 signal (clean, noisy,
and denoised via QCQP) for three levels of noise.

Algorithm 1 Algorithm for recovering the samples f;

1: Input: (y;)_; (noisy mod 1 samples), k, A\, n, G = (V, E).
2: Output: Denoised mod 1 samples ﬁ mod1l;7=1,...,n.
// STAGE 1: RECOVERING DENOISED mod 1 SAMPLES OF f.
3: Form H € R*™*?" using \, L as in ([4.3).
4: Form z = [Re(z) Im(z)"]" € R?" as in (1.2).
5. Obtain g € R?" as the solution to , ie.,

= argmin g Hg—28'%
geR?":||g||?=n

(=1

6: Obtain g € C" from g where g = [Re(g)"Im(g)"]".
7: Recover f; mod 1 € [0,1) from éﬁl for each i = 1,...,n, as in (4.9)).
// STAGE 2: RECOVERING DENOISED REAL VALUED SAMPLES OF f.
s: Input: (f; mod 1)"_; (denoised mod 1 samples), G = (V, E), ¢ € (0,1).
9: Output: Denoised samples ﬁ-; 1=1,...,n.
10: Obtain (ﬁ)?zl via the Quotient tracker (QT) or OLS based method for suitable threshold (.

5 Analysis for the arbitrary bounded noise model

We now provide some approximation guarantees for the solution g € R*" to (&.4) for the arbitrary
bounded noise model (2.3). In particular, we consider a slightly modified version of this model,
assuming

| 2—h < 6v7 (5.1)

holds true for some § € [0,1]. This is reasonable, since | Z—h |2< 2,/n holds in general

by triangle inequality. Also, note for (2.3) that [2; — h;| = 2|sin(7(d; mod 1))| < 27|é;[, and thus
|z —h |2=| z —h |2< 27 max;(|d;])v/n. Hence, while a small enough uniform bound on max;(|d;|)
would of course imply (/5.1]), however, clearly (5.1)) can also hold even if some of the d;’s are large.
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Theorem 1. Under the above notation and assumptions, consider the arbitrary bounded noise
model in (2.3)), with z satisfying || z — h [|2< §y/n for 6 € [0,1]. Let n > 2, and let N(H) denote
the null space of H.

1. If z Y N(H) then g is the unique solution to ([E.4) satisfying

1, - 36 AmEM?2(2k)2a+!
—(h,g)>1- > —
n< 7g>— 2 n2a
1 1 o
——~_(—z"Hz). 2
T k1) <2nz z) (52)

2. Ifz L N(H) and A < ﬁ then g is the unique solution to ([@.4) satisfying

<1T1 :\> _— 375 B /\7T2M2(2k)2a+1
8) Z B)

n2a

SRS

1 1
- 5 <2TH2> . (5.3)
(1 44Xk — 4Xksin? (£))” \2n
The following useful Corollary of Theoremis a direct consequence of the fact that 1/(2n)z’ Hz >
0 for all z € R?", since H is positive semi-definite.

Corollary 1. Consider the arbitrary bounded noise model in (2.3), with z satisfying || 2 — h ||2<
dv/n for 6 € [0,1]. Letn>2. If A\ < ﬁ then g is the unique solution to ([A.4) satisfying

1 _ 2M22 2041
Lhg e 0 AT
n

n2o (54)

Before presenting the proof of Theorem [I| some remarks are in order.

1. Theorem [1] give us a lower bound on the correlation between h,g € R?", where clearly,
L(h,g) € [-1,1]. Note that the correlation improves when the noise term & decreases, as one
would expect. The term w effectively arises on account of the smoothness of f, and is
an upper bound on the term %BTH h (made clear in Lemma . Hence as the number of samples
increases, 5-h” Hh goes to zero at the rate n=2* (for fixed k, A). Also note that the lower bound
on 1(h,g) readily implies the £, norm bound || g§ — h [|3= O(én + n'~2).

