
NEGLIGIBLE DEGREE TWO COHOMOLOGY OF FINITE GROUPS

MATTHEW GHERMAN AND ALEXANDER MERKURJEV

Abstract. For a finite group G, a G-module M and a field F , an element u ∈ Hd(G,M)
is negligible over F if for each field extension L/F and every group homomorphism
Gal(Lsep/L) → G, u belongs to the kernel of the induced homomorphism Hd(G,M) →
Hd(L,M). We determine the group of negligible elements in H2(G,M) for every abelian
group M with trivial G-action.

1. Introduction

The notion of negligible cohomology was introduced by J-P. Serre in [7] (see also [2,
Part I, §26]). Let G be a finite group, M a G-module and F a field. A (continuous) group
homomorphism j : ΓL = Gal(Lsep/L) → G from the absolute Galois group ΓL of a field
extension L of F to G yields a homomorphism

j∗ : Hd(G,M)→ Hd(L,M)

of cohomology groups for every d > 0. An element u ∈ Hd(G,M) is called negligible over
F if u ∈ Ker(j∗) for all field extensions L/F and all j. All negligible over F elements
form a subgroup

Hd(G,M)neg = Hd(G,M)neg,F ⊂ Hd(G,M).

Examples 1.1. 1) Negligible cohomology elements are related to the embedding problem.
Let K/F be a finite Galois field extension with G = Gal(K/F ). Let

(1.2) 1→M → G′
f−→ G→ 1

be an exact sequence of finite groups with M abelian. The conjugation G′-action on M
makes M a G-module. The embedding problem for the exact sequence (1.2) and field
extension K/F is to find a Galois G′-algebra K ′ over F such that the restriction map
G′ = Gal(K ′/F ) → Gal(K/F ) = G coincides with f . Equivalently, one needs to find a
lifting ΓF → G′ of the homomorphism ΓF → G corresponding to the extension K/F .

Let u ∈ H2(G,M) be the class of the exact sequence (1.2) and let j : ΓL → G be the
group homomorphism given by a field extension L/F . Then j extends to a homomorphism
ΓL → G′ if and only if the pull-back of the sequence (1.2) under j is split. The latter
is equivalent to the triviality of the image of u under j∗ : H2(G,M) → H2(L,M). In
other words, the class u is negligible if and only if all embedding problems for the exact
sequence (1.2) and all G-Galois field extensions L′/L of fields containing F have solutions.

2) Let M be an abelian group which we view as a module over any profinite group
with trivial action. The cohomology group Hd(F,M) = Hd(ΓF ,M) is the colimit of the
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groups Hd(G,M) over all finite discrete factor groups G of ΓF . The group Hd(G,M)neg

is contained in the kernel of the natural homomorphism Hd(G,M)→ Hd(F,M).

3) Negligible cohomology elements of G are related to the invariants of G as follows.
Let M be an abelian group with trivial group action. Write Invd(G,M) for the group of
degree d (normalized) invariants of G with values in M over a field F (for the definition
of the invariant see [2]). We have a homomorphism

inv : Hd(G,M)→ Invd(G,M),

taking an element u ∈ Hd(G,M) to the invariant sending the class of a G-algebra N over
a field extension L of F (that is a G-torsor over SpecL) to the image of u under the
homomorphism

j∗ : Hd(G,M)→ Hd(L,M)

with respect to the natural group homomorphism j : ΓL → G. By the very definition of
negligible elements, Hd(G,M)neg = Ker(inv).

Let M be a G-module. The groups Hd(G,M)neg are trivial if d = 0 or 1 (see Corollary
2.2). In the present paper we determine the group H2(G,M)neg for an arbitrary finite
group G and arbitrary abelian group M with trivial G-action. In Section 2 we reduce the
problem to the case M = Z/psZ for a prime integer p and char(F ) 6= p.

In Section 3 we consider the case when the base field F contains sufficiently many
roots of unity. We identify Z/mZ with the group µm of m-th roots of unity and compute
H2(G, µm)neg using the Brauer group considerations.

Let pt be the order of the group of p-primary roots of unity in the field F (ξp). In
Theorem 4.1 we determine the group H2(G,Z/psZ)neg in all cases except when p = 2 and
t = 1. The group of negligible elements in H2(G,Z/psZ) depends on the character group
G∗ and the integers ps and t.

The exceptional case p = 2 and t = 1 is more delicate and it requires some computations
in the Brauer group. Let 2t

′
be the order of the 2-primary roots of unity in the field

F (
√
−1). The group of negligible elements in H2(G,Z/2sZ) depends on the group G∗

and the integers s and t′ (Theorem 5.2).

We use the following notations in the paper.

