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ADM-CLE APPROACH FOR DETECTING SLOW VARIABLES IN
CONTINUOUS TIME MARKOV CHAINS AND DYNAMIC DATA∗

MIHAI CUCURINGU† AND RADEK ERBAN‡

Abstract. A method for detecting intrinsic slow variables in stochastic chemical reaction net-
works is developed and analyzed. It combines anisotropic diffusion maps (ADMs) with approxima-
tions based on the chemical Langevin equation (CLE). The resulting approach, called ADM-CLE,
has the potential of being more efficient than the ADM method for a large class of chemical reaction
systems, because it replaces the computationally most expensive step of ADM (running local short
bursts of simulations) by using an approximation based on the CLE. The ADM-CLE approach can
be used to estimate the stationary distribution of the detected slow variable, without any a priori
knowledge of it. If the conditional distribution of the fast variables can be obtained analytically, then
the resulting ADM-CLE approach does not make any use of Monte Carlo simulations to estimate
the distributions of both slow and fast variables.
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1. Introduction. The time evolution of a complex chemical reaction network
often occurs at different time scales, and the observer is interested in tracking the
evolution of the slowly evolving quantities (i.e., of the so-called slow variables), as
opposed to recording each and every single reaction that takes place in the system.
Whenever a separation of scales exists, one has to simulate a large number of reactions
in the system in order to capture the evolution of the slowly evolving variables. With
this observation in mind, it becomes crucial to be able to detect and parametrize the
underlying slow manifold corresponding to the slow variables intrinsic to the system.
In this paper, we introduce an unsupervised method of discovering the underlying hid-
den slow variables in chemical reaction networks, and of their stationary distributions,
using the anisotropic diffusion map (ADM) framework [41].

The ADM is a special class of diffusion maps which has gained tremendous popu-
larity in machine learning and statistical analysis, as a robust nonlinear dimensionality
reduction technique, in recent years [37, 2, 10, 6]. Diffusion maps have been success-
fully used as a manifold learning tool, where it is assumed that the high-dimensional
data lies on a lower-dimensional manifold, and one tries to capture the underlying
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geometric structure of the data, a setup where the traditional linear dimensionality
reduction techniques (such as principal component analysis) have been shown to fail.
In the diffusion maps setup, one constructs or is given a sparse weighted connected
graph (usually in the form of a weighted k-nearest-neighbor graph, with each node
connected only to its k nearest or most similar neighbors) and uses it to build the as-
sociated combinatorial Laplacian L̃ = D−W , where W denotes the matrix of weights
and D denotes a diagonal matrix with Dii equal to the sum of all weights of the node
i. Next, one considers the generalized eigenvalue problem L̃x = λDx, whose solutions
are related to the solutions of the eigenvalue problem Lx = λx, where L = D−1W
is a row-stochastic matrix often dubbed as the random walk normalized Laplacian.
Whenever the pair (λ, x) is an eigenvalue-eigenvector solution to Lx = λx, then so is
(1 − λ, x) for L̃x = λDx. The (nonsymmetric) matrix L can also be interpreted as a
transition probability matrix of a Markov chain with state space given by the nodes
of the graph, and with entries Lij denoting the one-step transition probability from
node i to j.

In the diffusion map framework, one exploits a property of the top nontrivial
eigenvector of the graph Laplacian of being piecewise constant on subsets of nodes
in the domain that correspond to the same state associated to the underlying slow
variable. We make this statement precise in section 4, and further use the resulting
classification in section 5 to propose an unsupervised method for computing the sta-
tionary distribution of the hidden slow variable, without using any prior information
on its structure. Since the top eigenvectors of the above Laplacian define the coarsest
modes of variation in the data, and have a natural interpretation in terms of diffu-
sion and random walks, they have been used in a very wide range of applications,
including but not limited to partitioning [43, 42], clustering and community detec-
tion [35, 47, 34], image segmentation [39], ranking [49, 18], and data visualization and
learning from data [7, 37].

The main application area studied in this paper involves stochastic models of
chemical reaction networks. They are written in terms of stochastic simulation al-
gorithms (SSAs) [22, 23] which have been used to model a number of biological sys-
tems, including the phage λ lysis-lysogeny decision circuit [1], circadian rhythms [46],
and the cell cycle [28]. The Gillespie SSA [22] is an exact stochastic method that
simulates every chemical reaction, sampling from the solution of the corresponding
chemical master equation (CME). To characterize the behavior of a chemical system,
one needs to simulate a large number of reactions and realizations, which leads to
very computationally intensive algorithms. For suitable classes of chemically reacting
systems, one can sometimes use exact algorithms which are equivalent to the Gillespie
SSA, but are less computationally intensive, such as the Gibson–Bruck SSA [20] and
the optimized direct method [5]. However, these methods also stochastically simulate
the occurrence of every chemical reaction, which can be a computationally challenging
task for systems with a very large number of species. One way to tackle this problem
is to use parallel stochastic simulations [29]. In this work, we discuss an alternative
approach which does not make use of parallel stochastic simulations, but at the same
time, the proposed approach can also benefit from large processing power and parallel
computing, as many steps of our proposed algorithms are highly parallelizable.

An alternative approach to treating the molecular populations as discrete ran-
dom variables is to describe them in terms of their continuously changing concen-
tration, which can be done via the chemical Langevin equation (CLE), a stochastic
differential equation that links the discrete SSA with the deterministic reaction rate
equations [21]. Although such an approach can be less computationally expensive, it
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comes with the disadvantage that, for certain chemical systems, it can lead to negative
populations [48]. In addition, note that none of the above approaches takes explicit
advantage of the separation of scales, if one exists, something we will exploit in this
paper, as detailed in sections 4 and 5.

It is often the case that a modeler is not interested in every single reaction which
takes place in the system but only in the slowly evolving quantities. Certain systems
possess multiple time scales, meaning that one has to simulate a large number of
reactions to reveal the slow dynamics. Several algorithms for chemical networks with
fast and slow variables have already been developed in the literature. The authors
of [26] proposed simulating the fast reactions using Langevin dynamics and the slow
reactions using the Gillespie algorithm. This approach requires both the time scale
separation and a sufficiently large system volume; however, the latter constraint can be
avoided using probability densities of the fast species conditioned on the slow species
and estimating the effective propensity functions of the slow species [3, 4, 14, 38,
45]. An alternative approach to simulating the evolution of the slow variables while
avoiding doing so for the fast variables is to estimate the probability distribution
of the slow variables [19]. The key point in this approach is to use short bursts
of appropriately initialized stochastic simulations to estimate the drift and diffusion
coefficients for an approximating Fokker–Planck equation written in terms of the slow
variables [16]. The success of this approach has already been demonstrated in a range
of applications, including materials science [25], cell motility [15], and social behavior
of insects [44].

Reference [8] introduces the conditional stochastic simulation algorithm (CSSA)
that allows one to sample efficiently from the distribution of the fast variables condi-
tioned on the slow ones [8] and to estimate the coefficients of the effective stochastic
differential equation (SDE) on the fly via a proposed constrained multiscale algorithm
(CMA). The CMA can be further modified by estimating the drift and diffusion co-
efficients in the form given by the CLE for the slow subsystem, which requires the
estimation of effective propensity functions of slow reactions [9]. The main question
we plan to address in this paper builds on and combines two already existing ideas
investigated in [8] and [41] and brings several computational and algorithmic improve-
ments. The above-mentioned CSSA algorithm explicitly makes use of the knowledge
of the slow variables (often unavailable in many real applications), a drawback we
plan to address as explained later in section 4, where, driven by the top eigenvector
of an appropriately constructed Laplacian, we discover the underlying slow variable.
In doing so, we make use of the ADM framework [41], which modifies the traditional
diffusion map approach to take into account the time dependence of the data, i.e.,
the time stamp of each of the data points under consideration. By integrating local
similarities at different scales, the ADM gives a global description of the data set.