2. The term ﬁZTH z represents the smoothness of the observed noisy samples. While an
increasing amount of noise would usually render z to be more and more non-smooth, and thus
typically increase %ZTH z, note that this would be met by a corresponding increase in §, and
hence the lower bound on the correlation would not necessarily improve.

3. It is easy to verify that implies (z,h)/n > 1 — (§/2). Thus for z, which is feasible for
(P), we have a bound on correlation which is better than the bound in Corollary [1| by a 6 +O(n=2%)
term. However, the solution g to (P) is a smooth estimate of h (and hence more interpretable),
while z is typically highly non-smooth.

Proof of Theorem The proof of Theorem [I] relies heavily on Lemma 3| outlined below, whose
proof is deferred to the appendix.

Lemma 3. Consider the arbitrary bounded noise model in (2.3), with z satisfying || Z — h ||2< 6/n
for § € [0,1]. Any solution g to [&.4) satisfies
36 T

1 .- -~ 1 oom 1 N
(g >1-——- —h'"Hh+ —§ Hg. .
n< ,8) > 5 5 + 58 Hg (5.5)
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We now upper bound the term %BTH h in (5.5) using the Holder continuity of f. This is
formally shown below in the form of Lemma [4] its proof is deferred to the appendix.

Lemma 4. For n > 2, the following is true.

)\7.[.2M2(2k)20¢+1
n2a

1 _ _
%hTHh < : (5.6)

where o € (0,1] and M > 0 are related to the smoothness of f and defined in (2.5), and X > 0 is
the regularization parameter in (3.2)).

Lastly, we lower bound the term %éTH§ in (5.5) using knowledge of the structure of the
solution g. This is outlined below as Lemmal ] its proof is deferred to the appendix. This completes
the proof of Theorem [T}

Lemma 5. Denoting N'(H) to be the null space of H, the following holds for the solution g to
Ea).

1. If z Y N(H) then g is unique and

1 7, ~ 1 1 _» )
—g Hg> — 5 | —z" Hz ). 5.7
2n® V8= (14 4\k)? (Qn (5:7)
2. If z L N(H) and X\ < 4, then g is unique and
1 ~T __~ 1 1 _T 77—
—g Hg > ( Hz) . (5.8)
2n (1+ 4k — Ak sin® (£))* \2n

6 Numerical experiments

This section contains numerical experiments for the two noise models discussed in Section [2], the
Uniform model (with samples generated uniformly in [—v,~] for bounded ) and the Gaussian
model. For each experiment (averaged over 20 trials), we show the RMSE error on a log scale, for
denoised samples of f mod 1 and f. For the latter, we compute the RMSE after we mod out the
best global Shiftﬁ. We compare the performance of three algorithms.

OLS denotes the algorithm based on the least squares formulation used to recover sam-
ples of f, and works directly with noisy mod 1 samples; the estimated f mod 1 values are then
obtained as the corresponding mod 1 versions. QCQP denotes Algorithm [I] where the unwrapping
stage is performed via OLS . iQCQP denotes an iterated version of QCQP, wherein we
repeatedly denoise the noisy f mod 1 estimates (via Stage 1 of Algorithm (1)) for [ iterations, and
finally perform the unwrapping stage via OLS , to recover the sample estimates of f.

Figure [] shows several denoising instances as we increase the noise level in the Uniform noise
model (v € {0.15,0.27,0.30}). Notice that OLS starts failing at v = 0.27, while QCQP still
estimates the samples of f well. Interestingly, iQCQP performs quite well, even for v = 0.30
(where QCQP starts failing) and produces highly smooth, and accurate estimates. It would be
interesting to investigate the properties of iQCQP in future work. Analogous results for the
Gaussian model are shown in the appendix.