F is the base field, Fsep is a separable closure of F , ΓF = Gal(Fsep/F ) is the absolute
Galois group of F ;

µm is the group of m-th roots of unity in Fsep, µm(F ) = µm∩F×, ξm is a generator of µm;

For an abelian group A write Ators for the torsion part of A and set A[q] := Ker(A
q−→ A),

where q is an integer; A[p∞] := ∪s>0A[ps], where p is a prime integer;

Hd(F,M) := Hd(ΓF ,M) for a (discrete) ΓF -module (Galois module) M .

2. Preliminary results

Let V be a faithful (finite dimensional) representation of the group G over F . The
group G acts on the field F (V ) of rational functions on V over F making F (V )/F (V )G

a Galois G-extension. The following proposition shows that in the definition of negligible
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elements it suffices to consider only surjective group homomorphisms j and, moreover,
only one (generic) Galois field extension F (V )/F (V )G.

Proposition 2.1. Let G be a finite group, M a G-module, u ∈ Hd(G,M) and F a field.
Let V be a faithful representation of G. The following conditions are equivalent:

(1) u is negligible over F , i.e., u ∈ Hd(G,M)neg;
(2) j∗(u) = 0 for all field extensions L/F and every surjective group homomorphism

j : ΓL → G;
(3) If K = F (V )G and jK : ΓK → G is given by the Galois G-extension F (V )/K,

then j∗K(u) = 0 in Hd(K,M).

Proof. (1)⇒ (2) is trivial.
(2)⇒ (3) is clear since the map jK in (3) is surjective.
(3) ⇒ (1): Let N/L be a Galois G-algebra for a field extension L/F and j : ΓL → G a
group homomorphism. We need to show that j∗(u) = 0. As the natural homomorphism
Hd(L,M) → Hd(L(t),M), where L(t) is the rational function field over L, is injective,
replacing F by F (t) and L by L(t) if necessary, we may assume that the field L is infinite.

The scheme Spec(K) is the limit of the family of varieties U/G, where U ⊂ V is a
nonempty open G-invariant subscheme such that the morphism U → U/G is a G-torsor.
For every such U write

iU : Hd(G,M)→ Hd
ét(U/G,M)

for the edge homomorphism in the Hochschild-Serre spectral sequence [4, Ch. III, Th.
2.20]

Ep,q
2 = Hp(G,Hq

ét(U,M))⇒ Hp+q
ét (U/G,M).

Since j∗K(u) = 0 and the étale cohomology commutes with limits, there is U such that
iU(u) = 0. As L is infinite, by [2, Part I, Ch.1, §5], there is a morphism k : Spec(L)→ U/G
such that Spec(N)→ Spec(L) is the pull-back of U → U/G with respect to k. Then the
composition

Hd(G,M)
iU−→ Hd

ét(U/G,M)
k∗−→ Hd(L,M)

coincides with j∗. Since iU(u) = 0 we have j∗(u) = 0. �

Corollary 2.2. (cf., [7] and [5, Proposition 4.5])

(1) In the notation of the proposition,

Hd(G,M)neg = Ker
(
Hd(G,M)

j∗−→ Hd(F (V )G,M)
)
.

(2) The group Hd(G,M)neg is trivial if d 6 1.

Proof. (1): This follows immediately from Proposition 2.1
(2): As j is surjective, the inflation map j∗ is injective if d 6 1. �

In the following proposition we collect some functorial properties of negligible elements.

Proposition 2.3. Let L/F be a field extension, G a finite group, M a G-module and
f : H → G a homomorphism of finite groups. Then

(1) The map f ∗ : Hd(G,M)→ Hd(H,M) takes Hd(G,M)neg into Hd(H,M)neg;
(2) Hd(G,M)neg ⊂ Hd(G,M)neg,L;
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(3) If L/F is finite, then [L : F ] ·Hd(G,M)neg,L ⊂ Hd(G,M)neg;
(4) If α : M → N is a G-module homomorphism, then the map α∗ : Hd(G,M) →

Hd(G,N) takes Hd(G,M)neg into Hd(G,N)neg.

Proof. (1): Let j : ΓL → H be a group homomorphism for a field extension L of F and
u ∈ Hd(G,M)neg. Then j∗(f ∗(u)) = (f ◦ j)∗(u) = 0, hence f ∗(u) ∈ Hd(H,M)neg.

(2): LetK = F (V )G as in Proposition 2.1(3) and setKL := L(V )G. Let u ∈ Hd(G,M)neg.
By definition, j∗K(u) = 0 in Hd(K,M). It follows that j∗KL(u) = resKL/K ◦j∗K(u) = 0 in
Hd(KL,M), hence u ∈ Hd(G,M)neg,L by Corollary 2.2(1).

