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Abstract

A word is primitive if it is not a power of another word. The number of primitive words of
a fixed length over an alphabet of a fixed size is well known and relates to the Möbius function.
In this paper, we investigate the number of primitive partial words which are strings that may
contain “do not know” symbols.
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1 Introduction

Primitive words, or strings over a finite alphabet that cannot be written as a power of another string,
play an important role in numerous research areas including formal language theory [16, 17], coding
theory [4, 26], and combinatorics on words [14, 20, 21, 22, 23]. Partial words (or pwords) are strings
that may contain a number of “do not know” symbols also called “holes” (words, or full words,
are partial words without holes). Primitive partial words were defined in [5]. A partial word u
is primitive if there exists no word v such that u ⊂ vi with i ≥ 2 (the concept of containment,
denoted by ⊂, is discussed in Section 2). Testing whether or not a partial word is primitive can be
done in linear time in the length of the word [6]. This result, which extends a result on words [15],
found a nice application in [9]. There, Blanchet-Sadri and Chriscoe extend to partial words with
one hole the well known result of Guibas and Odlyzko [19] which states that the sets of periods
of words are independent of the alphabet size. Other recent results on partial words appear in
[1, 2, 3, 7, 8, 10, 12, 13, 25].

The number of primitive words of a fixed length over an alphabet of a fixed size is well known
and relates to the Möbius function [20]. In this paper, we investigate the number of primitive partial
words. In Section 2, we discuss the well-known formula for the number of primitive full words of
length n over an alphabet of size k, and start counting primitive partial words by considering the
case of prime length. Section 3 contains several definitions and some important general properties
on periods and exact periods of partial words that are useful for later sections. We recall in
particular Fine and Wilf’s theorem in the framework of partial words. In Section 4, we present
our first counting method which consists in first considering all nonprimitive pwords with h holes
obtained by replacing h positions in nonprimitive full words with �’s (representing holes), and then
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subtracting the pwords that have been doubly counted. There, we express in particular the number
of primitive partial words with one or two holes of length n over a k-size alphabet in terms of the
number of such full words. Finally, Section 5 discusses our second method. We count nonprimitive
partial words of length n with h holes over a k-size alphabet through a constructive method that
refines the counting done in the previous sections.

We end this section by reviewing basic concepts on words and partial words. Let A be a
nonempty finite set, or an alphabet. A string or word u over A is a finite concatenation of symbols
from A. The number of symbols in u, or length of u, is denoted by |u|. We assume that, for every
word, the first letter is at position 0. For any word u, u[i..j) is the subword or factor of u that starts
at position i and ends at position j− 1 (it is called proper if 0 ≤ i < j ≤ |u| and (0 < i or j < |u|)).
In particular, u[0..j) is the prefix of u that ends at position j− 1 and u[i..|u|) is the suffix of u that
begins at position i. The subword u[i..j) is the empty word if i ≥ j (the empty word is denoted
by ε). The set of all words over A of finite length (greater than or equal to 0) is denoted by A∗.
It is a monoid under the associative operation of concatenation or product of words (ε serves as
identity) and is referred to as the free monoid generated by A. Similarly, the set of all nonempty
words over A is denoted by A+. It is a semigroup under the operation of concatenation of words
and is referred to as the free semigroup generated by A.

A word of length n over A can be defined by a total function u : {0, . . . , n − 1} → A and is
usually represented as u = a0a1 . . . an−1 with ai ∈ A. A partial word (or pword) u of length n over
A is a partial function u : {0, . . . , n − 1} → A. For 0 ≤ i < n, if u(i) is defined, then we say that
i belongs to the domain of u (denoted by i ∈ D(u)), otherwise we say that i belongs to the set of
holes of u (denoted by i ∈ H(u)). A word over A is a partial word over A with an empty set of
holes (we will sometimes refer to words as full words). The length of u is denoted by |u|.

If u is a partial word of length n over A, then the companion of u, denoted by u�, is the total
function u� : {0, . . . , n− 1} → A ∪ {�} defined by

u�(i) =
{

u(i) if i ∈ D(u)
� otherwise

The bijectivity of the map u 7→ u� allows us to define for partial words concepts such as concatena-
tion in a trivial way. The symbol � is viewed as a “do not know” symbol. The word u� = �ba�abb
is the companion of the partial word u of length 7 where D(u) = {1, 2, 4, 5, 6} and H(u) = {0, 3}.
In the sequel, for convenience, we will consider a partial word over A as a word over the enlarged
alphabet A ∪ {�}, where the additional symbol � plays a special role. Thus, we say for instance
“the partial word �ba�abb” instead of “the partial word with companion �ba�abb”.

2 Primitive partial words

For a word u, the powers of u are defined inductively by u0 = ε and, for any i ≥ 1, ui = uui−1. The
bijectivity of the map u 7→ u� allows us to define for partial words powers in a trivial way, that is,
(ui)� = (u�)i. A word u is primitive if there exists no word v such that u = vi with i ≥ 2. If u is
a nonempty word, then there exists a unique primitive word v and a unique positive integer i such
that u = vi.

We can extend the notion of a word being primitive to a partial word being primitive as follows.
First, if u and v are two partial words “of equal length”, then u is said to be contained in v,
denoted by u ⊂ v, if all elements in D(u) are in D(v) and u(i) = v(i) for all i ∈ D(u). Now, a
partial word u is primitive if there exists no word v such that u ⊂ vi with i ≥ 2. Note that if v is
primitive and v ⊂ u, then u is primitive as well. If u is a nonempty partial word, then there exists
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a primitive word v and a positive integer i such that u ⊂ vi. Uniqueness does not hold for partial
words (u = �a serves as a counterexample (u ⊂ a2 and u ⊂ ba for distinct letters a, b)).

Denote by Ph,k(n) (respectively, Nh,k(n)) the number of primitive (respectively, nonprimitive)
partial words with h holes of length n over a k-size alphabet A. Also, denote by Ph,k(n) (respectively,
Nh,k(n)) the set of primitive (respectively, nonprimitive) partial words with h holes of length n over
A. Let Th,k(n) denote the total number of partial words of length n with h holes over A, and Th,k(n)
the set of all such partial words. It holds true that

Ph,k(n) + Nh,k(n) = Th,k(n)

and it is easy to see that

Th,k(n) =
(

n

h

)
kn−h

We first count primitive full words. Since there are exactly kn words of length n over A and
every nonempty word w has a unique primitive root v for which w = vn/d for some divisor d of n,
the following relation holds:

kn =
∑
d|n

P0,k(d)

Using the Möbius inversion formula, we obtain the following well-known expression for P0,k(n) (see,
e.g., [20, 24, 27]):

P0,k(n) =
∑
d|n

µ(d)kn/d

where the Möbius function, denoted by µ, is defined as

µ(n) =


1 if n = 1
(−1)i if n is a product of i distinct primes
0 if n is divisible by the square of a prime

We now count primitive partial words of prime length p. If w is a nonprimitive pword with h
holes of length p, then w ⊂ ap for some letter a ∈ A. There are k choices for a and

(
p
h

)
for the

holes. Thus

Nh,k(p) =
(

p

h

)
k

Ph,k(p) = Th,k(p)−Nh,k(p) =
(

p

h

)
(kp−h − k)

The tables below contain some numerical values for alphabets of sizes k = 2 and k = 3 that will
be useful in the sequel (prime numbers n are underlined). These tables were obtained by having
a computer generate all possible partial words with zero, one, two or three holes, and count the
number of primitive and nonprimitive such words.
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n T0,2(n) P0,2(n) N0,2(n) T1,2(n) P1,2(n) N1,2(n)
1 2 2 0 1 1 0
2 4 2 2 4 0 4
3 8 6 2 12 6 6
4 16 12 4 32 16 16
5 32 30 2 80 70 10
6 64 54 10 192 132 60
7 128 126 2 448 434 14
8 256 240 16 1024 896 128
9 512 504 8 2304 2232 72
10 1024 990 34 5120 4780 340
11 2048 2046 2 11264 11242 22
12 4096 4020 76 24576 23664 912
13 8192 8190 2 53248 53222 26
14 16384 16254 130 114688 112868 1820
15 32768 32730 38 245760 245190 570
16 65536 65280 256 524288 520192 4096
17 131072 131070 2 1114112 1114078 34
18 262144 261576 568 2359296 2349072 10224
19 524288 524286 2 4980736 4980698 38
20 1048576 1047540 1036 10485760 10465040 20720