Figures |§| plot RMSE (on a log scale) for denoised f mod 1 and f samples versus the noise
level, for the Uniform noise model. They illustrate the importance of the choice of the regularization

tAny algorithm that takes as input the mod 1 samples will be able to recover f only up to a global shift.
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—ftrue
4 f noisy (0.09)
——f denoised (0.09) !
3 f{——fmod 1 clean
——f mod 1 noisy (0.25) \
——fmod 1 denoised (0.25) 1
20- - qclean =

0.2 0.4 0.6 0.8

(a) v =0.15, OLS

—ftrue

4 f noisy (0.15)

——f denoised (0.54)

3 ——fmod 1 clean
——f mod 1 noisy (0.31) A

——fmod 1 denoised (0.31)

- - qclean

0.2 0.4 0.6 0.8

(d) v = 0.27, OLS

—ftrue /
4 f noisy (0.17) I-

——f denoised (1.14) /I
3 ~——fmod 1 clean ]!

——f mod 1 noisy (0.33) 4
——fmod 1 denoised (0.34)
- = gclean

\
0.2 0.4 0.6 0.8

(g) v = 0.30, OLS

Figure 4: Denoised instances under the Uniform

—ftrue

f noisy (0.09)
——f denoised (0.07) '
——fmod 1 clean
——fmod 1 noisy (0.25) f
——fmod 1 denoised (0.22) i

= = qclean 3

0.2 0.4 0.6 0.8

(b) v = 0.15, QCQP

—ftrue
f noisy (0.15) -
——f denoised (0.18)
~——fmod 1 clean i
——1f mod 1 noisy (0.31) d
——fmod 1 denoised (0.35) !
- - qclean -

0.2 0.4

(e) v =0.27, QCQP

0.6 0.8

—f true
f noisy (0.17)

——f denoised (1.22)

~——fmod 1 clean

——f mod 1 noisy (0.33)

——fmod 1 denoised (0.31)

- - gclean

1
0.2 0.4 0.6 0.8

(h) v = 0.30, QCQP

—ftrue
4 f noisy (0.09)
——f denoised (0.03)
3 —fmod 1 clean
——1fmod 1 noisy (0.25)

——fmod 1 denoised (0.16)

= = gclean

0.2 0.4

0.6

0.8

(c) v=10.15, iQCQP (10 iters.)

—ftrue
4 f noisy (0.15)
——f denoised (0.06)
3 ——fmod 1 clean

——1fmod 1 noisy (0.31)

- - gclean

——fmod 1 denoised (0.17)

0.2 0.4

0.6

0.8

(f) v =0.27, iQCQP (10 iters.)

—f true
4 f noisy (0.17)
——f denoised (0.30)
3 ~——fmod 1 clean

——f mod 1 noisy (0.33)
——fmod 1 denoised (0.23)

- - gclean

1
0.2 0.4

0.6

0.8

(i) v =0.30, iQCQP (10 iters.)

noise model, for OLS, QCQP and iQCQP, as we increase

the noise level . We keep fixed the parameters n = 500, £k = 2, A = 0.1. The numerical values in the legend

denote the RMSE.
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Figure 5: Numerical experiments for OLS, QCQP, and iQCQP (with 3,5, and 10 iterations) showing the recovery
RMSE error (on a log scale) when denoising the f mod 1 samples, under the Uniform noise model. Results are
averaged over 20 trials.
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Figure 6: Recovery errors for the final estimated samples of f, under the Uniform noise model (20 trials).

parameters A, k. If A is too small (eg., A = 0.03), then QCQP has negligible improvement in
performance, and sometimes also has worse RMSE than the raw noisy samples. However, for a
larger A (A € {0.3,0.5}), QCQP has a strictly smaller error than OLS and the raw noisy samples.
Interestingly, iQCQP typically performs very well, even for A = 0.03. Figures [7] [§ show similar
plots for the Gaussian noise model.

Figure |§| plots the RMSE (on a log scale) for both the denoised f mod 1 samples, and samples
of f, versus n (for Uniform noise model). Observe that for large enough n, QCQP shows strictly
smaller RMSE than both the initial input noisy data, and OLS. Furthermore, we remark that
iQCQP typically has superior performance to QCQP except for small values of n.