The rest of this paper is organized as follows. In section 2 we provide a mathe-
matical framework for multiscale modeling of stochastic chemical reaction networks
and detail the two chemical systems via which we illustrate our approach. In section
3 we introduce the ADM-CLE framework and highlight its differences from the ap-
proaches which were previously introduced in the literature. In section 4 we propose
a robust mapping from the observable space to the “dynamically meaningful” inac-
cessible space, which allows us to recover the hidden slow variables. In section 5 we
introduce a Markov-based approach for approximating the steady distribution of the
slow variable and compare our results with another recently proposed approach. We
conclude with a summary and discussion of future work in section 6.
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2. Problem formulation. A multiscale modeling framework for stochastic
chemical reaction networks can be formulated as follows. We consider a well-mixed
system of � chemical species, denoted by X1, X2, . . . , X�, that interact through m
reaction channels R1, R2, . . . , Rm in a reactor of volume V . We denote the state of
the system by X(t) = [X1(t), X2, . . . , X�(t)], where Xi(t), i = 1, 2, . . . , �, represents
the number of molecules of type Xi in the system at time t. With a slight abuse of
notation, we interchangeably use Xi to denote the type i of the molecule. In cer-
tain scenarios, one may assume that the reactions can be classified as either fast or
slow, depending on the time scale of occurrence [3]. As expected, the fast reactions
occur many times on a time scale for which the slow reactions occur with very small
probability. As defined in [3], the fast species denoted by F are those species whose
population gets changed by a fast reaction. Slow species (denoted by S) are not
changed by fast reactions. Considering that slow species are not only species from the
set {X1, X2, . . . , X�}, but also that their functions are not changed by fast reactions,
the components of the fast and slow species can be used as a basis for the state space
of the system, whose dimension equals the number of linearly independent species.

For each reaction channelRj , j = 1, 2, . . . ,m, there exists a corresponding propen-
sity function αj ≡ αj(x), such that αj dt denotes the probability that, givenX(t) = x,
reaction Rj occurs within the infinitesimal time interval [t, t + dt). We denote by ν
the stochiometric matrix of size m × �, with entry νji denoting the change in the
number of molecules of type Xi caused by one occurrence of reaction channel Rj .
The continuous time discrete in space Markov chain can be further approximated by
the CLE for a multivariate continuous Markov process [21]. Using time step Δt, the
Euler–Maruyama discretization of the CLE is given by

Xi(t+Δt) = Xi(t) + Δt

m∑
j=1

νji αj(X(t)) +

m∑
j=1

νji

√
αj(X(t))Nj(t)

√
Δt

for all i = 1, 2, . . . , �,(2.1)

where Xi, with another slight abuse of notation, denotes a real-valued approximation
of the number of molecules of the ith chemical species, i = 1, 2, . . . , �. Here, Nj(t), j =
1, 2, . . . ,m, denotes the set of m independent normally distributed random variables
with zero mean and unit variance.

2.1. Illustrative example CS-I. As the first illustrative example, we consider
the following simple two-dimensional chemical system, with the two chemical species
denoted by X1 and X2 (i.e., � = 2) which are subject to four reaction channels Rj ,
j = 1, 2, 3, 4 (i.e., m = 4), given by

(2.2) ∅ k1−→ X1

k2−→←−
k3

X2
k4−→ ∅.

Throughout the rest of this paper, we shall refer to the chemical system (2.2) as CS-I
(i.e., “chemical system I”). We label Rj the reaction corresponding to the reaction
rate subscript kj , j = 1, 2, 3, 4, and note that each reaction Rj has a propensity
function αj(t) given by [22] associated to it:

(2.3) α1(t) = k1V, α2(t) = k2 X1(t), α3(t) = k3 X2(t), α4(t) = k4 X2(t),

where V denotes the volume of the reactor. We consider the system with the following
dimensionless parameters:

(2.4) k1V = 100, k2 = k3 = 200, and k4 = 1.
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Fig. 2.1. (a) Trajectories of CS-I considered in (2.2) showing the behavior of the slow variable
S = (X1 + X2)/2 in contrast to the behavior of the fast variables X1 and X2, where the system
propensity functions and parameters are given by (2.3) and (2.4). (b) Trajectories of CS-II con-
sidered in (2.7), showing the slow behavior of the variable S = X1 + 2X2 in contrast to the fast
behavior of variables X1 and X2, where the system parameters are given by (2.8).

We plot in Figure 2.1(a) the time evolution of the two different species in system (2.2),
together with the slow variable S = (X1 + X2)/2, starting from initial conditions
X1(0) = X2(0) = 100. As the figure shows, the system variables X1 and X2 are
changing very frequently (thus we label them as fast variables), while the newly defined
variable S changes very infrequently and can be considered to be a slow variable.

Following [27], for the chemical system in (2.2) comprised only of monomolecular
reactions, it is possible to compute analytically the stationary distribution of the slow
variable S, since the joint probability distribution of the two variables X1 and X2 is
a multivariate Poisson distribution

(2.5) P(X1 = n1, X2 = n2) =
λ̄n1
1

n1!

λ̄n2
2

n2!
exp

(−λ̄1 − λ̄2

)
with parameters given by

(2.6) λ̄1 =
k1V (k3 + k4)

k2k4
= 100.5 and λ̄2 =

k1V

k4
= 100.

2.2. Illustrative example CS-II. The second example is taken from [8]. We
shall refer to it as CS-II from now on. We consider the following system:

(2.7) X2

k1−→←−
k2

X1 +X2, ∅
k3−→←−
k4

X1, X1 +X1

k5−→←−
k6

X2,

involving two molecular species X1 and X2, whose reactions R1, R2, . . . , R6 have the
propensity functions given by

α1(t) = k1X2(t), α2(t) = k2X1(t)X2(t)/V, α3(t) = k3V,

α4(t) = k4X1(t), α5(t) = k5
X1(t)(X1(t)− 1)

V
, α6(t) = k6X2(t),

where V denotes the system volume. Figure 2.1(b) shows a simulated trajectory of
this chemical system using the Gillespie algorithm for the following dimensionless
parameters [8]:
(2.8)

k1 = 32, k2 = 0.04V, k3V = 1475, k4 = 19.75, k5 = 10V, k6 = 4000,
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where we use V = 8. Note that in this second example, reactions R5 and R6 are
occurring on a much faster time scale than the other four reactions R1, R2, R3, and
R4. A natural choice for the slow variable is S = X1 + 2X2, which is invariant with
respect to all fast reactions [8], as we illustrate in Figure 2.1(b).

2.3. Main problem. Our end goal in this paper is to propose an algorithm that
efficiently and accurately estimates the stationary probability density of the hidden
slow variable S, without any prior knowledge of it. The approach we propose builds
on the anisotropic diffusion map (ADM) framework to implicitly discover the mapping
from the observable state space to the dynamically meaningful coordinates of the fast
and slow variables, as previously introduced in [41], and on the CLE approximation
(2.1).

3. ADM-CLE approach. Let us consider example CS-II, and assume that
s = s(x1, x2) = x1 + 2x2 and f = f(x1, x2) = x1 are the slowly and rapidly changing
variables, respectively. They together define a mapping g : (x1, x2) �→ (s, f) from the
observable state variables x1 and x2 in the accessible space O to the “dynamically
meaningful” (but in more complicated examples inaccessible) slow variable s and
the fast accessible variable f , both in space H. In other words, g maps (x1, x2) �→
(x1 + 2x2, x1) and, conversely, its inverse h := g−1 : (s, f) �→ (f, s−f

2 ).
The approach introduced in [41] exploits the local point clouds generated by

many local bursts of simulations at each point (x1, x2) in the observable spaceO. Such
observable local point clouds are the image under h of similar local point clouds in the
inaccessible space H (at corresponding coordinates (s, f) such that h(s, f) = (x1, x2)),
which, due to the separation of scales between the fast and slow variables f and
s, have the appearance of thin elongated ellipses. It is precisely this separation of
scales that we leverage into building a sparse anisotropic graph Laplacian L in the
observable space, and we use it as an approximation of the isotropic graph Laplacian
in the inaccessible space H. As we shall see, the top nontrivial eigenvector of L will
robustly indicate all pairs of original states (x1, x2) that correspond to the same slow
variable S = s (where s = x1 + 2x2 for CS-II). In other words, we discover on the
fly the structure of the slow variable S, and further integrate this information into a
Markov-based method for estimating its stationary distribution P(S = s), while also
computing along the way an analytical expression for the conditional distribution of
the fast variable given the slow variable P(F = f |S = s).