n T2,2(n) P2,2(n) N2,2(n) T3,2(n) P3,2(n) N3,2(n)
1 0 0 0 0 0 0
2 1 0 1 0 0 0
3 6 0 6 1 0 1
4 24 4 20 8 0 8
5 80 60 20 40 20 20
6 240 102 138 160 24 136
7 672 630 42 560 490 70
8 1792 1376 416 1792 1088 704
9 4608 4320 288 5376 4716 660
10 11520 10070 1450 15360 11920 3440
11 28160 28050 110 42240 41910 330
12 67584 62760 4824 112640 97920 14720
13 159744 159588 156 292864 292292 572
14 372736 361354 11382 745472 703528 41944
15 860160 856170 3990 1863680 1846470 17210
16 1966080 1936384 29696 4587520 4458496 129024
17 4456448 4456176 272 11141120 11139760 1360
18 10027008 9942408 84600 26738688 26312400 426288
19 22413312 22412970 342 63504384 63502446 1938
20 49807360 49615640 191720 149422080 148333200 1088880
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n T0,3(n) P0,3(n) N0,3(n) T1,3(n) P1,3(n) N1,3(n)
1 3 3 0 1 1 0
2 9 6 3 6 0 6
3 27 24 3 27 18 9
4 81 72 9 108 72 36
5 243 240 3 405 390 15
6 729 696 33 1458 1260 198
7 2187 2184 3 5103 5082 21
8 6561 6480 81 17496 16848 648
9 19683 19656 27 59049 58806 243
10 59049 58800 249 196830 194340 2490
11 177147 177144 3 649539 649506 33
12 531441 530640 801 2125764 2116152 9612
13 1594323 1594320 3 6908733 6908694 39
14 4782969 4780776 2193 22320522 22289820 30702
15 14348907 14348640 267 71744535 71740530 4005
16 43046721 43040160 6561 229582512 229477536 104976
17 129140163 129140160 3 731794257 731794206 51
18 387420489 387400104 20385 2324522934 2324156004 366930
19 1162261467 1162261464 3 7360989291 7360989234 57
20 3486784401 3486725280 59121 23245229340 23244046920 1182420

n T2,3(n) P2,3(n) N2,3(n) T3,3(n) P3,3(n) N3,3(n)
1 0 0 0 0 0 0
2 1 0 1 0 0 0
3 9 0 9 1 0 1
4 54 12 42 12 0 12
5 270 240 30 90 60 30
6 1215 774 441 540 144 396
7 5103 5040 63 2835 2730 105
8 20412 18360 2052 13608 10368 3240
9 78732 77760 972 61236 59022 2214
10 295245 284850 10395 262440 239040 23400
11 1082565 1082400 165 1082565 1082070 495
12 3897234 3847284 49950 4330260 4183632 146628
13 13817466 13817232 234 16888014 16887156 858
14 48361131 48171774 189357 64481508 63805728 675780

3 Periodicity

In this section, we discuss the concepts of period and exact period.

3.1 Periods

A period of a partial word w over A is a positive integer p such that w(i) = w(j) whenever
i, j ∈ D(w) and i ≡ j mod p. In such a case, we call w p-periodic. We will denote the set of periods
of w by P(w). The fundamental periodicity result of Fine and Wilf can be stated as follows.
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Theorem 1 ([18]). If a word w is p-periodic and q-periodic and |w| ≥ p + q − gcd(p, q), then w is
gcd(p, q)-periodic.

The bound L(0, p, q) = p+q−gcd(p, q) turns out to be optimal, since, for example, abaababaaba
has periods 5 and 8, has length 11 = 5 + 8− gcd(5, 8)− 1, but does not have period 1.

Berstel and Boasson proved a variant of Theorem 1 for partial words with one hole.

Theorem 2 ([1]). If a partial word w with one hole is p-periodic and q-periodic and |w| ≥ p + q,
then w is gcd(p, q)-periodic.

The bound L(1, p, q) = p + q turns out to be optimal since, for example, aaaabaaaa�aa has
one hole, is 5-periodic and 8-periodic, has length 12 = 5 + 8 − 1, but is not 1-periodic. Shur and
Gamzova proved the following result.

Theorem 3 ([25]). Let p < q be positive integers.

1. If a partial word w with two holes is p-periodic and q-periodic and |w| ≥ 2p + q − gcd(p, q),
then w is gcd(p, q)-periodic.

2. If a partial word w with h holes is p-periodic and q-periodic and |w| ≥ (h+1)p+q−gcd(p, q),
then w is gcd(p, q)-periodic.

Referring to Theorem 3, we denote the bound 2p + q − gcd(p, q) by L(2, p, q) which is optimal
since, for example, aba��abaababaaba has two holes, is 5-periodic and 8-periodic, has length 16 =
2(5)+8−gcd(5, 8)−1, but is not 1-periodic. The following result gives an optimal bound L(h, p, q)
for h holes when q is large enough.

Theorem 4 ([7]). Let p, q be positive integers satisfying q > x(p, h) where

x(p, h) =

{
p

(
h
2

)
if h is even

p
(

h+1
2

)
if h is odd

If a partial word w with h holes is p-periodic and q-periodic and |w| ≥ L(h, p, q), then w is gcd(p, q)-
periodic where

L(h, p, q) =

{
p

(
h+2

2

)
+ q − gcd(p, q) if h is even

p
(

h+1
2

)
+ q if h is odd

In the case of three holes, L(3, p, q) = 2p + q if q > 2p.
For other extensions of Fine and Wilf’s periodicity result in the context of partial words, we

refer the reader to [3, 12].

3.2 Exact periods

Consider a partial word w = a0 . . . an−1 where ai ∈ A∪{�}. We call w an n
d -repeat if w is d-periodic

and d is a divisor of n. We call the � in position i ∈ H(w) free with respect to period d if whenever
j ∈ D(w), we have j 6≡ i mod d. For example, if w = aba�aba� then the �’s in positions 3 and 7
are free with respect to period d = 4 but not free with respect to period d = 2:

a b a � a b
a b a � a �

a b
a �
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We denote by D(n) the set of divisors of n distinct from n, by E(w) the set of exact periods of
w, that is,

E(w) = {d | d ∈ P(w) and d ∈ D(n)}

and by R(w) the reduced set of exact periods of w, that is,

R(w) = {d | d ∈ E(w) and there exists no d′ ∈ E(w) ∩ D(d)}

If d is an exact period of w, we set

Bd(i) = {aj | 0 ≤ j < n and j ≡ i mod d}

Now, assume that w is nonprimitive, and let i1 < i2 < · · · < ih be the elements in H(w).
Suppose that w has exact period d and has no free �’s with respect to d. Note that for all j,
Bd(ij) = {�, bij} for some bij ∈ A. We define the function fd as fd(i1, i2, . . . , ih) = (bi1 , bi2 , . . . , bih).
We also define the function f with domain E(w) where d 7→ fd(i1, i2, . . . , ih), and set ν(w) =
‖f(E(w))‖. Note that ν(w) is not necessarily equal to ‖E(w)‖ since w = �ba�abab is such that
ν(w) = ‖f(E(w))‖ = ‖{(a, b)}‖ = 1 while ‖E(w)‖ = ‖{2, 4}‖ = 2.

Lemma 1. Let w be a nonprimitive partial word that has no free �’s with respect to any of its exact
periods. Then ν(w) = ‖R(w)‖.

Proof. Let i1 < i2 < · · · < ih be the elements in H(w). It is easy to see that ν(w) ≤ ‖R(w)‖
because (i1, i2, . . . , ih) will get mapped to the same h-tuple under both fd and fmd for all integers
m ≥ 1. We now show that f is one-to-one on R(w). Suppose not, and let p, q ∈ R(w) satisfy both
p < q and fp(i1, i2, . . . , ih) = fq(i1, i2, . . . , ih). The bound given by Fine and Wilf’s Theorem 1
satisfies p + q− gcd(p, q) ≤ n

3 + n
2 − gcd(p, q) = 5n

6 − gcd(p, q) < n which implies that any full word
of length n with exact periods p, q will also have gcd(p, q) as an exact period. If we now replace in w
the hole in position ij by bij for all j, we obtain a full word w′ that has exact periods p, q and thus
period gcd(p, q), and so gcd(p, q) is also a period of w. Thus q ∈ E(w) and gcd(p, q) ∈ E(w)∩D(q)
implying that q /∈ R(w) which leads to a contradiction. Since f is one-to-one on R(w), it follows
that ν(w) ≥ ‖R(w)‖ and thus ν(w) = ‖R(w)‖.

The following lemma relates to the computation of ν(w) for nonprimitive pwords w with one
hole.

Lemma 2. If w ∈ N1,k(n), then ν(w) = 1.

Proof. By Lemma 1, since w is a nonprimitive partial word with one hole that has no free �’s with
respect to any of its exact periods, we have ν(w) = ‖R(w)‖. Now, let p, q ∈ R(w) satisfy p < q.
Since p, q are exact periods, we have p + q ≤ n

3 + n
2 = 5n

6 < n and Theorem 2 implies that w has
gcd(p, q) as period. But since q ∈ E(w), we have that gcd(p, q) ∈ E(w). Since gcd(p, q) 6= q and
gcd(p, q)|q, we get a contradiction with the fact that q ∈ R(w).

We now state some related results.

Lemma 3. If w ∈ N2,k(n), then ‖R(w)‖ = 1. As a consequence, if n is odd, then ν(w) = 1.

Proof. Theorem 3 for pwords with two holes gives the optimal bound for the length of w given
p, q ∈ R(w), that is, L(2, p, q) = 2p+ q− gcd(p, q) with p < q. Since p, q are exact periods, we have
p, q ≤ n

2 .
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• If p ≤ n
4 and q ≤ n

2 , then L(2, p, q) ≤ 2n
4 + n

2 − gcd(p, q) = n− gcd(p, q) < n.