7 Concluding remarks

We considered the problem of denoising noisy mod 1 samples of a function. We proposed a method
centered around solving a trust region subproblem with a sphere constraint, and provided extensive

-1 -1 -1
1.2
B oLl 14 A
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(d) k=2, 2=0.1 (b) k=3, A=0.1 (c) k=2, 12=03 (d) k=2, A2=05

Figure 7: Recovery errors for the denoised fmod 1 samples, for the Gaussian noise model (20 trials).
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Figure 8: Recovery errors for the final estimated samples of f, under the Gaussian noise model (20 trials).
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Figure 9: Recovery errors for OLS, QCQP, and iQCQP as a function of n (number of samples), for both the
f mod 1 samples (leftmost two plots) and the final f estimates (rightmost two plots) under the Uniform noise
model, for different values of k£, A and ~. Results are averaged over 20 runs.

empirical evidence as well as theoretical analysis, that highlight its robustness to noise. There are
several possible directions for future work. One would be to better understand the unwrapping stage
of our approach, and potentially to explore a patch-based divide-and-conquer method that solves
the problem locally and then integrates the local solutions into a globally consistent framework, in
the spirit of existing methods from the group synchronization literature [20, [7]. Another natural
question to consider would be “single stage methods” that directly output denoised estimates to
the original real-valued samples. Yet another direction, which we address in ongoing work, is to
demonstrate the robustness of the proposed method to other noise models such as Gaussian and
Bernoulli-uniform noise, and provide theoretical guarantees. Finally, an interesting question would
be to consider the regression problem, where one attempts to learn a smooth, robust estimate to
the underlying mod 1 function itself (not just the samples) and/or the original f, from noisy mod
1 samples of f.
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Supplementary Material : On denoising noisy modulo 1 samples of a function.

A Rewriting QCQP in real domain

We first show that \g*Lg = g’ Hg. Indeed,

oo - marean(d () o
= (Re(g)'Im(g Gﬁ:ﬁ g (A.2)
= Re(g)" (AL)Re(g) + Im(g)" (AL)Im(g) (A.3)
= A(Re(g) — m(g))" L(Re(g) + :Im(g)) (A.4)
= \g'Lg. (A.5)
Next, we can verify that
Re(g'z) = Re((Re(g) — dm(g))! (Re(z) — Im(2)) (A.6)
= Re(g)"Re(z) + Im(g) " Tm(z) (A7)
= glz (A.8)

Lastly, it is trivially seen that || g ||3=|| g ||3= n. Hence (4.1)) and (4.4)) are equivalent.

B Trust region sub-problem with /¢, ball/sphere constraint

Consider the following two optimization problems

1 1
min blx+ -x'Px min  blx+ -x'Px
x 2 (P1) x 2 (P2) (B.1)
st x|<r st x|=r

with P € R™™" being a symmetric matrix. (P1) is known as the trust region sub problem in the
optimization literature and has been studied extensively with a rich body of work; (P2) is closely
related to (P1) with a non-convex equality constraint. There exist algorithms that efficiently find
the global solution of (P1) and (P2), to arbitrary accuracy. In this section, we provide a discussion
on the characterization of the solution of these two problems.

To begin with, it is useful to note for (P1) that

e If the solution lies in the interior of the feasible domain, then it implies P > 0. This follows
from the second order necessary condition for a local minimizer.

e In the other direction, if P % 0 then the solution will always lie on the boundary.
Surprisingly, we can characterize the solution of (P1), as shown in the following

Lemma 6 ([21]). x* is a solution to (P1) iff | x* ||[< r and Iu* > 0 such that (a) p*(|| x* || —r) =0,
(b) (P+p*I)x* = —=b and (c) P+ p*I = 0. Moreover, if P+ p*I > 0, then the solution is unique.

Note that if the solution lies in the interior, and if P is p.s.d and singular, then there will also
be a pair of solutions on the boundary of the ball. This is easily verified. The solution to (P2) is
characterized by the following
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Lemma 7 ([10, 21]). x* is a solution to (P2) iff || x* ||=r and 3p* such that (a) P+ p*I > 0 and
(b) (P + p*I)x* = —b. Moreover, if P + p*I > 0, then the solution is unique.