Singer et al. [41] run many local bursts of simulations for a short time step δt
starting at (x1, x2). Such trajectories end up at random locations, forming a cloud
of points in the observable plane O, with a bivariate normal distribution with 2 × 2
covariance matrix Σ. The shape of the resulting point cloud is an ellipse, whose axes
reflect the dynamics of the data points. In other words, when there is a separation
of scales, the ellipses are thin and elongated, with the ratio between the axis of the
ellipse given by the ratio

(3.1) τ =
λ̂1

λ̂2

of the two eigenvalues of Σ. The first eigenvector corresponding to λ̂1 points in the
direction of the fast dynamics on the line x1 + 2x2 = s, while the second one points
in the direction of the slow dynamics. In particular, τ is a small parameter, i.e.,
0 < τ � 1. In general, we wish to piece together locally defined components into
a globally consistent framework, a nontrivial task when the underlying unobservable
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slow variables (or the propensity functions of the system) are complicated nonlinear
functions of the observable variables in O.

The construction of the ADM framework in [41] relates the anisotropic graph
Laplacian in the observable space O with the isotropic graph Laplacian in the inac-
cessible space H. In that setup, each of the N data points x(i), i = 1, 2, . . . , N , lives in
an �-dimensional data space. For both CS-I and CS-II, the data is two-dimensional,
and thus � = 2. For the former system, we consider each lattice point in the domain
[50, 150]× [50, 150], and hence there are N = 1012 = 10, 201 states, while for the latter
one we consider the domain [1, 110]× [1, 110], i.e., N = 1102 = 12, 100. Throughout
this paper, we will often refer to the N data points x(i) = (x1, x2)

(i), i = 1, 2, . . . , N ,
as O-states of the chemical system. The ADM [41] then generates ensembles of short
simulation bursts at each of the N points in the data set, computes the averaged posi-
tion after statistically averaging over the many simulated trajectories, and obtains an
estimate of the local 2×2 covariance matrix Σ(i). For each data point x(i), the inverse
of Σ(i) is computed and symmetric Σ-dependent squared distance between pairs of
data points in the two-dimensional observable space R

2 (given by (3.3) below) is de-
fined. The ADM framework then uses this dynamic distance measure to approximate
the Laplacian on the underlying hidden slow manifold. We provide further details on
the ADM framework in section 3.2. We now highlight the first difference between the
approach taken in this paper and in [41].

3.1. Replacing short simulation bursts by the CLE approximation. The
local bursts of simulations initiated at each data point in order to estimate the local
covariances may be computationally expensive to estimate. In this paper, we bypass
these short bursts of simulations by using an approximation given by the CLE (2.1),
which allows for a theoretical derivation of the local 2× 2 covariance matrices. Using
(2.1), we obtain

Cov(Xi(t+Δt), Xk(t+Δt)) = E[Xi(t+Δt)Xk(t+Δt)]

− E[Xi(t+Δt)]E[Xk(t+Δt)]

= Δt

m∑
j=1

νji νjk αj(X).(3.2)

Computing the eigendecomposition of a local covariance matrix is analogous to per-
forming principal component analysis on the local cloud of points, generated by the
short simulation bursts. The advantage of (3.2) over the computational approach used
in [41] is that Σ(i) can be computed at each data point without running (computa-
tionally intensive) short bursts of simulations. The error of the CLE approximation
depends on the values of coordinates of the data point x(i), i.e., on the system volume
V [24, 13].

However, for the chemical system CS-II, the domain does include states with small
molecule numbers, and the CLE approximation is less well justified. From looking at
the estimated distribution of the slow variable S = X1 +2X2 shown in Figure 5.4(b),
the most probable states contain a lot less than 100 molecules of each chemical species;
however, the fact that we are able to robustly recover the distribution even in this
scenario is perhaps a good indication that the CLE approximation was justified. To
circumvent the assumptions needed for the CLE approximation, one could alterna-
tively consider estimating, for small molecule numbers, the local covariance matrices
via direct simulation, as opposed to relying on the CLE approximation. A poten-
tial improvement in this direction may also alleviate the issues encountered in the
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slow variable detection step via our bin denoising procedure detailed later in section
4, which leads us to truncate at the boundary of the slow variable (perhaps due to
unreliable CLE approximation). Combining the CLE approximation for large num-
bers of molecules with direct simulation for the few states that involve small molecule
numbers is an interesting research direction to explore [12].

3.2. Anisotropic diffusion kernels. The next task is the integration of all
local principal components into a global framework, with the purpose of identifying
the hidden slow variable. We estimate the distance (and hence the similarity mea-
sure) between the slow variables in the underlying inaccessible manifold using the
anisotropic graph Laplacian [41]. We derive a symmetrized second order approxima-
tion of the (unknown) distances in the inaccessible space H, based on the Jacobian of
the unknown mapping from the inaccessible to the observable space. The Σ-dependent
distance between two O-states is given by

d2Σ

(
(x1, x2)

(i), (x1, x2)
(j)

)
=

1

2

(
(x1, x2)

(i) − (x1, x2)
(j)

)(
Σ−1

(x1,x2)(i)
+Σ−1

(x1,x2)(j)

)
×
(
(x1, x2)

(i) − (x1, x2)
(j)

)T

(3.3)

and represents a second order approximation1 of the Euclidean distance in the inac-
cessible (s, τf)-space

(3.4) d2Σ[(x1, x2)
(i), (x1, x2)

(j)] ≈ (s(i) − s(j))2 + τ2(f (i) − f (j))2 ≈ (s(i) − s(j))2,

where the last approximation is due to the fact that τ is a small parameter; see (3.1).
Note that it is also possible to extend (3.4) to higher dimensions, as long as

there exists a separation of scales between the set of slow variables and the set of
fast variables [41]. Using approximation (3.3)–(3.4) of the distance between states
of the slow variable, we next construct (an approximation of) the Laplacian on the
underlying hidden slow manifold, using the Gaussian kernel as a similarity measure
between the slow variable states. We build an N×N similarity matrix W with entries

Wij = exp

{−d2Σ[(x1, x2)
(i), (x1, x2)

(j)]

ε2

}
≈ exp

{−(s(i) − s(j))2

ε2

}
,

i, j = 1, 2, . . . , N,(3.5)

where the single smoothing parameter ε (the kernel scale) has a two-fold interpreta-
tion. On one hand, ε denotes the squared radius of the neighborhood used to infer
local geometric information; in particular, Wij is O(1) when s(i) and s(j) are in a ball
of radius

√
ε, and thus close on the underlying slow manifold, but it is exponentially

small for states that are more than
√
ε apart. On the other hand, ε represents the

discrete time step at which the underlying random walker jumps from one point to
another. We refer the reader to [32] for a detailed survey of random walks on graphs

1The principal components of Σ are the local directions of the rapidly changing variables at a
particular state of the system, whereas components with small eigenvalues correspond to the slow
variables. We remark that a singular covariance matrix would correspond to having only changes of
the fast variable, and almost no changes in the slow variable, which is unlikely but possible, depending
on the system under consideration. We have not run into such problems in the examples considered.
Furthermore, we remark that in the initial work of Singer and Coifman [40], which introduced the
above second order approximation of the Euclidean distance in the inaccessible space, the authors
rely on the pseudoinverse Σ†.
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and their applications. We normalize W using the diagonal matrix D to define the
row-stochastic matrix L by

(3.6) Dii =
N∑
j=1

Wij , L = D−1W.

Since L is a row-stochastic matrix, it has eigenvalue λ0 = 1 with trivial eigenvector
Φ0 = (1, 1, . . . , 1)T . The remaining eigenvalues can be ordered as

1 = λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λN−1.