• If p = n
3 and q = n

2 , then L(2, n
3 , n

2 ) = 2n
3 + n

2 − gcd(2n
6 , 3n

6 ) = 7n
6 − n

6 = n.

Thus L(2, p, q) ≤ n and Theorem 3 implies that w has gcd(p, q) as period. Again we get a contra-
diction as in Lemma 2.

Now, if n is odd, then by Lemma 1, since w is a nonprimitive partial word with two holes that
has no free �’s with respect to any of its exact periods, we have ν(w) = ‖R(w)‖.

If w ∈ N2,k(n) and n is even and w has two free �’s with respect to d = n
2 , then w has no free �’s

with respect to any of its exact periods distinct from n
2 . The smallest exact period being a divisor

of n
2 by Lemma 3, in such case, we also define ν(w) = 1.
Now, if w ∈ N3,k(n), then we can extend the parameter ν(w) for the case when w has free �’s

with respect to one of its exact periods d. Again, it is enough to restrain ourselves to the reduced
set of exact periods and consider the function fd for d ∈ R(w). The images of fd(w) and fmd(w)
are the same for any integer m > 0.

In the sequel, given a pword w ∈ Nh,k(n), the parameter ν(w) will play an important role.
We will obtain words w′ ∈ N0,k(n) by replacing the �’s in w with the corresponding assignments
under all possible exact periods of w. Other parameters that will play a role in our counting of
primitive partial words are the Φ parameters that we now define. Let v be a pword with h′ holes
of length d over a k-size alphabet A. Assume that d is a divisor of n and denote by Gn,h,k(v)
the set of all nonprimitive pwords w with h holes of length n over A such that there exist pwords
v0, v1, . . . , v(n

d
−1) and v′ satisfying v0 = v, w = v0v1 . . . v(n

d
−1), and vi ⊂ v′ for all i. If v is

nonprimitive (respectively, primitive), then denote by φN
n,h,k(v) (respectively, φP

n,h,k(v)) the number
of d′’s, nondivisors of d, with 2 ≤ d′ < d such that some w ∈ Gn,h,k(v) is an n

d′ -repeat. In other
words, φN

n,h,k(v) (respectively, φP
n,h,k(v)) is the number of bases (prefixes) of elements in Gn,h,k(v)

shorter than v. Also, let ΦN
n,h,k(d, h′) (respectively, ΦP

n,h,k(d, h′)) denote the number of nonprimitive
(respectively, primitive) pwords v with h′ holes of length d for which φN

n,h,k(v) ≥ 1 (respectively,
φP

n,h,k(v) ≥ 1).
We illustrate our ideas with the following example.

Example 1. First, consider the set

G6,3,2(a�b) = {a�b�a�, a�b�b�, a�b��b, a�ba��}

Note that any w ∈ G6,3,2(a�b) has only 3 as exact period, and thus φP
6,3,2(a�b) = 0. Now, consider

the set G6,3,2(ab�) = {ab���a, ab���b, ab��b�, ab�a��}. Note that ab���b has exact periods 2, 3 while
the other three words have only 3 as exact period. It follows that φP

6,3,2(ab�) = 1. The same result
holds for pwords in {�ab, ba�, �ba, b�a}. Since P1,2(3) = {a�b, b�a, ab�, �ab, ba�, �ba}, we get
ΦP

6,3,2(3, 1) = 4.

For easy reference, the following table summarizes the notation that will be used in the next
sections to count the number of primitive partial words:
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Notation
A alphabet of size k

k size of alphabet A

w partial word of length n over A

n length of w

d divisor of n

D(n) set of divisors of n distinct from n

h number of holes
Nh,k(n) set of nonprimitive partial words with h holes of length n over A

Nh,k(n) cardinality of Nh,k(n)
Ph,k(n) set of primitive partial words with h holes of length n over A

Ph,k(n) cardinality of Ph,k(n)
Th,k(n) set of partial words with h holes of length n over A

Th,k(n) cardinality of Th,k(n)
P(w) set of periods of w

E(w) set of exact periods of w

R(w) reduced set of exact periods of w

4 Counting primitive partial words: First method

In this section, we first consider all nonprimitive pwords with h holes obtained by replacing h
positions in nonprimitive full words with �’s, and then subtract the pwords that have been doubly
counted. In particular, we express N1,k(n) and N2,k(n) in terms of N0,k(n).

Let w = a0a1 . . . an−1 be a full word of length n over an alphabet A of size k. Let 0 ≤ i1 < i2 <
· · · < ih < n and denote by wi1,...,ih the partial word built from w by replacing positions i1, . . . , ih
with �’s. Setting

Sh(w) = {wi1,...,ih | 0 ≤ i1 < i2 < · · · < ih < n}

we say that w generates each element in the set Sh(w). For any set X of partial words, we denote
by N (X) the set of nonprimitive pwords in X, that is,

N (X) = {w | w is nonprimitive and w ∈ X}

Lemma 4. If w ∈ N0,k(n), then Sh(w) ⊂ Nh,k(n).

Proof. Since w ∈ N0,k(n), there exists a word v such that w = vi for some i ≥ 2. If 0 ≤ i1 < · · · <
ih < n, then wi1,...,ih ⊂ w = vi. It follows that Sh(w) ⊂ Nh,k(n).

Denote by Wh,k(n) the set of all nonprimitive partial words with h holes of length n over A
obtained by replacing any h positions with �’s in nonprimitive full words of length n over A. The
following holds:

Wh,k(n) =
⋃

w∈N0,k(n)

N (Sh(w)) =
⋃

w∈N0,k(n)

Sh(w)

Obviously,

‖Wh,k(n)‖ ≤
(

n

h

)
N0,k(n)

The following lemma states that, given w a full primitive word, the nonprimitive partial word
obtained by replacing h positions in w with �’s must be in Sh(v) for some nonprimitive full word v.
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Lemma 5. If w ∈ P0,k(n), then Sh(w) ⊂ Sh(v) ∪ Ph,k(n) for some v ∈ N0,k(n).

Proof. Let w ∈ P0,k(n). If wi1,...,ih ∈ Sh(w) is nonprimitive, then there exists a full word u such
that wi1,...,ih ⊂ ui for some i ≥ 2. The word v = ui is such that wi1,...,ih ∈ Sh(v).

4.1 The one-hole case

The one-hole case is stated in the next theorem.

Theorem 5. The equality N1,k(n) = nN0,k(n) holds.

Proof. We first prove by contradiction that if u, v are distinct nonprimitive full words, then S1(u)∩
S1(v) = ∅. Suppose there exists wi a word of length n such that wi ∈ S1(u) ∩ S1(v). It follows
that wi = u[0..i)�u[i + 1..n) and also wi = v[0..i)�v[i + 1..n). Thus u(j) = v(j) for all j such
that 0 ≤ j < n, j 6= i. Denote by lu, lv the lengths of the primitive roots of u, v and note that
lu ≤ n/2, lv ≤ n/2. We restrict ourselves to the situation when i ≥ lu, otherwise we may just
consider the reversals of the words u, v.

Case 1. lu = lv
It follows that u(i) = u(i mod lu) = v(i mod lu) = v(i mod lv) = v(i), thus u(i) = v(i) which

implies that u = v, but this contradicts our assumption.
Case 2. lu 6= lv

Let d = gcd(lu, lv). Since wi is both lu- and lv- periodic, and lu + lv ≤ n/2 + n/2 = n, it follows
from Theorem 2 that wi is also d-periodic. This implies that both u and v must be d-periodic
and thus u(i) = u(i mod d) = v(i mod d) = v(i). It thus follows that u = v which contradicts our
assumption.

Now, according to Lemma 4, W1,k(n) ⊂ N1,k(n). By Lemma 5, all nonprimitive pwords obtained
by replacing a position with � in a primitive full word can also be derived by replacing a position with
� in a nonprimitive full word. In other words, a primitive full word cannot generate a nonprimitive
pword which cannot be generated by some nonprimitive full word. By considering both primitive
and nonprimitive full words as generators, we have generated all possible partial words with one
hole, and of course generated the set N1,k(n). We can now say that W1,k(n) = N1,k(n) and thus

N1,k(n) = ‖N1,k(n)‖ = ‖W1,k(n)‖ = ‖
⋃

w∈N0,k(n)

S1(w)‖ = nN0,k(n)

Corollary 1. The equality P1,k(n) = n(P0,k(n) + kn−1 − kn) holds.

Proof. The result follows from the following list of equalities:

P1,k(n) = T1,k(n)−N1,k(n)
= T1,k(n)− nN0,k(n)
= T1,k(n)− n(T0,k(n)− P0,k(n))
= nkn−1 − nkn + nP0,k(n)
= n(P0,k(n) + kn−1 − kn)
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4.2 The two-hole case

The two-hole case is stated in the next two theorems.