The solution to (P1), (P2) is closely linked to solving the non linear equation || (P + uI)™1b ||=
r. Let
— . <b7qj>
x(p) = —(P+pl)'b== ~—=Lq; (B.2)
= Mt
where p11 < pio < -+ < pi, and {q;} are the eigenvalues and eigenvectors of P respectively. Let us
define ¢(u) as
n
<b> qj>2
o) = x(p) |?= ) L
2 (1 + 1)?

i=1

(B.3)

Denoting S = {q € R" : Pq = pu1q}, there are two cases to consider.
1. (b,q) # 0 for someq € S

This is the easy case. ¢(u) has a pole at —p; and is monotonically decreasing in (—pu1,00)
with lim,, o ¢(p) = 0 and lim,—,_,,, ¢(p) = oo. Hence there is a unique p* € (—pu1,00) such

that ¢(p) = r2, and x(p*) = - ﬁ?fﬂi q; will be the unique solution to (P2). Some

remarks are in order.

e If P was p.s.d and singular, then there is no solution to Px = —b, since b ¢ colspan(P).
Also, since p11 = 0, we would have p* € (0,00). Hence the corresponding solution x(u*)
would be the same for (P1), (P2) and would be on the boundary. Moreover, the solution
will be unique due to Lemma [7| since P + p*I > 0.

e If P was p.d and ¢(0) < 72, then this would mean that the global solution to the
unconstrained problem is a feasible point for (P1). In other words, x(0) = —P~'b
would be the unique solution to (P1) with p* = 0. Moreover, x(u*) with p* € (—u1, 00)
satisfying ¢(u*) = r2, would be the unique solution to (P2) (with u* < 0); the uniqueness
follows from Lemma [7|since P + pu*I > 0.

2. (b,q) =0 forallqe S

This is referred to as the “hard” case in the literature - ¢(u) does not have a pole at —pu;, so
¢(—pq) is well defined. There are two possibilities.

(a) If ¢(—p1) > r? then the solution is straightforward — simply find the unique u* €
[—p1,00) such that ¢(u*) = r2. This is possible since ¢(u) is monotonically decreasing
in [—pu1,00). Hence,

x(u)=— M*Jrjl'qj
JiHGFpL J

is the unique solution to (P2). If P was p.s.d and singular, then u; = 0, and so p* > 0.
Hence, x(p*) would be the solution to both (P1), (P2) and would be on the boundary.

(b) If ¢(—p1) < r? then slightly more work is needed. For § € R and any z € S with

| z ||= 1, define
x(0) == — Z < ’_q]> q; +0z
JipiF#p Hi—H
x(—p1)
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Then,

<(0) |12 — (bay)?
I x(0) | = j%;m TR (B.4)
= ¢(—m) +6°. (B.5)

Solving || x(6) ||*= r? for 6, we see that for any solution 0*, we will also have —0* as a
solution. Hence, x(0*),x(—6*) will be solutions to (P2) with u* = —u;. If P was p.s.d
and singular, then p* = 0, and x(£6*) = x(0) & 6*z would be solutions to both (P1)
and (P2). Note that x(—p1) is a solution to (P1). In fact, any point in the interior of

the form x(—p1) + 0z is a solution to (P1).