We denote by Φi the corresponding eigenvectors, i.e., LΦi = λiΦi. The top d nontriv-
ial eigenvectors of the random walk anisotropic Laplacian L describe the geometry of
the underlying d-dimensional manifold [17]; i.e., the ith data point x(i) is represented
by the following diffusion map:

(3.7) (Φ1(i),Φ2(i), . . . ,Φd(i)), i = 1, 2, . . . , N,

where Φj(i) denotes the ith component of the eigenvector Φj . However, note that
some of the considered eigenvectors can be higher harmonics of the same principal di-
rection along the manifold; thus in practice one computes the correlation between the
computed eigenvectors before selecting the above d eigenvectors chosen to parametrize
the underlying manifold. For the two chemical systems considered in this paper, we
show in the remainder of this section how the top (i.e., d = 1) nontrivial eigenvector
of L can be used to successfully recover the underlying slow variable.

Using the stochasticity of L, we can interpret it as a random walk matrix on
the weighted graph G = (V,E), where the set of nodes corresponds to the original
observable states (x1, x2)

(i), i = 1, 2, . . . , N (and implicitly to states s(i) of the slow
variable), and there is an edge between nodes i and j if and only if Wij > 0. The

associated combinatorial Laplacian is given by L̃ = D−W . Whenever the pair (λi,Φi)
is an eigenvalue-eigenvector solution to LΦi = λiΦi, then so is (1 − λi,Φi) for the
generalized eigenvalue problem L̃Φi = λiDΦi. We plot in Figures 3.1(a) and 3.2(a)
the spectrum of the combinatorial Laplacian L̃ = D −W for the chemical systems
CS-I and CS-II. In Figures 3.1(b) and 3.2(b) we color the states of the network with
the top nontrivial eigenvector Φ1.

Before considering the top eigenvector of L for determining the underlying slow
variable and estimating its stationary distribution, we propose using a sparse graph
Laplacian which differs from the ADM method in [41], where the Laplacian ma-
trix is associated to a complete weighted graph. However, using a complete graph
leads to computing the Σ-dependent squared distance in (3.3) for any pair of nodes;
thus an O(N2) number of computations is used. In light of the approximation
(3.4), a pair of points which are far away in the observable space (i.e., for which
d2Σ((x1, x2)

(i), (x1, x2)
(j)) is large) denotes a pair of corresponding states of the slow

variable which are also far away in the inaccessible space. Thus we do not have to
do such computations, because points far away in the unobservable space will have
an exponentially small similarity Wij close to 0. The fact that the shape of the local
point cloud is an ellipse provides some insight in this direction. Thus we will build
a sparse graph of pairwise measurements and no longer compute the Σ-dependent
distance between all points of the data set but only between a very small subset of
the points. The spectrum of the covariance matrix Σi, in particular the ratio τ of its
two eigenvalues given by (3.1), guides us in building locally at each point a sparse
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Fig. 3.1. Illustrative example CS-I. (a) The top 500 eigenvalues of the associated combinatorial
Laplacian, i.e., (1 − λi) for i = 1, 2, . . . , 500. (b) The coloring of the nodes of G (states of the
observable space) according to their corresponding entry in the top eigenvector Φ1 of L given by
(3.6). (c) The weighted degree distribution of the ground state graph G. (d) A scatterplot of the
states of the system, colored by their weighted degree.

ellipsoid-like neighborhood graph. However, we cautiously remark that the second
order approximation (3.3) of the distance in the inaccessible space is not a monoton-
ically increasing function of the distance in the accessible space and depends on the
particular covariance matrices used and potentially the separation of scales. In the
examples we have considered, we have indeed observed a monotonically decreasing
Gaussian similarity (3.5) as a function of the distance between the points in the ac-
cessible space, which motivated our approach to consider ellipsoid-like neighborhood
graphs.

For each observable state (x1, x2)
(i), we build a local adjacency graph, denoted by

Gi, in the shape of an ellipse pointing in the direction of the fast dynamics, and whose
small axis points in the direction of the slow dynamics. In our computations, we fix
the length of the semiminor axis of any ellipse to be equal to 3, while the length of its
corresponding semimajor axis is given by 3τ , where τ is given by the ratio of the two
eigenvalues of the covariance matrix as in (3.1). Figure 3.3 shows an example of such a
local 1-hop neighborhood graph Gi, where the central node (x1, x2)

(i) is connected to
all points contained within the boundaries of an appropriately scaled ellipse centered
at (x1, x2)

(i). Finally, we define the sparse graph G of size N ×N associated to the
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Fig. 3.2. Illustrative example CS-II. (a) The top 500 eigenvalues of the associated combinatorial
Laplacian, i.e., (1 − λi) for i = 1, 2, . . . , 500. (b) The coloring of the nodes of G (states of the
observable space) according to their corresponding entry in the top eigenvector Φ1 of L given by
(3.6). (c) The weighted degree distribution of the ground state graph G. (d) A scatterplot of the
states of the system, colored by their weighted degree.
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Fig. 3.3. The local neighborhood graph Gi at a given node (x1, x2)(i); the shape is an el-
lipsoid whose axis ratio is given by the ratio of the eigenvalues τ of the local covariance matrix
d2Σ((x1, x2)(i), (x1, x2)(j)), i.e., by (3.1). The corresponding eigenvectors are used to calculate the
orientation of the ellipse.
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entire network as the union of all locally defined ellipsoid-like neighborhood graphs
G =

⋃N
i=1 Gi. Note that the union graph G is still a simple graph, with no self-edges

and no multiple edges connecting the same pair of nodes. We compute the distance
dΣ by (3.3) (and thus the similarity Wij) between a pair of nodes (x1, x2)

(i) and
(x1, x2)

(j) if and only if the corresponding edge (i, j) exists in G.
We plot in Figures 3.1(c) and 3.2(c) the histogram of the weighted degrees of

the nodes in the weighted graph W defined in (3.5), while Figures 3.1(d) and 3.2(d)
show a scatterplot of the states of the system, where each state i is colored by its
weighted degree, i.e., the sum of all its outgoing weighted edges Wij , j = 1, 2, . . . , n.
Throughout the computational examples in this paper, the smoothing parameter ε
which appears in (3.5) was set to ε = 0.1. In contrast to the approach in [41], which
computes all O(N2) pairwise similarities, the sparsity of G (and thus of the associated
graph Laplacian L) in our approach only requires the computation of a much smaller
number of distances, as low as linear, depending on the discretization of the domain,
and makes it computationally feasible to solve problems with thousands or even tens
of thousands of nodes.

4. A robust mapping from the observable space O to the “dynam-
ically meaningful” inaccessible space H. As a first step towards partition-
ing the nodes of the original graph G and detecting the associated slow variable,
we sort the entries of the top eigenvector Φ1, which we then denote by Φ̄1 with
Φ̄1(1) ≥ Φ̄1(2) ≥ · · · ≥ Φ̄1(N). This sorting process defines permutation σ of the
original index set i = 1, 2, . . . , N so that Φ̄1(σ(i)) = Φ1(i). We consider the incre-
ments between two consecutive (sorted) values

(4.1) δi = Φ̄1(i)− Φ̄1(i + 1), i = 1, 2, . . . , N − 1.

Next, we sort the vector of such increments, denote its entries by δ̄1 ≥ δ̄2 ≥ · · · ≥ δ̄N−1,
and show in Figure 4.1(a) (resp., Figure 4.2(a)) the top 300 (resp., top 420) largest
such increments δ̄i for illustrative example CS-I (resp., CS-II). Note that this already
gives us an idea about the number of distinct slow states in the system, a set which we
denote by S. Ideally, the difference Φ1(i)−Φ1(j) in the entries of the top eigenvector
corresponding to two observable states (x1, x2)

(i) and (x1, x2)
(j) that belong to the

same slow variable s (i.e., x
(i)
1 +2x

(i)
2 = x

(j)
1 +2x

(j)
2 = s for illustrative example CS-II)

should be zero or close to zero, in which case we expect that only approximately |S|
of the N − 1 increments δi are significantly larger than zero, while the remaining
majority are zero or close to zero.