Theorem 6. For an odd positive integer n, the following equality holds:

N2,k(n) =
(

n

2

)
N0,k(n)

Proof. If u, v are distinct nonprimitive full words of length n, then S2(u) ∩ S2(v) = ∅. Indeed,
suppose there exists a pword w ∈ S2(u)∩S2(v) such that ui1,i2 = w and vi1,i2 = w. Thus u(i) = v(i)
for all i such that 0 ≤ i < n, i 6= i1, i2. Since w ∈ N2,k(n) and n is odd, w is not a 2-repeat. It is
easy to see that in this case, there are no free �’s in w, that is, there exist j1, j2 ∈ D(w) such that
j1 ≡ i1 mod d and j2 ≡ i2 mod d for each exact period d. This means that in the words u and v,
there exists only one pair of assignments for u(i1), u(i2) and v(i1), v(i2) respectively, since we have
already shown in Lemma 3 that ν(w) = 1. It follows that u(i1) = v(i1) and u(i2) = v(i2) implying
that u = v which contradicts our assumption. Similarly to the proof of Theorem 5, since the sets
in the union

⋃
w∈N0,k(n) Sh(w) are pairwise disjoint, we may conclude that

N2,k(n) = ‖W2,k(n)‖ =
(
n
2

)
N0,k(n)

Theorem 7. For an even positive integer n, the following equality holds:

N2,k(n) =
(

n

2

)
N0,k(n)− (k − 1)T1,k(

n

2
)

Proof. It suffices to show that a number of T1,k(n
2 ) words are counted k times each. Let w be a

nonprimitive word of even length that generates the partial word wi,j . Assume n ≥ 4. If wi,j is not
an n

2 -repeat, then there are at least three occurrences of the base of length ≤ n
3 . It follows that

there are no free �’s, which means that the generator w is unique. Assume now that wi,j has an
exact period d = n

2 . If i and j do not belong to the same class modulo d, then again wi,j is uniquely
generated since there are no free �’s. Now, suppose i ≡ j mod d and consider again the pword wi,j :

wi,j = a0 a1 . . . ai−1 � ai+1 . . . ad−1

ad ad+1 . . . aj−1 � aj+1 . . . an−1

Note that in this case we have a pair of free �’s, which means that in the initial word w, the letter
at positions i and j can be any letter in the alphabet, thus a total of k possibilities. The number
of partial words u of length n

2 with one hole is T1,k(n
2 ). Note that all possible pwords of the form

uu can each be generated by k different words in N0,k(n). Removing k − 1 copies of such words
leaves us with a total of 1

2n(n− 1)N0,k(n)− (k − 1)T1,k(n
2 ), which is what we wanted.

Corollary 2. The following holds:

P2,k(n) =
{ (

n
2

)
(P0,k(n) + kn−2 − kn) if n is odd(

n
2

)
(P0,k(n) + kn−2 − kn) + (k − 1)T1,k(n

2 ) if n is even
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Proof. If n is odd, then using Theorem 6 we have the following list of equalities:

P2,k(n) = T2,k(n)−N2,k(n)

= T2,k(n)−
(

n

2

)
N0,k(n)

=
(

n

2

)
kn−2 −

(
n

2

)
(T0,k(n)− P0,k(n))

=
(

n

2

)
kn−2 −

(
n

2

)
(kn − P0,k(n))

=
(

n

2

)
(P0,k(n) + kn−2 − kn)

The case when n is even follows from Theorem 7.

4.3 The three-hole case

In this section, we discuss the three-hole case. We start with three lemmas (the first holding for
any number of holes).

Lemma 6. If w ∈ Nh,k(n) and w has no free �’s with respect to any of its exact periods, then there
exist ν(w) words in N0,k(n) that generate w.

Proof. Let i1 < i2 < · · · < ih be the elements in H(w). For p ∈ R(w), let the h-tuple (bi1 , . . . , bih)
be the image of (i1, . . . , ih) under fp (here bij ∈ A for all j). Obviously, replacing for all j the � in
position ij with the corresponding letter bij yields a full nonprimitive word that generates w. Since
we showed in Lemma 1 that f is bijective on R(w), it follows that there are ν(w) = ‖R(w)‖ full
words that generate w.

Lemma 7. If w ∈ N3,k(n) and w has three free �’s, then there exist kT1,k(n
3 ) words in N0,k(n) that

generate w.

Proof. The pword w has three free �’s only if it is a 3-repeat, that is, w ⊂ v3 for some pword
v ∈ T1,k(n

3 ). There also must exist some i, 0 ≤ i < n
3 such that Bn

3
(i) = {�}. Let v′ denote the full

word obtained by replacing the � at position i in v with any letter in A. The resulting full word
(v′)3 is a generator for w. Since there are k choices to replace the � in v with a letter, it means that
k possible full words generate w. Since the total number of words in N3,k(n) that are 3-repeats is
given by T1,k(n

3 ), it follows that kT1,k(n
3 ) words in N0,k(n) generate w.

Lemma 8. If w ∈ N3,k(n) and w has two free �’s, then there exist k(n−2)T1,k(n
2 ) words in N0,k(n)

that generate w.

Proof. If w has two free �’s, then it must be a 2-repeat, that is, w ⊂ v2 for some pword v ∈ T1,k(n
2 ).

There must exist some i, j, 0 ≤ i, j < n
2 such that Bn

2
(i) = {�} and Bn

2
(j) = {�, a} for some

a ∈ A. Let v′ denote a full word obtained by replacing the �’s at positions i, i + n
2 within w with

any letter in A and the � at position j with the letter a. There are k choices to replace the �’s at
positions i, i + n

2 with a letter. Also, note that there are (n− 2)T1,k(n
2 ) words in N3,k(n) that have

a pair of free �’s since there are n− 2 positions where we can place the third �. Overall, there are
k(n− 2)T1,k(n

2 ) words in N0,k(n) that generate w.
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We have seen that distinct w′’s ∈ N0,k(n) can generate the same w ∈ N3,k(n) whenever w has
free �’s or ‖R(w)‖ > 1. Denote by K0

h,k(n) the set of pwords u with h holes such that u has no free
�’s and ‖R(u)‖ = 1. Let K2

h,k(n) (respectively, K3
h,k(n)) denote the set of pwords u with h holes

such that u has two (respectively, three) free �’s (such words must have ‖R(u)‖ = 1). Finally, let
Mh,k(n) denote the set of pwords with h holes, no free �’s and ‖R(w)‖ = ν(w) > 1. We may now
conclude the following theorem.

Theorem 8. The sets K0
h,k(n), K2

h,k(n), K3
h,k(n) and Mh,k(n) represent a partition of N3,k(n).

Let us now subtract from
(
n
3

)
N0,k(n) all the words that have been doubly counted. For a set A

we denote by π(A) the number of times each word in A has been counted in
(
n
3

)
N0,k(n).

For n a positive integer, we say that set X (n) with X (n) ⊂ D(n) is a θ-set if ‖X (n)‖ ≥ 2, no
element in X (n) is a multiple of another and X (n) is maximal. Let Ψ(n) = {X (n) | X (n) is a
θ-set}.

Example 2. Computations show that:

n D(n) Ψ(n)
6 {2, 3} {{2, 3}}
12 {2, 3, 4, 6} {{2, 3}, {3, 4}, {4, 6}}
30 {2, 3, 5, 6, 10, 15} {{2, 3, 5}, {2, 15}, {3, 5}, {3, 10}, {5, 6}, {6, 10, 15}}

If X (n) is a θ-set, then we denote by Mh,k(n,X (n)) the set of pwords w such that R(w) = X (n).
If Xi(n) 6= Xj(n), then Mh,k(n,Xi(n)) ∩Mh,k(n,Xj(n)) = ∅. Finally, let

Ω(n) =
∑

Xi(n)∈Ψ(n)

‖Mh,k(n,Xi(n))‖‖Xi(n)‖

The table below summarizes how many times the elements in each set have been counted in(
n
3

)
N0,k(n):

A ‖A‖ π(A)
K0

h,k(n) 1
K2

h,k(n) (n− 2)T1,k(n
2 ) k

K3
h,k(n) T1,k(n

3 ) k

Mh,k(n) Ω(n)

Theorem 9. The following equality holds:

N3,k(n) =
(

n

3

)
N0,k(n)− (k − 1)(n− 2)T1,k(

n

2
)− (k − 1)T1,k(

n

3
)−

∑
Xi(n)∈Ψ(n)

‖Mh,k(n,Xi(n))‖(‖Xi(n)‖ − 1)

Whenever n 6≡ 0 mod j, we let T1,k(n
j ) = 0.
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5 Counting primitive partial words: Second method

We now count nonprimitive partial words of length n with h holes over a k-size alphabet A through
a constructive method. Here, we refine the counting done in the previous sections. Section 5.1
considers the one-hole case, Section 5.2 the two-hole case, and Section 5.3 the three-hole case.