C Proof of Lemma [2

Proof. To begin with, note that |g; — h;| < e implies |g;| € [1 —¢,1 + €|. This means that |g;| > 0
holds if € < 1. Consequently, we obtain

— IR —h C.1
G = ‘| TGl (G
!gz— | <ng!—1!>
< _|_h _ C.2
gz| || gi| ( )
P 2¢e
el ST (©3)

We will now show that provided 0 < e < 1/2 holds, then (C.3) implies the bound (4.11). Indeed,
from the definition of h;, and of g;/|gi| (from (4.9))), we have

é; — hi| = |exp(L27T(ﬁ mod 1)) — exp(¢27(f; mod 1))| (C4)
= |1 — exp(:27(f; mod 1 — f; mod 1)) (C.5)
= 2[sin[r (f; mod 1 — f; mod 1)]| (C.6)
e(-1,1)
= 2sin[r|(f; mod 1 — f; mod 1)|] (C.7)
= 2sinfr(1 — |(f; mod 1 — f; mod 1)|)]. (C.8)

Then, (4.11)) follows from (C.8)), (C.3]) and by noting that 0 < e/(1 —€) <1 for 0 < e < 1/2. O

D Proof of Lemma [3
Proof. To begin with, note that

5%n

”Z_EH2§5\/E<:><27E>ZTL—T-
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Since h € R?" is feasible for (4.4), we get

hTHh - 2(h,z) > & Hg — 2(8,2) (D.2)
~ _ 1- N P PN
& (8.2) > (hz) - Jh"Hh+ ;g  Hg (D.3)
Pn logp = 1o
Zn———Qh Hh+§g Hg (from (D.1)). (D.4)
Moreover, we can upper bound (g, z) as follows.
<|lgll2]|Z—h |2 +(g,h) (Cauchy-Schwarz) (D.6)
< Vai(yns) + (&.B)  (from (D). (D7)
Plugging (D.7) in (D.4) and using §2 < § for § € [0, 1] completes the proof. O

E Proof of Lemma (4

Proof. Denoting h = (hy...h,)T € C" to be the complex valued representation of h € R?" as per

(4.2), clearly
Lrh= 2 ST b hy < 2B max (b — byP (E-1)
2n 2n A T T e T .
2,J

Since for each i € V' we have deg(i) < 2k, hence |E| = (1/2) ),y deg(i) < kn. Next, for any
(i,7) € E note that by Holder continuity of f we have

B \“ 2K\

= il < Mz, — x| < M| —— <M= E.2
o= f< Ml <0 (21) < v (%) (.2

if n > 2 (since then n — 1 > n/2). Finally, we can bound |h; — h;| as follows.
[hi = Ryl = [1 — exp(e27(f; — fi))] (E.3)
= 2lsin7(f; — fi)l (E4)
<27|f; — fil (since |sinz| < |z|; Vx € R) (E.5)

2 M (2k)*

< MY (sing (£3)). (E6)
Plugging (E.6) in (E.1|) with the bound |E| < kn yields the stated bound. O

F Proof of Lemma [5

Proof. Let {)\](H)}izl (with \{(H) < X(H) < --+) and {qj}iil denote the eigenvalues and
eigenvectors respectively for H. Also, let 0 = 81(L) < f2(L) < f3(L) < --- < Bp(L) denote the
eigenvalues of the Laplacian L. Note that 2(L) > 0 since G is connected. By Gershgorin’s disk

theorem, it is easy to seeﬁ that G, (L) < 4k for the graph G. Hence,
OZAl(H):)\Q(H)<)\3(H)§-"§)\2n(H)§4/\k (Fl)

and NV (H) = span {q1,q2}. We now consider the two cases separately below.

$Denote L;; to be the (i,5)™ entry of L. Then by Gershgorin’s disk theorem, we know that each eigenvalue lies

in |2 da:|a— Ly < D |L”|} Since Li; < 2k and 37, |Li;| < 2k holds for each 4, the claim follows.
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1. Consider the case where z f N(H). We know that g = 2(2H 4 u*I)~'z for a unique
p* € (0,00) (and so g is the unique solution to (P) by Lemma (1| since 2H + p*I > 0)
satisfying

HE 42 ij e (F.2)

Since A;j(H) > 0 for all j, hence we obtain from (F.2)) that
2n  ,_
<Z7 qj>2 dn
n<4 E = (F.3)
- *)2 *)2
= W) (")

= u* < 2. (F.4)

Note that equality holds in (F.4)) if z € N(H). We can now lower bound g "Hg g as follows.