In Figures 4.1(b) and 4.2(b) we highlight the correlation between the entries of the
top nontrivial eigenvector Φ1 and the corresponding slow variable S. In Figures 4.1(c)
and 4.2(c), we zoom on a subset of states to make the point that the eigenvector Φ1 is
almost constant on the O-states that correspond to the same value of the slow variable.
The plots in Figures 3.1(b) and 3.2(b) show a coloring of the networks generated by
the two chemical systems CS-I and CS-II, based on the first nontrivial eigenvector of
the associated sparse Laplacian L. Note that the eigenvector looks almost piecewise
constant along the lines that point to the evolution of the fast variable, for a given
value of the slow variable (S = (X1 +X2)/2 for CS-I and S = X1 + 2X2 for CS-II),
yet nowhere along the way do we have to input this information into the method. In
the next step we use this top eigenvector to identify all nodes of the graph (original
states of the chemical system) that correspond to the same value of the underlying
slow variable. In other words, all nodes whose corresponding eigenvector entries are
between an appropriately chosen interval (that we shall refer to as a bin) will be



B88 MIHAI CUCURINGU AND RADEK ERBAN

50 100 150 200 250 300
0

1

2

3

4

5

6

7
x 10

−8

Eigenvector entry

Ju
m

p 
si

ze

Top largest jumps δ
i

(a)

50 100 150
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

True slow variable 

T
op

 e
ig

en
ve

ct
or

 

n=10201; Spearman Correlation=0.99998

(b)

5000 5200 5400 5600 5800 6000

0

5

10

15

20

x 10
−4

Index

ei
ge

nv
ec

to
r 

va
lu

e

zoom−in

(c)

Fig. 4.1. Illustrative example CS-I. (a) Jump sizes (4.1) of the sorted eigenvector Φ1 of the
sparse anisotropic graph Laplacian L. (b) The correlation of Φ1 with the ground truth slow variable
S = (X1 + X2)/2. On the y-axis we plot the ith entry of the top eigenvector Φ1(i) associated to
state (x1, x2)(i) versus its corresponding true slow variable s = (x1 + x2)/2. (c) Zoom-in on the
sorted top eigenvector Φ̄1 (the colors denote the corresponding slow variable) showing that Φ̄1 is
almost piecewise constant on the bins that correspond to distinct slow variable states. The kernel
scale is set to ε = 0.1.
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Fig. 4.2. Illustrative example CS-II. (a) Jump sizes (4.1) of the sorted eigenvector Φ1 of the
sparse anisotropic graph Laplacian L. (b) The correlation of Φ1 with the ground truth slow variable
variable S = X1 + 2X2. On the y-axis we plot the ith entry of the top eigenvector Φ1(i) associated
to state (x1, x2)(i) versus its corresponding true slow variable s = x1 + 2x2. (c) Zoom-in on the
sorted top eigenvector Φ̄1 (the colors denote the corresponding slow variable) showing that Φ̄1 is
almost piecewise constant on the bins that correspond to distinct slow variable states. The kernel
scale is set to ε = 0.1.

labeled as belonging to the same slow variable S. In other words, we seek a partition
of the observable states in O, i.e., of the nodes of G, such that all original states
(x1, x2)

(i) with the same value of the corresponding slow variable s((x1, x2)
(i)) end up

in the same bin. Our goal is to find a partition P = {P1,P2, . . . ,Pk} of O such that

(4.2) Pj = {(x1, x2)
(i) ∈ O | s(x1, x2) = qj} and

k⋃
j=1

Pj = O,

where k denotes the number of distinct values qj , j = 1, 2, . . . , k, of the slow vari-
able S. As an example, in the case of CS-I given by (2.2), the partition Pj =
{(1, 99), (2, 98), . . . , (99, 1)} corresponds to all nodes in the graph for which the value
of the associated slow variable is constant: qj = 50. The key observation we exploit
here is that the top eigenvector of the Laplacian matrix is almost piecewise constant
on the bins that partition O, since the nodes of G that correspond to the same value
of the slow variable have a very high pairwise similarity, with Wij very close to 1.

One may also interpret the above problem as a clustering problem, where the
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Fig. 4.3. Illustrative example CS-I. (a) The eigenvector-based slow variable cardinality. The
Theta score Θ is the smoothness measure of the bin cardinalities, defined in (4.5). The algorithm
perfectly recovers the ground truth partition. (b) The heatmap of the pairwise Jaccard similarity
matrix given by (4.4). (c) The correlation between the ordering of the ground truth slow variable
and the eigenvector recovered slow variable. (d) The Jaccard index of the pairwise matched bins
(from the maximum matching).

similarity between pairs of points is given by (3.5), and is such that nodes that belong
to the same bin have a much higher similarity compared to nodes that belong to
two different bins, an effect due to the strong separation of scales. In the case of
illustrative example CS-I, the clusters correspond to lines in the two-dimensional
plane such that (x1 + x2)/2 = c for a constant c. We point the interested reader to
the work of [33], where the top eigenvectors of the random walk Laplacian are used
for clustering. While in practice one uses the top several eigenvectors as the reduced
eigenspace where clustering is subsequently performed, in our case the top eigenvector
alone suffices to capture the many different clusters (i.e., bins), a fact we attribute
to the strong separation of scales exhibited by the illustrative chemical systems CS-I
and CS-II. If several eigenvectors were considered, then one could use a clustering
algorithm, such as k-means or spectral clustering [39, 47], to obtain the partitioning
(4.2). However, a simpler method has been successfully used for the one-dimensional
eigenspace in both examples we considered. It is described as follows. Recall the sorted
vector of increments δ̄1 ≥ δ̄2 ≥ · · · ≥ δ̄N−1 defined in (4.1), and consider the set of
the k−1 largest such increments {δ̄1, δ̄2, . . . , δ̄k−1} where δ̄1 ≥ δ̄2 ≥ · · · ≥ δ̄k−1. Next,
from the sorted eigenvector Φ̄1 we extract the position of the entries whose associated
increment (with respect to its right-next neighbor index) belongs to {δ̄1, δ̄2, . . . , δ̄k−1}.
In others words, we compute

(4.3) bt = arg
i=1,2,...,N−1

Φ̄1(i)− Φ̄1(i + 1) = δ̄t, where t = 1, 2, . . . , k − 1,

and b0 = 0 and bk = N . Finally, we compute an estimated partition P̂ of O by
P̂q = {i ∈ O | σ(i) ∈ (bq−1, bq]}, where q = 1, 2, . . . , k, and σ is the permutation of the
original index set i = 1, 2, . . . , N , given in the definition of Φ̄1, i.e. Φ̄1(σ(i)) = Φ1(i).
We remark here that k is not a parameter, per se, but represents the number of
distinct states of the slow variable in the system, corresponding to the current bounded
domain. If not known a priori, one can estimate k from the sorted barplot of the
increments between two consecutive entries in the sorted eigenvector, as shown in
Figures 4.1(a) and 4.2(a).

To illustrate the correctness of our proposed technique, we compute the Jaccard
index between each proposed partition set P̂j , j = 1, 2, . . . , k, and each ground truth
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Fig. 4.4. Illustrative example CS-II. (a) The ground truth slow variable cardinality. (b) The
eigenvector-based slow variable cardinality. Θ captures the smoothness of the bin cardinalities, as
introduced in (4.5). (c) Plot of the cardinalities of a subset of bins, showing the erroneous bin
assignments in the eigenvector-based partition. This is a zoomed-in version of panel (b).

partition set Pi, i = 1, 2, . . . , |S|:

(4.4) Jij =
|Pi ∩ P̂j|
|Pi ∪ P̂j|

, where i = 1, 2, . . . , |S|, j = 1, 2, . . . , k,

and we show a heatmap of this matrix in Figure 4.3(b). Since we are interested
not only in the partition but also in recovering the ordering of the slow variable, we
show in Figure 4.3(c) the correlation between the ground truth ordering of the slow
variable and our recovered ordering. Note that we can only recover the ordering up
to a global sign, since −Ψ1 is also an eigenvector of L. Finally, we compute the
maximum weight matching (using, for example, the Hungarian method [30]) in the
bipartite graph with node set P ∪ P̂ and edges across the two sets given by matrix J
in (4.4). In Figure 4.3(d) we plot the Jaccard index of the matched partitions. For
the first chemical system CS-I, note that the algorithm perfectly recovers the ground
truth partition. In Figure 4.4 we present the outcome of the binning algorithm for
the illustrative example CS-II, which is no longer satisfactorily by itself and requires
further improvement. Though the bin cardinalities in the initial solution visually
resemble the ground truth, there are numerous mistakes being made. To illustrate
this, for a given partition P , we compute the following measure of continuity of the
recovered bin cardinalities:

(4.5) ΘP = Θ(P1, . . . ,PS) =
S−1∑
i=1

(|Pi| − |Pi+1|)2.