If w is a nonprimitive pword of length n with h holes over A and d is the smallest integer
such that there exists a pword v satisfying w ⊂ vn/d, then the proot of w is the pword w[0..d). Let
RPh,k(n, d, h′) (respectively, RN h,k(n, d, h′)) denote the set of nonprimitive pwords of length n with
h holes over A with a primitive (respectively, nonprimitive) proot having length d and containing
h′ holes. Denote by Rh,k(n, d) the set of nonprimitive pwords with h holes of length n over A
with a proot of length d. Using the notation RPh,k(n, d, h′) = ‖RPh,k(n, d, h′)‖, RNh,k(n, d, h′) =
‖RN h,k(n, d, h′)‖ and Rh,k(n, d) = ‖Rh,k(n, d)‖, the following equality holds

Rh,k(n, d) =
h∑

h′=0

(RPh,k(n, d, h′) + RNh,k(n, d, h′))

The set Nh,k(n) is generated by considering all possible proots of length d ∈ D(n). Different cases
occur: The proot belongs to Ph′,k(d) for some h′ = 0, . . . , h, or the proot belongs to Nh′,k(d)
for some h′ = 1, . . . , h. Note that, in order to avoid double counting, we will never generate
nonprimitive pwords starting with a nonprimitive full proot. Therefore, we may always assume
that RNh,k(n, d, 0) = 0. Given a proot w[0..d) with h′ holes, we build the corresponding temporary
pword t = (w[0..d))n/d. We transform t to generate nonprimitive pwords by replacing letters with
�’s, or vice versa, while the proot remains unchanged. There result pwords containing h holes and
having proot w[0..d).

We illustrate the abovementioned ideas with the computation of N1,2(8). Note that the set of
lengths of proots is {1, 2, 4}. The computations below lead to the equality N1,2(8) = R1,2(8, 1) +
R1,2(8, 2) + R1,2(8, 4) = 16 + 16 + 96 = 128.

If the length of the proot is 1, then w ⊂ v8. There are kn = 16 ways to build such a pword of
length 8 with one hole over A, and thus R1,2(8, 1) = 16.

Now, if the length of the proot is 2, then w ⊂ v4. Note that the proot cannot be a primitive
partial word with one hole since P1,2(2) = 0, and it follows that RP1,2(8, 2, 1) = 0. We can therefore
split all possible nonprimitive pwords with a proot of length 2 into two sets, based on the nature
of the proot. First, if the proot is a primitive full word, then it belongs to the set {ab, ba} and
we obtain the temporary words t1 = abababab and t2 = babababa. To obtain nonprimitive pwords
with one hole, we replace any of the last six positions in t1 or t2 with �. Note that replacing any
of the first two positions with �, thus in the proot, would take us to the previous case, and we
would be doubly counting. Six new nonprimitive pwords can be derived from each of the t’s and
thus RP1,2(8, 2, 0) = 12. Second, if the proot is a nonprimitive partial word with one hole, then
it belongs to the set {a�, b�, �a, �b}. There is only one way to build nonprimitive partial words
with such proots. For example, if the proot is a�, then the only possibility is a�ababab. Note that
a�aaaaaa is not a possibility since it has already been taken into account. Thus, RN1,2(8, 2, 1) = 4
and the equality R1,2(8, 2) = RP1,2(8, 2, 0) + RP1,2(8, 2, 1) + RN1,2(8, 2, 1) = 16 holds.

Last, if the length of the proot is 4, then w ⊂ v2 and again, we split all possible nonprimitive
partial words with a proot of length 4 into sets (three sets here), based on the nature of the proot.
First, if the proot is a primitive full word, then it belongs to a set of cardinality P0,2(4) = 12.
To obtain nonprimitive partial words, we may replace any of the last four positions with � and
RP1,2(8, 4, 0) = 48. Now, if the proot is a primitive partial word with one hole, then it belongs
to a set of cardinality P1,2(4) = 16. For example, if the proot is �abb, then the temporary pword
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is t = �abb�abb. In place of the second �, we can put either an a or a b thus obtaining �abbaabb
and �abbbabb, both nonprimitive partial words. Thus, RP1,2(8, 4, 1) = 32. Finally, if the proot is a
nonprimitive partial word with one hole, then it belongs to the set

{aaa�, aa�a, a�aa, �aaa, aba�, ab�b, a�ab, �bab}

unioned with the set containing the pwords obtained by switching a with b, for a total of N1,2(4) = 16
proots. There is only one way to build a nonprimitive pword with one hole from such proots. If
the proot is aaa�, then the only possibility is aaa�aaab. Similarly, for the proot aba�, the only
nonprimitive pword that can be built with this proot is aba�abaa. Note that the temporary pword
in this case is t = aba�aba�, but the second � can be replaced by any letter, except the one letter
which will make the pword a 4-repeat with a proot of length 2 (this case has already been taken into
account). Thus, RN1,2(8, 4, 1) = 16 and the equality R1,2(8, 4) = RP1,2(8, 4, 0) + RP1,2(8, 4, 1) +
RN1,2(8, 4, 1) = 48 + 32 + 16 = 96 holds.

Note that for two distinct d1, d2, we have R1,2(8, d1) ∩R1,2(8, d2) = ∅.
The following lemma proves that we are not doubly counting any nonprimitive pwords.

Lemma 9. Given a proot w[0..d) of length d ∈ D(n), the nonprimitive pwords (with one or two
holes) generated from w[0..d) have their smallest exact period equal to d.

Proof. The analysis we are about to perform is similar for the case when we count nonprimitive
pwords with two holes. Suppose that during the process of transforming a temporary pword t the
resulting pword w ∈ N1,k(n) has an exact period d′ with d′ < d. There are four cases we need to
consider, depending on whether the proot is a primitive or nonprimitive pword or whether d′ is a
divisor of d or not. If d′ is not a divisor of d, then let l = gcd(d, d′) with l 6= d′.

Case 1. w[0..d) is nonprimitive and d′|d
This case cannot occur since we subtract the value of ν(w[0..d)) = 1 from the total number of

options available to replace the extra �’s in t.
Case 2. w[0..d) is nonprimitive and d′6 |d

Since d, d′ ∈ E(w) it follows from Theorem 2 that l ∈ E(w). We are now back in the previous
case and no double counting occurs. The reason is that, the pwords w which we are trying to avoid
when transforming t have already been avoided in the previous case.

Case 3. w[0..d) is primitive and d′|d
This case is easy to deal with simply because of the primitivity of w[0..d). Since w is d′-periodic

and d′|d, then w[0..d) must also be d′-periodic and thus nonprimitive, which is a contradiction.
Case 4. w[0..d) is primitive and d′6 |d

Since d, d′ ∈ E(w) it follows from Theorem 2 that l ∈ E(w). Since w = w[0..d)v for some pword
v and w is d-periodic and l-periodic and l|d it follows that w[0..d) has l as exact period and is thus
nonprimitive. This again involves a contradiction with w[0..d) being a primitive pword.

We have now proved that given a proot of length d, the nonprimitive pwords derived from it
will always have their smallest exact period equal to d.

5.1 The one-hole case

The following theorem gives the main result on counting nonprimitive partial words with one hole
of length n over A.

Theorem 10. The following equality holds:

N1,k(n) = kn +
∑

d|n, d6=1,n

((n− d)P0,k(d) + kP1,k(d) + (k − 1)N1,k(d)) (1)
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Proof. Let w be a nonprimitive pword of length n with one hole over A. Let d be the smallest
integer such that there exists a pword v satisfying w ⊂ vn/d. Note that d ∈ D(n). The case when
d = 1 can be easily dealt with. There are kn ways we can build a nonprimitive pword of length n
with one hole over A, and thus R1,k(n, 1) = kn. Consider now the case when d ∈ D(n) \ {1}. We
split the proof into three cases based on the nature of the proot w[0..d), and we set t = (w[0..d))n/d.

Case 1. First, if the proot is a primitive full word, then it belongs to a set of P0,k(d)
elements. Transforming t into a nonprimitive pword with one hole requires that we place a �
anywhere in t, except in the positions 0, . . . , d − 1. Since there is a total of n − d such positions,
we get

RP1,k(n, d, 0) = (n− d)P0,k(d)

Case 2. Now, if the proot is a primitive partial word with one hole, then it belongs to a set
of P1,k(d) elements. To obtain a nonprimitive pword of length n with one hole, we need to replace
in t all the holes, except the first one, with letters in A. Note that once a hole has been replaced
with a letter, all remaining holes must be replaced by the same letter. There are k ways we can
replace a hole with a letter, thus

RP1,k(n, d, 1) = kP1,k(d)

Case 3. Finally, if the proot is a nonprimitive partial word with one hole, then it belongs
to a set of N1,k(d) elements. Transforming t into a nonprimitive partial word with one hole requires
that all holes, except the first one (in the proot), be replaced by a letter in A. Note that once
the second hole is replaced by a letter, all remaining holes need to be replaced by the same letter.
When replacing the holes, we have all k letters available, except that set of letters that would lead
to a nonprimitive pword with one hole and a proot shorter than d, a case that we have already
taken into account. Since ν(w[0..d)) = 1, there are k − ν(w[0..d)) = k − 1 nonprimitive partial
words with one hole that can be obtained from the temporary pword t above and which have not
been counted in previous cases. Since there are N1,k(d) such temporary pwords, it follows that

RN1,k(n, d, 1) = (k − 1)N1,k(d)

Therefore, the total number of nonprimitive partial words with one hole of length n over A with
a proot of length d is

R1,k(n, d) = RP1,k(n, d, 0) + RP1,k(n, d, 1) + RN1,k(n, d, 1)
= (n− d)P0,k(d) + kP1,k(d) + (k − 1)N1,k(d)

Denoting by N the right hand side of (1), we want to prove that N1,k(n) = N . Note that for
a given d, the three cases above cover all possible proots of length d. We do not consider the case
of nonprimitive full roots because this falls into the case of full primitive proots with length d′

satisfying d′ < d. Also, once a proot is fixed, we always consider all possible ways the temporary
pword t can be transformed into a nonprimitive partial word with one hole, provided we keep the
proot unchanged. Modifying the proot by substituting a letter for a � or vice versa, would lead
to a nonprimitive word with a different proot (shorter or longer), something that has already been
accounted in a different case. We are thus covering all possible nonprimitive partial words with one
hole, which implies that N ≥ N1,k(n).