(3): If L/F is finite and u ∈ Hd(G,M)neg,L, then resKL/K ◦j∗K(u) = j∗KL(u) = 0. Applying
the correstriction homomorphism, we get

[L : F ] · j∗K(u) = corKL/K ◦ resKL/K ◦j∗K(u) = corKL/K ◦j∗KL(u) = 0,

therefore, [L : F ] · u ∈ Hd(G,M)neg.

(4) is clear. �

Corollary 2.4. If p is a prime integer such that char(F ) 6= p and ps ·M = 0 for some s,
then

Hd(G,M)neg = Hd(G,M)neg,F (ξp).

Proof. Indeed, the degree [F (ξp) : F ] is prime to p. �

From now on assume that M is an abelian group with trivial G-action.

Lemma 2.5. If M is a torsion free abelian group then H2(G,M)neg = 0.

Proof. The exact sequence 0→M →M ⊗Q→M ⊗ (Q/Z)→ 0 yields the isomorphisms

H2(G,M) ' H1(G,M ⊗ (Q/Z)), H2(L,M) ' H1(L,M ⊗ (Q/Z))

for every field L. Therefore, H2(G,M)neg ' H1(G,M ⊗ (Q/Z))neg = 0 by Corollary
2.2(2). �

The following proposition reduces the computation of negligible elements to the case
when M is a torsion group.

Proposition 2.6. Let M be an abelian group. Then the natural map

H2(G,Mtors)neg → H2(G,M)neg

is an isomorphism.

Proof. If Γ is a profinite group and N is a torsion free abelian group, then H1(Γ, N) =
Hom(Γ, N) = 0 since the image of every (continuous) homomorphism Γ → N is finite.
Since the factor group M/Mtors is torsion free, it follows that the natural homomorphism
H2(Γ,Mtors)→ H2(Γ,M) is injective. Therefore, both horizontal maps in the commuta-
tive diagram

H2(G,Mtors)

j∗

��

// H2(G,M)

j∗

��
H2(L,Mtors) // H2(L,M)
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are injective for every field extension L/F and a group homomorphism j : ΓL → G.
Let u ∈ H2(G,M)neg. By Lemma 2.5, the group H2(G,M/Mtors)neg is trivial, hence u

comes from an element w ∈ H2(G,Mtors). The diagram chase shows that w ∈ H2(G,Mtors)neg,
i.e., the map in the statement of the proposition is surjective. �

If M = colimMi is a directed colimit of abelian groups Mi then since cohomology of
profinite groups commute with directed colimits, we have

H2(G,M)neg = colimH2(G,Mi)neg.

Since every torsion abelian group is the union of finite groups and every finite group is
a direct sum of primary cyclic groups, Proposition 2.6 shows that in order to compute
H2(G,M)neg for an arbitrary abelian group M , it suffices to determine the structure of
H2(G,Z/psZ)neg for all primes p and positive integers s.

If char(F ) = p > 0, then Hd(G,Z/psZ)neg = Hd(G,Z/psZ) since H2(L,Z/psZ) = 0
for every field extension L/F (see [6, Chapter II, Proposition 4]). In what follows when
computing the group Hd(G,Z/psZ)neg we will assume that char(F ) 6= p.

2a. Cyclic algebras. Let F be a field and ΓF = Gal(Fsep/F ). Write (ΓF )∗ for the group
of (continuous) characters ΓF → Q/Z, i.e.,

(ΓF )∗ = Hom(ΓF ,Q/Z) = H1(F,Q/Z) = H2(F,Z).

For a character x ∈ (ΓF )∗ and an element a ∈ F× denote by (x, a) the class of the
corresponding cyclic algebra in the Brauer group Br(F ) (see [3, §2.5]). By definition,
(x, a) = x ∪ a with respect to the cup-product

(ΓF )∗ ⊗ F× = H2(F,Z)⊗H0(F, F×sep)→ H2(F, F×sep) = Br(F ).

If x ∈ (ΓF )∗[2], i.e., 2x = 0, then (x, a) is the class of a quaternion algebra split by
the quadratic extension F (a1/2)/F . Conversely, every element in Br(F ) that is split by
F (a1/2)/F is of the form (x, a) for some x ∈ (ΓF )∗[2].

Lemma 2.7. If char(F ) 6= 2, the kernel of the homomorphism (ΓF )∗ → Br(F ) taking a
character x to (x,−1) coincides with 2(ΓF )∗.