In other words, ΘP captures the squared difference in the cardinalities of two consec-
utive bins. For the chemical system CS-II, the ground truth yields a score Θ = 108,
while for the eigenvector-recovered solution Θ = 7206, thus indicating already that
numerous misclassifications are being made, without even computing the Jaccard
similarity matrix (4.4) between the two partitions. To this end, we introduce in the
next subsection a heuristic denoising technique followed by a truncation of the do-
main, which altogether lead to a better partitioning of O into groups of states that
correspond to the same slow variable.

4.1. A bin denoising scheme. While the eigenvector-based partition proce-
dure detailed above yields accurate results for CS-I in (2.2), this procedure alone is
not sufficient for obtaining a satisfactory partition for the more complex CS-II con-
sidered in (2.7), as illustrated by the high corresponding Θ-score (Θ = 7206) shown
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Algorithm 1. Bin-merging algorithm.

1: Initialize FLAG = TRUE
2: while FLAG is TRUE do
3: Compute αi := Θ

(P1, . . . ,Pi ∪ Pi+1, . . .P|S|
) ∀i = 1, 2, . . . |S| − 1 using

definition (4.5)
4: if min

i=1,2,...,|S|−1
αi < Θ(P1, . . . ,P|S|) then

5: q = argmin
i=1,2,...,|S|−1

αi

6: P := P1, . . . ,Pq ∪ Pq+1, . . .P|S|
7: |S| = |S| − 1
8: else
9: FLAG = FALSE

10: end if
11: end while
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Fig. 4.5. Illustrative example CS-II. (a) The eigenvector-based slow variable cardinality after
truncating and bin denoising. The Theta score Θ is the smoothness measure of the bin cardinalities,
defined in (4.5). (b) The heatmap of the pairwise Jaccard similarity matrix given by (4.4). (c) The
correlation between the ordering of the ground truth slow variable and the eigenvector recovered slow
variable. (d) The Jaccard index of the pairwise matched bins (from the maximum matching).

in Figure 4.4(b). In Figure 4.4(c) we zoom into some of the recovered bins, showing
that the eigenvector-based reconstruction splits some of the inner bins, which explains
the high associated Θ-score. In other words, states/bins which in the ground truth
solution correspond to the same values of the slow state variable, are divided into two
adjacent bins, and are mistaken for two distinct states of the slow variable.

To solve this issue, we propose a bin-denoising heuristic that robustly assigns data
points to their respective bins. In hindsight, the continuity of the eigenfunctions of the
Laplacian should be reflected in the continuity of the histogram of state counts in bins
corresponding to adjacent intervals. We detail in Algorithm 1 an iterative heuristic
procedure which, at each step, merges two adjacent bins such that the resulting Θ-
score is minimized across all possible pairs of adjacent bins that can be merged. We
show in Figure 4.5(a) the resulting bin cardinalities after the bin-merging heuristic
and after truncating at the boundary of the slow variable. Note that the new denoised
partition yields Θ = 103, and the number of bins (states of the slow variable) decreases
from |S| = 328 to |S| = 314. Furthermore, in Figure 4.5(b) we compute the Jaccard
similarity matrix between the ground truth and the newly obtained partition, showing
in Figure 4.5(d) that we almost perfectly recover the structure of the ground truth
bins.

Finally, we remark that our approach extends to higher-dimensional subspaces as
well; e.g., if S =

∑l
i=1 aiXi, the top eigenvector will take constant, or almost constant,
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Algorithm 2. One iteration of the CSSA for computing the conditional distribution
P(F |S = s) of the fast variable F given a value s of the slow variable S.

1: Compute the propensity functions αi(t), for i = 1, 2, . . . ,m, and their sum α0(t) =∑m
i=1 αi(t).

2: Generate r1 and r2, two uniformly distributed random numbers in (0, 1).
3: Compute the next reaction time as t+ τ , where τ = − log(r1)/α0(t).
4: Use r2 to select reaction Rj which occurs at time t+ τ

(each reaction Ri, i = 1, 2, . . . ,m, occurs with probability αi/α0).
5: If the slow variable S changes its current state from s to s′ �= s due to reaction

Rj occurring, reset S = s to its previous value while not changing the value of
the fast variable F .

6: If any of the variables Xi goes outside the boundary of the considered domain,
then revert to the state of the system in step 4 before reaction Rj occurred.

values on the states (x1, x2, . . . , xl)
(i) corresponding to the slow state S = s, such that∑l

i=1 aixi = s. In other words, both the above-mentioned methodology that recovers
the mapping and the bin-denoising scheme can be thought of in terms of bins and
urns and are agnostic to the dimension of the system.

5. A Markov approach for computing the steady distribution of the
slow variable. In this section, we focus on the final step of the ADM-CLE ap-
proach, of estimating the stationary distribution of the slow variable, without any
prior knowledge of what the slow variable actually is. One of the ingredients needed
along the way is an estimation of the conditional distribution P(F |S = s) of the
fast variable F given a value s of the slow variable S, which we compute via two
approaches. As the first approach, we consider the conditional stochastic simulation
algorithm (CSSA) [8] which is given in Algorithm 2. It samples from the distribution
of the fast variable conditioned on the slow variable. The second approach is entirely
analytic and free of any stochastic simulations and amounts to analytically solving the
CME for each set in the partition P = {P1,P2, . . . ,Pk}. We then compare our results
to the constrained multiscale algorithm (CMA) introduced in [8], which approximates
the effective dynamics of the slow variable as an SDE, after estimating the effective
drift and diffusion using the CSSA (Algorithm 2).

5.1. A stochastic simulation algorithm for estimating the conditional
probability (CSSA). Our next task is to estimate the conditional distribution
P(F |S = s) of the fast variable F given a value s of the slow variable S. One
possible approach for doing this relies on the CSSA algorithm to globally integrate
the effective dynamics of the slow variable. One iteration of the CSSA is given in
Algorithm 2. Ideally, one repeats steps 1–6 of Algorithm 2 and samples values of F
until the distribution P(F |S = s) converges. In practice, we run Algorithm 2 until
Lc changes of the slow variable S occur. This computation is done for each value in
the range of the slow variable S = {s1, s2, . . . , s|S|}. As an example, Table 5.1 illus-
trates the computation of the transitioning probability from the slow variable state
S = 7 to S = 8, associated to CS-II. We remark that this approach is in line with
that of previous work [8], in which the running time of CSSA was implicitly defined
by counting up to Lc changes in S. We consider the same range of values for Lc as
in [8], i.e., Lc = {10, 102, 103, 104, 105}, as illustrated in Figure 5.5 below. An alter-
native approach would be to check for convergence in distribution by comparing the
cumulative distribution functions at Lc and 2Lc.
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Table 5.1

Illustrative example CS-II. The set of all ground states of the system (x1, x2) corresponding to
the slow variable S = X1 + 2X2 = 7. We denote by (x′

1, x
′
2) the states reachable from (x1, x2) in

one transition step and by S′ the associated corresponding slow variable such that S′ = X′
1 + 2X′

2.
Rj denotes the reaction channel that takes the chemical system from state (x1, x2) to (x′

1, x
′
2), with

corresponding propensity αj. We highlight in bold letters the subset of all states via which the system
can transition in one step from the slow variable S = 7 to S = 8.