We must now prove that N ≤ N1,k(n). For a given proot of length d, it holds that the
sets RP1,k(n, d, 0),RP1,k(n, d, 1) and RN 1,k(n, d, 1) are pairwise disjoint. The reason is that the
generating proots for each of the sets are different, as they belong to three different pairwise disjoint
sets: P0,k(d),P1,k(d) and N1,k(d). In each of the three cases, the proot is different to start with, and
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recall that proots remain unchanged throughout the process of transforming a temporary pword
into a nonprimitive partial word. Thus, for all three cases, the resulting nonprimitive partial words
will be different. Let r1, r2 be proots of length d1, d2 ∈ D(n), with 1 < d1 < d2 < n, and u, v be
any pwords such that u ∈ R1,k(n, d1) and v ∈ R1,k(n, d2). Using Lemma 9, u and v have their
smallest exact period equal to d1, respectively d2. From d1 6= d2 it follows that u 6= v. Since u, v
were any words in R1,k(n, d1), respectively R1,k(n, d2), it follows that R1,k(n, d1)∩R1,k(n, d2) = ∅.
Since d1, d2 are any proper divisors of n, it holds that⋂

di∈D(n)

R1,k(n, di) = ∅

This proves that no double counting occurs and thus N ≤ N1,k(n).

Example 3. Theorem 10 implies that N1,2(8) = 128 matching the computations of the previous
section. Indeed,

N1,2(8) = 16 +
∑

d∈{2,4}

((8− d)P0,2(d) + 2P1,2(d) + (2− 1)N1,2(d))

= 16 + 12 + 0 + 4 + 48 + 32 + 16
= 128

The formula of Theorem 10 can be further reduced.

Corollary 3. The equality N1,k(n) = nN0,k(n) holds.

Proof. We prove the equality N1,k(n) = nN0,k(n) by induction on n using Theorem 10. For n = 1,
the result trivially holds since N1,k(1) = N0,k(1) = 0. Assuming the equality holds for all positive
integers smaller than n, we get the following sequence of equalities:
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N1,k(n) = kn +
∑

d|n, d6=1,n

((n− d)P0,k(d) + kP1,k(d) + (k − 1)N1,k(d))

= kn + k
∑

d|n, d6=1,n

(P1,k(d) + N1,k(d)) +
∑

d|n,d6=1,n

((n− d)P0,k(d)−N1,k(d))

= kn + k
∑

d|n, d6=1,n

T1,k(d) +
∑

d|n,d6=1,n

((n− d)P0,k(d)− dN0,k(d))

= kn + k
∑

d|n, d6=1,n

T1,k(d) + n
∑

d|n,d6=1,n

P0,k(d)−
∑

d|n,d6=1,n

(dP0,k(d) + dN0,k(d))

= kn + k
∑

d|n, d6=1,n

dkd−1 + n
∑

d|n,d6=1,n

P0,k(d)−
∑

d|n,d6=1,n

dT0,k(d)

= kn +
∑

d|n, d6=1,n

dkd + n
∑

d|n,d6=1,n

P0,k(d)−
∑

d|n,d6=1,n

dkd

= kn + n
∑

d|n, d6=1,n

P0,k(d)

= n(
∑

d|n, d6=1,n

P0,k(d) + k)

= n(
∑

d|n, d6=1,n

P0,k(d) + P0,k(1) + P0,k(n)− P0,k(n))

= n(
∑
d|n

P0,k(d)− P0,k(n))

= n(kn − P0,k(n))
= n(T0,k(n)− P0,k(n))
= nN0,k(n)

5.2 The two-hole case

The following theorem holds.

Theorem 11. The number of nonprimitive partial words with two holes of length n over a k-size
alphabet, N2,k(n), is equal to(

n
2

)
k +

∑
d|n,d6=1,n(RP2,k(n, d, 0) + RP2,k(n, d, 1) + RP2,k(n, d, 2) + RN2,k(n, d, 1) + RN2,k(n, d, 2))

where

RP2,k(n, d, 0) =
(

n− d

2

)
P0,k(d) (2)

RP2,k(n, d, 1) =
{

k(n− d)P1,k(d) if d 6= n
2

(k(n− d)− (k − 1))P1,k(d) if d = n
2

(3)
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RN2,k(n, d, 1) =
{

(k − 1)(n− d)N1,k(d) if d 6= n
2

(k − 1)(d− 1)N1,k(d) if d = n
2

(4)

RP2,k(n, d, 2) = k2P2,k(d) (5)

RN2,k(n, d, 2) =
{

(k2 − 1)N2,k(d)− (k − 1)T1,k(d
2) if d is even

(k2 − 1)N2,k(d) if d is odd
(6)

Proof. We give a constructive algorithm for nonprimitive pwords and prove that, along the process
of building them, no pwords are missed or double counted.

Let w be a nonprimitive pword of length n with two holes over A, and let d be the smallest
integer such that there exists a pword v satisfying w ⊂ vn/d. The case when d = 1 can be easily
dealt with since there are

(
n
2

)
k ways of building such a nonprimitive pword. Consider now the

case when d ∈ D(n) \ {1}. We split the proof into five cases based on the nature of the proot
w[0..d) = a0a1 . . . ad−1, and we set t = (w[0..d))n/d. If w[0..d) has h′ holes, then let 0 ≤ i1 < i2 <
· · · < ih′ < d be such that aij = �. Define

Cd = {l | d ≤ l < n and l 6≡ i1 mod d, . . . , l 6≡ ih′ mod d}
Dd(ij) = {l | d ≤ l < n and l ≡ ij mod d} for all 1 ≤ j ≤ h′

Note that ‖Cd‖ = (n
d − 1)(d− h′) and ‖Dd(ij)‖ = n

d − 1. Recall that Lemma 9 guarantees that no
double counting will occur.

Case 1. w[0..d) ∈ P0,k(d)
We need to replace two positions by �’s anywhere in t, except in the proot. There is a total of

n− d such positions and thus Equality (2) holds.
Case 2. w[0..d) ∈ P1,k(d)

At this point, all symbols at positions from set Dd(i1) are �’s and all those in Cd are letters.
After transforming t into a pword in N2,h(n), there must remain only one � in the last n − d
positions. This can be achieved in two ways, by placing a � in position j with either j ∈ Cd or
j ∈ Dd(i1).

Let us first consider the case where j ∈ Cd. There are ‖Cd‖ options where to place the second �
and k choices to pick a letter to replace the positions in Dd(i1). Note that once a position from set
Dd(i1) has been replaced, all others must be replaced by the same letter. This case yields a total
of k(n

d − 1)(d− 1) choices.
Let us now consider the case where j ∈ Dd(i1). Note that this can be done in ‖Dd(i1)‖ ways

and that all positions in Cd remain unchanged. We are now left with ‖Dd(i1)‖−1 �’s to be replaced
with the same letter. This can be done in k ways provided that ‖Dd(i1)‖ − 1 > 0, thus a total
of k‖Dd(i1)‖ options. If ‖Dd(i1)‖ − 1 = 0, which implies that d = n/2, then this case yields only
‖Dd(i1)‖ = 1 option, that is w = w[0..d)w[0..d).

Thus, for d 6= n
2 we have

RP2,k(n, d, 1) = (k(n
d − 1)(d− 1) + k(n

d − 1))P1,k(d) = k(n− d)P1,k(d)

and if d = n
2 then

RP2,k(n, d, 1) = (k(d− 1) + 1)P1,k(d) = (k(n− d)− (k − 1))P1,k(d)

Putting the two cases together we have that Equality (3) holds.
Case 3. w[0..d) ∈ N1,k(d)

The approach for this case is similar to the one for Case 2. We replace position j in t with �.
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Let us first consider the case where j ∈ Cd. There are ‖Cd‖ options where to place the second
�, but this time only k − ν(w[0..d)) letters available to replace the �’s at positions from Dd(i1).
This last restraint guarantees that the generated pword w will not have an exact period less than
d, in other words the proot of w remains unchanged.

Let us now consider the case where j ∈ Dd(i1). If d 6= n
2 , then there are ‖Dd(i1)‖ options to

place the second � and k − ν(w[0..d)) letters available to replace the remaining �’s from positions
within set Dd(i1), thus a total of (k−ν(w[0..d)))(n

d −1) options. If d = n
2 , then there is no solution

since w = w[0..d)w[0..d) would have a shorter proot.
Thus for d 6= n

2 , RN2,k(n, d, 1) = ((k−ν(w[0..d)))(n
d−1)(d−1)+(k−ν(w[0..d)))(n

d−1))N1,k(d) =
(k−ν(w[0..d)))(n−d)N1,k(d). If d = n

2 , then RN2,k(n, d, 1) = (k−ν(w[0..d)))(d−1)N1,k(d). Keeping
in mind that ν(w[0..d)) = 1, we have that Equality (4) holds.