1~ 2_
58 THg = “2T(2H + 1) "H(2H + 1*1) 'z (F.5)
2n _
- 3 (z,q;)° i (H) (F.6)
n 2 (20 (H) + )2
2n
2 _
> s > (2,qp)"A(H)  (from (E), (F-4)) (F.7)
n(8\k + 2) ot
1 I
= — - |—2z Hz|. F.
(ANk + 1)?2 <2nz Z) (F8)
. Let us now consider the case where z 1 N'(H). Denote
o) = 5 [P 435 B 5t e (®.9)
w) =\ glp = ~ (2)\j(H)+M)2 - = (2)\],(];[)_’_“)2- .

Observe that ¢ does not have a pole at 0 anymore, ¢(0) is well defined. In order to have a
unique g, it is sufficient if ¢(0) > n holds. Indeed, we would then have a unique p* € (0, c0)
such that || g(u*) ||>= n. Consequently, g(x*) will be the unique solution to (P) by Lemma
since 2H + p*I = 0. Now let us note that

2n  ,_
$(0) = z; i ’((;;;2 e (F.10)
p=

since \j(H) < 4Ak for all j (recall (F.I)). Therefore clearly, the choice A < - implies

$(0) > n, and consequently that the solution g is unique. Assuming A < ﬁ holds, we can
derive an upper bound on p* as follows.

2n _
= <z7 (= q] _ 4n
= " <2—-2X3(H). (F.12)
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Hence p* € (0,2 — 2X\3(H)) when A < ﬁ. We can now lower bound %ETH/Q\ in the same
manner as before.

]. -~ e 2

%gTHg = 2" (H + ' 1) HQ2H + 1) 'z (F.13)
2n _

(2X;(H) + pr)? '

2n
> T L BN (on@D.ET) (R
j=1
1 1 g
= A — D) <2nzTHz> . (F.16)

It remains to lower bound A3(H) = AB2(L). We do this by using the following result by
Fiedler [§] (adjusted to our notation) for lower bounding the second smallest eigenvalue of
the Laplacian of a simple graph.

Theorem 2 ([8]). Let G be a simple graph of order n other than a complete graph, with
vertez connectivity k(G) and edge connectivity £'(G). Then,

2k (G)(1 — cos(m/n)) < Ba(L) < K(G) < K'(G). (F.17)

The graph G in our setting has x(G) = k; indeed, there does not exist a vertex cut of size
kE —1 or less, but there does exist a vertex cut of size k. This in turn means that «'(G) > k,
and so from Theorem ] we get

Bo(L) > 2k(1 — cos(r/n)) = 4k sin? (%) . (F.18)

Hence A3(H) > 4\ksin? (). Plugging this in to (F.12) completes the proof.

G Appendix Numerical experiments

Figure shows noisy instances of the Gaussian noise model, for n = 500 samples. The scatter
plots on the top row show that, as the noise level increases, the function will produce more
and more errors in , while the remaining plots show the corresponding f mod 1 signal (clean,
noisy, and denoised via QCQP) for three levels of noise.

Figure[11]presents instances of the recovery process under the Gaussian noise model, highlighting
the noise level at which each method shows a significant decrease in performance. Our proposed
iterated version iQCQP shows surprising performance even at very high levels of noise, o = 0.17
in the Gaussian noise model, and v = 0.30 in the Uniform noise model showed earlier in Figure
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Figure 10: Noisy instances of the Gaussian noise model (n = 500). Top row (a)-(c) shows scatter plots
of change in y (the observed noisy f mod 1 values) versus change in [ (the noisy quotient). Plots (d)-(f)
show the clean f mod 1 values (blue), the noisy f mod 1 values (cyan) and the denoised (via QCQP) f mod
1 values (red).
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Figure 11: Denoised instances under the Gaussian noise model, for OLS, QCQP and iQCQP, as we
increase the noise level o. We keep fixed the parameters n = 500, k =2, A = 0.1.
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