X1 X2 S X′
1 X′

2 S′ Rj αj/α0 αj

1 3 7 2 3 8 1 7.8× 10−3 96
1 3 7 0 3 6 2 7.8× 10−5 0.96
1 3 7 2 3 8 3 1.5× 10−2 184.38
1 3 7 0 3 6 4 1.6× 10−3 19.75
1 3 7 3 2 7 6 9.7× 10−1 12000

3 2 7 4 2 8 1 7.3× 10−3 64
3 2 7 2 2 6 2 2.0× 10−4 1.92
3 2 7 4 2 8 3 2.1× 10−2 184.38
3 2 7 2 2 6 4 6.7× 10−3 59.25
3 2 7 1 3 7 5 5.4× 10−2 480
3 2 7 5 1 7 6 9.1× 10−1 8000

5 1 7 6 1 8 1 5.4× 10−3 32
5 1 7 4 1 6 2 3.0× 10−4 1.6
5 1 7 6 1 8 3 3.1× 10−2 184.38
5 1 7 4 1 6 4 1.6× 10−2 98.75
5 1 7 3 2 7 5 2.7× 10−1 1600
5 1 7 7 0 7 6 6.7× 10−1 4000

7 0 7 8 0 8 3 5.0× 10−2 184.38
7 0 7 6 0 6 4 3.7× 10−2 138.25
7 0 7 5 1 7 5 9.1× 10−1 3360

(a) (b)

Fig. 5.1. Transition diagrams for the two chemical systems: (a) CS-I and (b) CS-II.

5.2. An analytical derivation of the conditional distribution. An alter-
native approach which we follow in this paper relies on an analytical computation
of the conditional distribution P(F |S = s), thus eliminating the need for any expen-
sive stochastic simulations. We illustrate in Figure 5.1 the transition diagrams for
the two chemical systems we consider in this paper. For chemical system CS-II, the
system can transition from a given state (x1, x2) to four adjacent distinct O-states:
to (x1 − 2, x2 + 1) via channel R5, to (x1 + 2, x2 − 1) via channel R6, to (x1 − 1, x2)
via channels R2 and R4, and finally to state (x1 + 1, x2) via channels R1 and R3.
However, in terms of the underlying slow variable S, the system can transition to
only two adjacent states S = s − 1 (via channels R2 and R4) and S = s + 1 (via
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channels R1 and R3), or it can remain at the current state S = s via channels R5 and
R6. Considering the subsystem of fast reactions of CS-II and conditioning on the line
s = x1 + 2x2, the stationary CME takes the form

0 = k5(x1 + 2)(x1 + 1)P(X1 = x1 + 2, X2 = x2 − 1)

+ k6(x2 + 1)P(X1 = x1 − 2, X2 = x2 + 1)

− (k5x1(x1 − 1) + k6x2)P(X1 = x1, X2 = x2).

Thus, the conditional distribution for CS-II is, for 0 ≤ x1 ≤ s, given by

P(F = x1|S = s) =
C

x1!x2!

(
k5
k6

)x2

=
C

x1! ((s− x1)/2)!

(
k5
k6

)(s−x1)/2

if (s− x1) is an even number.

Here, C is the normalization constant and P(F = x1|S = s) = 0 if (s− x1) is an odd
number.

A similar argument can be used for CS-I. The stationary CME of the fast sub-
system of CS-I is written as

0 = k2 (x1 + 1)P(X1 = x1 + 1, X2 = x2 − 1)

+ k3 (x2 + 1)P(X1 = x1 − 1, X2 = x2 + 1)

− (k2x1 + k3x2)P(X1 = x1, X = x2),

where s = (x1+x2)/2. Thus, the conditional distribution for CS-I is, for 0 ≤ x1 ≤ 2s,
given by

P(F = x1|S = s) =
C

x1!x2!

(
k2
k3

)x2

=
C

x1!(2s− x1)!

(
k2
k3

)2s−x1

,

where C is again the normalization constant.
While in the above two examples we were able to compute analytical derivations,

we remark that most often this is the case only for elementary systems. For more
complex systems which are not amenable to analytical derivations, we would have to
revert to the CSSA approach discussed in section 5.1.

5.3. Aggregated transition rates and a Markov chain on the state of
slow variables. In the final step of the ADM-CLE approach, we set up a Markov
chain on the state space of slow variables with the end goal of estimating the stationary
distribution of the slow variable. As illustrated in Figure 5.1(b), the system CS-
II can transition from a given state S = s to two adjacent states S = s − 1 (via
reaction channels R2 and R4) and S = s + 1 (via channels R1 and R3), or it can
remain at the current state S = s via channels R5 and R6. Consider now the set
Ps = {x(i) = (x1, x2)

(i)|x1 + 2x2 = s}, illustrated as the middle bin in Figure 5.2.
To compute the transition rate between two adjacent bins Ps and Ps+1, one has
to aggregate over possible ways of getting from an observable state in bin Ps to an

observable state in bin Ps+1. We compute Θ
(s)
1 to be the aggregated transition rate

from state Ps to state Ps+1, over all possible states (x(i),x(j)), such that x(i) ∈ PS

and x(j) ∈ Ps+1, by

(5.1) Θs
1 =

∑
x(i)∈Ps

∑
x(j)∈Ps+1

P(F = x
(i)
1 |S = s)

m∑
k=1

αk(x
(i))Q(x(i),x(j), Rk),
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Ps−1 Ps Ps+1

S=s
Θ Θ

S=s −1 S=s +1
s −1

s
2Θ Θ2

1 1
s

s+1

Fig. 5.2. The Markov chain on the slow variable state space, using the aggregated transition
probabilities (5.1)–(5.2) for the chemical system CS-II. Each slow variable state pools together
multiple states (x1, x2)(i) of the original chemical system, which are placed in the same partition Ps

by our robust mapping procedure introduced in section 4.
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Fig. 5.3. Plot of the aggregated transition rates for the illustrative example CS-II: (a) Θ1; (b)
Θ2; and (c) Θ1 −Θ2.

where Q(x(i),x(j), Rk) denotes the indicator functions of whether one can transition
from the O-state x(i) to O-state x(j) via reaction Rk. We define similarly the aggre-
gated transition rate Θs

2, that the chemical system transitions from the slow variable
state Ps to Ps−1 by

(5.2) Θs
2 =

∑
x(i)∈Ps

∑
x(j)∈Ps−1

P(F = x
(i)
1 |S = s)

m∑
k=1

αk(x
(i))Q(x(i),x(j), Rk).

We illustrate in Figure 5.3 the aggregated transition rates between the slow state
S = s and its adjacent states S = s − 1 and S = s + 1 for all values of the slow
variable S. Note that in the derivations (5.1) and (5.2), we can either rely on the
CSSA algorithm to sample from the conditional distribution of fast variables given
values for the slow variables, as shown in section 5.1, or use the analytic formulation
which is possible to derive for both CS-I and CS-II; see section 5.2.

Finally, we compute the solution to the stationary CME associated to the system
in Figure 5.2 which can be written as

(5.3) 0 = Θs−1
1 π(s− 1) + Θs+1

2 π(s+ 1)− (Θs
1 +Θs

2)π(s),

where π(s) ≈ P(S = s) is the probability that S = s at time t. Assuming that
π(s) = 0 for all s /∈ S and using no-flux boundary conditions, we arrive at a linear
system. The eigenvector of the resulting matrix, with associated eigenvalue λ = 0,
yields an approximate solution of the stationary CME, which we plot in blue in Figure
5.4. Our result is visually indistinguishable from the exact solution (plotted as the
red solid line).

5.4. A comparison with the CMA. We compare the approach we intro-
duced in section 5.3, relying on the analytical derivations in section 5.2, with the
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Fig. 5.4. The final estimated stationary distribution of the slow variable S for the ADM-CLE
approach, computed without knowledge of the slow variable, for (a) the chemical system CS-I; and
(b) the chemical system CS-II (blue histograms). Red solid lines are exact solutions computed by
solving the CME of the full model and using the corresponding definition of the slow variable.

Table 5.2

The distance (as measured by the error in (5.4)) between the estimated and the ground truth
probability distributions of the slow variable, for the CMA algorithm which runs the CSSA algorithm
for each value of the slow variable S = s, until Lc changes of the slow variable occur. The rightmost
column shows the recovery errors for our proposed Markov-based approach.