Case 4. w[0..d) ∈ P2,k(d)
We must replace all positions from the set Dd(i1) with the same letter, and similarly for Dd(i2).

There are k2 options to choose these two letters and thus Equality (5) holds.
Case 5. w[0..d) ∈ N2,k(d)

First, let us consider the case where w[0..d) has a pair of free �’s. Of course, this can happen
only when w[0..d) is d

2 -periodic. It is easy to see that the number of pwords w[0..d) of the form
w[0..d) = uu, where u is a pword with one hole, is equal to T1,k(d/2). We now have k options to
replace the �’s from positions in set Dd(i1) and only k− 1 for the �’s from positions within Dd(i2).
The reason why these two letters cannot be the same is because the resulting pword would have a
shorter proot, that is u.

Let us now consider the case where w[0..d) does not have a pair of free �’s. In this case, we
need again to take into account the parameter ν(w[0..d)). We now need to replace all the �’s from
positions in Dd(i1) and Dd(i2) with letters. In order to prevent w from having a proot shorter than
d, we must allow only k2− ν(w[0..d)) options for choosing the two letters. Since ν(w[0..d)) = 1, we
may now conclude that Equality (6) holds.

Note that if we disregard the particular case d = n
2 , the number of nonprimitive pwords with

two holes generated by primitive proots can be summarized as follows:

RP2,k(n, d) =
2∑

h′=0

kh′
(

n− d

2− h′

)
Ph′,k(d)

The formula of Theorem 11 can be further reduced.

Corollary 4. For an odd positive integer n, the following equality holds:

N2,k(n) =
(

n

2

)
N0,k(n)

Proof. Setting n = 2m + 1, we prove the desired equality by induction on m. For m = 1, the
result trivially holds since N2,k(3) =

(
3
2

)
k =

(
3
2

)
N0,k(3). Assume the equality holds for all positive

integers smaller than m. Note that since n is odd, each divisor d of n is odd and so d 6= n
2 . We

have N2,k(n) =(
n
2

)
k+

∑
d|n, d6=1,n(

(
n−d

2

)
P0,k(d)+k(n−d)P1,k(d)+(k−1)(n−d)N1,k(d)+k2P2,k(d)+(k2−1)N2,k(d))
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Note that

k(n− d)P1,k(d) + (k − 1)(n− d)N1,k(d) = k(n− d)T1,k(d)− (n− d)N1,k(d)

= k(n− d)
(

d

1

)
kd−1 − (n− d)dN0,k(d)

= (n− d)dkd − (n− d)dN0,k(d)
= (n− d)dT0,k(d)− (n− d)dN0,k(d)
= (n− d)dP0,k(d)

Similarly

k2P2,k(d) + (k2 − 1)N2,k(d) = k2T2,k(d)−N2,k(d)

= k2

(
d

2

)
kd−2 −

(
d

2

)
N0,k(d)

=
(

d

2

)
kd −

(
d

2

)
N0,k(d)

=
(

d

2

)
T0,k(d)−

(
d

2

)
N0,k(d)

=
(

d

2

)
P0,k(d)

We hence have the following sequence of equalities:

N2,k(n) =
(

n

2

)
k +

∑
d|n, d6=1,n

((
n− d

2

)
P0,k(d) + (n− d)dP0,k(d) +

(
d

2

)
P0,k(d)

)

=
(

n

2

)
k +

∑
d|n, d6=1,n

(
n

2

)
P0,k(d)

=
(

n

2

)
k +

(
n

2

) ∑
d|n, d6=1,n

P0,k(d)

=
(

n

2

)
(

∑
d|n, d6=1,n

P0,k(d) + k)

=
(

n

2

)
(

∑
d|n, d6=1,n

P0,k(d) + P0,k(1) + P0,k(n)− P0,k(n))

=
(

n

2

)
(
∑
d|n

P0,k(d)− P0,k(n))

=
(

n

2

)
(kn − P0,k(n))

=
(

n

2

)
(T0,k(n)− P0,k(n))

=
(

n

2

)
N0,k(n)
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5.3 The three-hole case

Unlike the one- or two-hole case, it may happen that ν(w) 6= 1 when w has three holes. For
instance, if w = ab���b then f2(2, 3, 4) = (a, b, a) and f3(2, 3, 4) = (b, a, b), and thus ν(w) = 2.
Note that Lemma 9 does not hold anymore for the three-hole case and so we need to consider
further modifications to our algorithm. We want to make sure we will not be doubly counting
any nonprimitive pwords during the process of generating from a given proot. The parameters
ΦN

n,h,k(d, h′) and ΦP
n,h,k(d, h′) will play an important role (they were defined earlier in Section

3). The Φ parameters allow us to avoid generating the word w = aabaaa�a�a�a from the proot
r = aabaaa. Note that we avoid generating w = cd���d from w[0..d) = cd�.

Lemma 10. Given a proot w[0..d) of length d ∈ D(n), the nonprimitive pwords with three holes
generated from w[0..d) have their smallest exact period equal to d.

Proof. Suppose that during the process of transforming a temporary pword t the resulting pword
w ∈ N3,k(n) has an exact period d′ with d′ < d. There are three cases we need to consider,
depending on whether the proot is a primitive or nonprimitive pword and whether d′ is a divisor
of d or not. If d′ is not a divisor of d, then let l = gcd(d, d′) with l 6= d′.

Case 1. w[0..d) is nonprimitive and d′|d
This case cannot occur since we were careful to subtract the value of ν(w[0..d)) from the total

number of options available to replace any extra �’s in t.
Case 2. w[0..d) is primitive and d′|d

Since w = w[0..d)v for some pword v and w is d-periodic and d′-periodic and d′|d it follows that
w[0..d) must also be d′-periodic and thus nonprimitive. This again involves a contradiction with
w[0..d) being a primitive pword.

Case 3. d′6 |d
We avoid the double counting that may arise from this case by making use of the parameters

φP
n,h,k(w[0..d)) and ΦP

n,h,k(d, h′) and their equivalents for the case when w[0..d) is nonprimitive.
From the set of all pwords w generated from a proot w[0..d), we remove those w’s which have their
smallest exact period shorter than d, that is, the number of pwords satisfying φP

n,h,k(w[0..d)) ≥ 1
(or φN

n,h,k(w[0..d)) ≥ 1).

Theorem 12. The number of nonprimitive partial words with three holes of length n over a k-size
alphabet, N3,k(n), is equal to(

n
3

)
k +

∑
d|n,d6=1,n(RP3,k(n, d, 0) + RP3,k(n, d, 1) + RP3,k(n, d, 2) + RP3,k(n, d, 3)+

RN3,k(n, d, 1) + RN3,k(n, d, 2) + RN3,k(n, d, 3))

where

RP3,k(n, d, 0) =
(

n− d

3

)
P0,k(d)− ΦP

n,3,k(d, 0) (7)

RP3,k(n, d, 1) = −ΦP
n,3,k(d, 1) + P1,k(d)


(
k
((n

d
−1)(d−1)

2

)
+ (n

d − 1)(d− 1)
)

if d = n
2(

k
((n

d
−1)(d−1)

2

)
+ k(n

d − 1)(d− 1) + 1
)

if d = n
3

k
(
n−d

2

)
otherwise

(8)
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RN3,k(n, d, 1) = −ΦN
n,3,k(d, 1) + N1,k(d)


(k − 1)

((n
d
−1)(d−1)

2

)
if d = n

2

(k − 1)
(((n

d
−1)(d−1)

2

)
+ (n

d − 1)2(d− 1)
)

if d = n
3

(k − 1)
(
n−d

2

)
otherwise

(9)

RP3,k(n, d, 2) = −ΦP
n,3,k(d, 2) + P2,k(d)

{
k2(n

d − 1)(d− 2) + 2k(n
d − 1) if d = n

2

k2
(
n−d

1

)
if d 6= n

2

(10)

RN3,k(n, d, 2) = −ΦN
n,3,k(d, 2) +

{
τ T1,k(d

2) + ρ (N2,k(d)− T1,k(d
2)) if d is even

ρ N2,k(d) if d is odd
(11)

RP3,k(n, d, 3) = k3P3,k(d)− ΦP
n,3,k(d, 3) (12)

RN3,k(n, d, 3) =


λ(T1,k(d

3) + T1,k(d
2)) + γ(N3,k(d)− T1,k(d

3)− T1,k(d
2)) if d ≡ 0 mod 6

γN3,k(d) if d ≡ 1, 5 mod 6
λT1,k(d

2) + γ(N3,k(d)− T1,k(d
2)) if d ≡ 2, 4 mod 6

λT1,k(d
3) + γ(N3,k(d)− T1,k(d

3)) if d ≡ 3 mod 6
(13)

where

τ =
{

(n
d − 1)(d− 2)(k2 − k) if d = n

2
(n− d)(k2 − k) if d 6= n

2

ρ =
{

(k2 − 1)(n
d − 1)(d− 2) + 2(k − 1)(n

d − 1) if d = n
2

(k2 − 1)
(
n−d

1

)
if d 6= n

2

λ = k3 − k

γ =
∑

w[0..d)∈N3,k(d)(k
3 − ν(w[0..d)))

Proof. We enumerate all possible options for a generating proot.
Case 1. w[0..d) ∈ P0,k(d)

Since w[0..d) is a full word, we need to place three �’s in the last n − d positions of the word.
We thus have Equality (7) holding.