Lc = 100 Lc = 1, 000 Lc = 10, 000 Lc = 100, 00 ADM-CLE
CS-I 0.40385 0.1225 0.055016 0.053468 0.003389
CS-II 0.68339 0.19916 0.12937 0.080234 0.028239

CMA method proposed in [8], which relies on the CSSA algorithm, and estimate the
coefficients of the effective SDE via a proposed constrained multiscale algorithm. We
compare the results of the two methods with the ground truth and record the error
defined as

(5.4) Error
(
π,P(S = s)

)
=

∑
s∈S

∣∣∣π(s)− P(S = s)
∣∣∣,

where P(S = s) denotes the ground truth probability distribution of the slow variable,
and π denotes the estimated solution, either by the CMA and or the ADM-CLE. As
Table 5.2 shows, the ADM-CLE approach yields lower errors compared to the CMA
algorithm, even when we run the latter with the parameter Lc as large as 100,000.
Note that for the chemical system CS-I, the ground truth probability distribution of
the slow variable P(S = s) can be easily computed using the multivariate Poisson
distribution, as discussed in section 2.1. For the second chemical system CS-II, we
consider as ground truth the solution obtained by solving the associated CME of the
full model in a large (truncated) domain.

In Table 5.2 we show numerical results that highlight the accuracy improvement
of the ADM-CLE approach compared to the CMA approach of [8]. For the latter
method, we run the CSSA algorithm [8] for each value of the slow variable, until Lc

changes of the slow variable occur. As expected, the accuracy of the CMA algorithm
improves as Lc increases, at the cost of additional computational running time of the
method. In comparison, our stochastic simulation-free approach yields significantly
more accurate results, with errors that are one order of magnitude lower than the
CMA method with L = 10, 000, and even L = 100, 000. We plot in Figures 5.5
and 5.6 (top rows) the estimated stationary distribution of the CMA method for
both chemical systems considered throughout this paper for several values of the L
parameter. The bottom rows of Figures 5.5 and 5.6 show the estimated distribution,
after smoothing out by the kernel density estimation (KDE).
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(b) L = 1, 000.
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(c) L = 10, 000.
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(d) L = 100, 000.
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(e) L = 100.
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(f) L = 1, 000.
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(g) L = 10, 000.
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(h) L = 100, 000.

Fig. 5.5. (a)–(d) The stationary distribution of the slow variable computed by the CMA for
CS-I, using knowledge of the slow variable (blue histograms). The red solid line is the exact solution,
P(S = s), obtained by solving the CME of the full system CS-I. The CMA approach runs the CSSA
algorithm for each value of the slow variable S = s until Lc = {102, 103, 104, 105} changes of the
slow variable occur. Panels (e)–(f) show the CMA-computed distribution after smoothing out by the
KDE procedure.
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(b) L = 1, 000.
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(c) L = 10, 000.
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(d) L = 100, 000.
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(e) L = 100.
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(f) L = 1, 000.
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(g) L = 10, 000.
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Fig. 5.6. (a)–(d) The stationary distribution of the slow variable computed by the CMA for CS-
II, using knowledge of the slow variable (blue histograms). The red solid line is the exact solution,
P(S = s), obtained by solving the CME of the full system CS-II. The CMA approach runs the CSSA
algorithm for each value of the slow variable S = s until Lc = {102, 103, 104, 105} changes of the
slow variable occur. Panels (e)–(f) show the CMA-computed distribution after smoothing out by the
KDE procedure.

5.5. Computational complexity. Computing the local covariance matrices
can be done in linear time in number of states N in the system O(Nl2), where l
denotes the number of species. The main drawback of our approach is that the
number of states is exponential in the number of species in the system. If ri denotes
the size of the range of the molecule Xi, the total number of states in the system
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renders N = Πl
i=1ri. If each molecule has roughly r states in its range, then N = rl,

which renders the current version of the ADM-CLE approach prohibitive for systems
with large l.

From a computational point of view, all steps of the algorithm can be implemented
in a distributed fashion and scaled linearly in the number of states N , except for the
eigenvector computation, which is nearly linear. This is due to the fact that every
iteration of the power method is linear in the number of edges of the graph G (which
is very sparse), but the number of iterations is greater than O(1), as it depends on
the spectral gap.

6. Summary and discussion. In this paper we have introduced an ADM-
CLE approach for detecting intrinsic slow variables in high-dimensional dynamic data,
generated by stochastic dynamical systems. In the original ADM framework, the local
bursts of simulations initiated at each data point to estimate the local covariances are
computationally expensive, a shortcoming we avoid by using an approximation of
the CLE. A second innovation that further improved the computational performance
relates to the underlying similarity graph, a starting point for the diffusion map
approach. By exploiting the spectrum of each local covariance matrix, we built a
sparse ellipsoid-like neighborhood graph at each point in the data set, with the end
result of being able to build a sparse similarity graph that requires the computation of
a much smaller number of distances, which makes the ADM-CLE approach scalable to
networks with thousands or even tens of thousands of nodes. For the two illustrative
examples considered in this paper, the sizes of the resulting graphs are N = 10, 201
for CS-I and N = 12, 100 for CS-II, respectively. Had these graphs been complete
graphs, the number of resulting weighted edges would be over 50 million, while in
our computations, the number of edges is approximately 2.9 million for CS-I and 3.9
million for CS-II.

We have proposed a spectral-based method for inferring the slow variable present
within the chemical system without any prior knowledge of its structure and a Markov-
based approach for estimating its stationary distribution. We augment the proposed
algorithmic approach with numerical simulations that confirm that the ADM-CLE
approach can compare favorably for some systems to the CMA for estimating the
stationary distribution of such slow variables. The ADM-CLE approach can also be
applied to systems with a low number of states of slow variables. The CMA, as
introduced in [8], is more suitable for systems where the slow variable(s) can take
many different values, because the CMA uses an underlying SDE approximation for
the behavior of the slow variables. One option to overcome this problem is to estimate
effective propensity functions of the slow subsystem [9]. An open question is to extend
the ADM-CLE to systems where the range of the Xi variables is very large. In the
ADM-CLE approach applied to CS-I or CS-II, we associate a state (i.e., node in the
initial graph) to each possible combination of pairs of states (x1, x2), an approach no
longer feasible whenever the range of the variables is large. To bypass this problem,
one could change the discretization of the state space and modify accordingly the
Markov chain–based approach (Figure 5.2) used in the ADM-CLE.

The main issue with the extension of the ADM-CLE to chemical systems with
a higher number of species stems from the large computational running time due to
the number of states growing exponentially in the number of species. In particular,
the presented ADM-CLE approach which is based on standard matrix-vector compu-
tations cannot be applied to such systems. Exponential scaling can be avoided for
some systems by storing the computed data in a tensor format, with smaller memory
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requirements than in traditional approaches. The resulting tensor data can be ana-
lyzed using algebraic operations with computational complexity which scales linearly
with dimension [31]. In principle, the tensor-based computations could be combined
with the ADM-CLE approach to improve the scaling of its computational complexity
with the dimension.

The ADM-CLE couples a method for finding slow variables (ADM) with an ap-
proach to compute the stationary distribution of a multiscale chemical reaction net-
work. Chemical systems depend on a number of parameters (e.g., kinetic rate con-
stants), and an open question is to extend the ADM approach to situations where
one (or more) parameters are varied, i.e. to perform bifurcation analysis of multiscale
stochastic chemical systems [31].

Finally, we point out recent work of Dsilva et al. [11], who also rely on the ADM
framework to discover nonlinear intrinsic variables in high-dimensional data in the
context of multiscale simulations, with the task of merging different simulation en-
sembles or partial observations of such ensembles in a globally consistent manner.
Their work is motivated by the fact that often one is not merely interested in ex-
tracting the hidden (slow) variables from the underlying low-dimensional manifold,
given partial observations x(i), i = 1, 2, . . . , N , as in the ADM setting, but also in
extending high-dimensional functions on a set of points lying in a low-dimensional
manifold. Their proposed approach relies on the so-called Laplacian Pyramids [36],
a multiscale algorithm for extending a high-dimensional function defined on a set of
points in the space of intrinsic variables to a second set of points not in the data set,
by using Laplacian kernels of decreasing bandwidths (the ε parameter in (3.5)).
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