Case 2. w[0..d) ∈ P1,k(d)
To transform t into a pword in N3,k(n), we need to place two more �’s in the last n−d positions,

say i, j, with d ≤ i < j < n.
If we assume i, j ∈ Cd, then there are k

(‖Cd‖
2

)
pwords that can be obtained, since there are k

options to replace the �’s currently in positions from Dd(i1).
Now, assume i, j ∈ Dd(i1) (note that this is impossible if d = n

2 ). If d = n
3 , then w =

w[0..d)w[0..d)w[0..d). In general, this case yields k
(n

d
−1
2

)
choices.

Finally, let i ∈ Cd, j ∈ Dd(i1) (or vice versa). There are ‖Cd‖ (respectively, ‖Dd(i1)‖) ways to
place a � in Cd (respectively, Dd(i1)). If d ≤ n

3 , then there are k options to replace the remaining
�’s at positions from Dd(i1), which gives a total of k‖Cd‖‖Dd(i1)‖ options. If d = n

2 , then this case
generates only ‖Cd‖ pwords. We may now conclude that Equality (8) holds. Note that in the case
where d 6= n

2 and d 6= n
3 , we have k

(((n
d
−1)(d−1)

2

)
+ (n

d − 1)2(d− 1) +
(n

d
−1
2

))
= k

(
n−d

2

)
.
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Case 3. w[0..d) ∈ N1,k(d)
This case follows the approach of the previous case. Note that by Lemma 2, ν(w[0..d)) = 1.
If we assume i, j ∈ Cd, then this case yields (k − 1)

(‖Cd‖
2

)
options since, in order to keep the

pword nonprimitive, only k− 1 letters are available to replace in t the �’s from positions in Dd(i1).
Now, assume i, j ∈ Dd(i1) (note that this is impossible if d = n

2 or d = n
3 ). If d ≤ n

4 , then this
case yields (k − 1)

(n
d
−1
2

)
options.

Finally, let i ∈ Cd, j ∈ Dd(i1). Note that this is impossible if d = n
2 . For d = n

3 , this case
produces (k− 1)(n

d − 1)2(d− 1) pwords in N3,k(n). We may now conclude that Equality (9) holds.

Note that when d 6= n
2 and d 6= n

3 , we have (k − 1)
(((n

d
−1)(d−1)

2

)
+ (n

d − 1)2(d− 1) +
(n

d
−1
2

))
=

(k − 1)
(
n−d

2

)
pwords.

Case 4. w[0..d) ∈ P2,k(d)
To transform t, we need to leave t with only one � in some position i with d ≤ i < n. If i ∈ Cd,

then k2(n
d−1)(d−2) pwords can be generated since the �’s from positions within sets Dd(i1), Dd(i2)

can be replaced by any letter. If i ∈ Dd(i1) (or i ∈ Dd(i2)), then the number of possible pwords this
case generates is k2(n

d−1), unless d = n
2 in which case we would have only k(n

d−1) pwords. Overall,
Case 4 gives Equality (10). Note that if d 6= n

2 , then k2
(
(n

d − 1)(d− 2) + 2(n
d − 1)

)
= k2

(
n−d

1

)
.

Case 5. w[0..d) ∈ N2,k(d)
To transform t into a nonprimitive pword with three holes, we need to leave t with only one

hole at position i, with d ≤ i < n. In this case we need to take into account whether w[0..d) has
any free �’s or not.

We first consider the case where w[0..d) has two free �’s. This implies that w[0..d) must be a
2-repeat and d an even number. There are T1,k(d

2) nonprimitive pwords with two holes that are
2-repeats and have a pair of free �’s. Denote by τ the number of pwords generated by such a pword
with free �’s.

If i ∈ Cd, then this case generates ‖Cd‖k(k − 1) pwords since once the third � has been fixed,
the two letters chosen to replace the current �’s from positions in Dd(i1), Dd(i2) cannot be the same
because the resulting pword would have a shorter proot.

If i ∈ Dd(i1) and d 6= n
2 , then this yields ‖Dd(i1)‖k(k − 1) possible pwords. It is easy to see

that if d = n
2 , then ‖Dd(i1)‖ = ‖Dd(i2)‖ = 1 and no matter what letter we place at the position in

Dd(i2) the resulting pword would have a shorter proot. The case i ∈ Dd(i2) is identical. Note that
if d 6= n

2 , then we have (n
d − 1)(d− 2)(k2− k) + 2(n

d − 1)(k2− k) = (n− d)(k2− k) = τ . Altogether,
this case generates τ .

Now, we consider the case where w[0..d) has no free �’s. Then the approach is similar to Case
4, the only difference being that once the third � has been fixed, we must subtract ν(w[0..d)) = 1
from the total number of ways we can choose letters to replace the current �’s from positions in
sets Dd(i1), Dd(i2). Thus a proot with no free �’s generates ρ and Equality (11) holds.

Case 6. w[0..d) ∈ P3,k(d)
Since w[0..d) has already three holes, to transform t we need to replace each of the positions

from Dd(i1) with the same letter (and similary for Dd(i2) and Dd(i3)), a total of k3 choices, since
any combination is allowed. Equality (12) holds.

Case 7. w[0..d) ∈ N3,k(d)
We have to take into account again the number of free �’s w[0..d) has.
If w[0..d) has all three �’s free, then w[0..d) is only a 3-repeat. The temporary pword t = w[0..d)3

can generate k3 − k pwords in N3,k(n) since we must eliminate the cases when all three letters
replacing �’s from positions Dd(i1), Dd(i2) and Dd(i3) are the same. Note that there are T1,k(d

3)
pwords with three free �’s.
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If w[0..d) has two �’s free, then w[0..d) is a 2-repeat and cannot be an m-repeat with m ≥ 3.
Since w[0..d) allows only a 2-repeat, the third � corresponds to one and only one letter, say ai when
mapped through function f . Any combination of three letters can replace the �’s from sets Dd(i1)
except the k combinations {(ai, a, a), (ai, b, b), (ai, c, c), . . .}. There are T1,k(d

2) pwords with two free
�’s and each can generate k3 − k pwords in N3,k(n).

If w[0..d) has no free �’s, then each temporary pword t can generate k3 − ν(w[0..d)) pwords in
N3,k(n). Here different w[0..d)’s may have different values for ν(w[0..d)). Equality (13) holds.

References

[1] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf, Theoretical Computer
Science 218 (1999) 135–141.

[2] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words (Chapman & Hall/CRC Press,
Boca Raton, FL, 2008).

[3] F. Blanchet-Sadri, Periodicity on partial words, Computers and Mathematics with Applications
47 (2004) 71–82.

[4] F. Blanchet-Sadri, Codes, orderings, and partial words, Theoretical Computer Science 329
(2004) 177–202.

[5] F. Blanchet-Sadri, Primitive partial words, Discrete Applied Mathematics 148 (2005) 195–213.

[6] F. Blanchet-Sadri and A. R. Anavekar, Testing primitivity on partial words, Discrete Applied
Mathematics 155 (2007) 279–287 (http://www.uncg.edu/cmp/research/primitive).

[7] F. Blanchet-Sadri, D. Bal and G. Sisodia, Graph connectivity, partial words, and
a theorem of Fine and Wilf, Information and Computation 206 (2008) 676–693
(http://www.uncg.edu/cmp/research/finewilf3).

[8] F. Blanchet-Sadri, D. Blair and R. V. Lewis, Equations on partial
words, RAIRO-Theoretical Informatics and Applications 43 (2009) 23–39
(http://www.uncg.edu/cmp/research/equations).

[9] F. Blanchet-Sadri and A. Chriscoe, Local periods and binary partial
words: an algorithm, Theoretical Computer Science 314 (2004) 189–216
(http://www.uncg.edu/cmp/research/AlgBin).

[10] F. Blanchet-Sadri and S. Duncan, Partial words and the critical factoriza-
tion theorem, Journal of Combinatorial Theory, Series A 109 (2005) 221–245
(http://www.uncg.edu/cmp/research/cft)

[11] F. Blanchet-Sadri, J. Fowler, J. D. Gafni and K. H. Wilson, Combinatorics on par-
tial word correlations, Journal of Combinatorial Theory, Series A 117 (2010) 607–624
(www.uncg.edu/cmp/research/correlations2).

[12] F. Blanchet-Sadri and R. A. Hegstrom, Partial words and a theorem of Fine and Wilf revisited,
Theoretical Computer Science 270 (2002) 401–419.

[13] F. Blanchet-Sadri and D. K. Luhmann, Conjugacy on partial words, Theoretical Computer
Science 289 (2002) 297–312.

25
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