Proof. Let x ∈ (ΓF )∗ and let m be the order of x. Consider the matrix A ∈ GLm(F )
defined by (a1, a2, . . . , am) · A = (a2, a3, . . . , am,−a1) for all ai ∈ F . Note that Am = −1,
hence we have a homomorphism i : Z/2mZ → GLm(Fsep) defined by i(r + 2mZ) = Ar.
The upper row of the commutative diagram

0 // Z/2Z
1
2 // Q/Z 2 // Q/Z // 0

0 // Z/2Z
1
2 //

k
��

1
2m

Z/Z 2 //

i

��

?�

OO

1
m

Z/Z //

��

?�

OO

0

1 // F×sep
// GLm(Fsep) // PGLm(Fsep) // 1,
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where k(1 + 2Z) = −1 yields an exact sequence (ΓF )∗
2−→ (ΓF )∗

∂−→ H2(F,Z/2Z). Iden-
tifying Z/2Z with µ2 and H2(F,Z/2Z) with the subgroup H2(F, µ2) = Br(F )[2] of the
Brauer group H2(F, F×sep) = Br(F ) we see that it suffices to show that ∂(x) is equal to
the cyclic class (x,−1).

It is shown in [3, §2.5] that the image of x under the composition

(ΓF )∗ = H1(F,Q/Z)→ H1(F,PGLm(Fsep))→ H2(F, F×sep) = Br(F )

given by the bottom row of the diagram coincides with (x,−1). �

3. Fields with many roots of unity

Proposition 3.1. Let G be a finite group and F a field and let m be a positive integer
such that char(F ) does not divide m and µm ⊂ F×. Then

H2(G, µm)neg = Ker
(
H2(G, µm)→ H2(G,F×)

)
,

where we view µm and F× as trivial G-modules.

Proof. Let V be a finite dimensional faithful representation of G such that there is a
G-invariant open subset U ⊂ V with the property that V \ U is of codimension at least
2 in V and there is a G-torsor U → X for a variety X over F . Such representations exist
(see [8, Remark 1.4]).

The Hochschild-Serre spectral sequence [4, Ch. III, Th. 2.20]

Ep,q
2 = Hp(G,Hq

ét(U,Gm))⇒ Hp+q
ét (X,Gm)

yields an exact sequence

Pic(U)G → H2(G,F [U ]×)→ Br(X).

The group Pic(U) is trivial as U is an open subset of the affine space V . By the choice
of U every invertible regular function on U is constant, i.e., F [U ]× = F× and hence the
map H2(G,F×)→ Br(X) is injective.

By [4, III, 2.22], the natural map Br(X) → Br(K), where K = F (X), is injective. It
follows that the bottom map of the commutative diagram

H2(G, µm)

��

// H2(K,µm)

��
H2(G,F×) // Br(K)

is injective. The right vertical morphism is also injective identifying H2(K,µm) with
Br(K)[m]. Hence the other two homomorphisms in the diagram have equal kernels. Now
the statement follows from Corollary 2.2(1). �

Remark 3.2. The proposition also follows from the isomorphism Inv2(G,Q/Z) ' H2(G,F×)
established in [1].

It follows from Proposition 3.1 that H2(G, µm)neg coincides with the image of the con-
necting homomorphism

H1(G,F×/µm)→ H2(G, µm)
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for the exact sequence 1 → µm → F× → F×/µm → 1. An element of the group
H1(G,F×/µm) is a group homomorphism G → F×/µm. Its image is contained in
µ(F )/µm. Consider the exact sequence

(3.3) 1→ µm → µ(F )→ µ(F )/µm → 1.

We have proved the following statement:

Corollary 3.4. In the conditions of Proposition 3.1 the group H2(G, µm)neg coincides
with the image of the connecting homomorphism H1(G, µ(F )/µm) → H2(G, µm) for the
exact sequence (3.3).

The exact sequence 0 → Z/mZ
1
m−→ Q/Z

m−→ Q/Z → 0 for an integer m > 0 yields an
embedding

G∗/mG∗ ↪→ H2(G,Z/mZ),

where G∗ := Hom(G,Q/Z) = H1(G,Q/Z) is the character group of G. We identify
G∗/mG∗ with a subgroup of H2(G,Z/mZ).

4. Primary case

Let p be a prime integer and F a field such that char(F ) 6= p.

Lemma 4.1. Let µp∞(F (ξp)) = µpt for some t with 1 6 t 6 ∞. Assume that t > 2 if
p = 2. Then µp∞(F (ξpr)) = µpr for every r > t.

Proof. The image of the injective homomorphism χ : Γ = Gal(F (µp∞)/F (ξp)) → Z×p
taking an automorphism σ to the unique p-adic unit a such that σ(ξ) = ξa for all ξ ∈ µp∞
is contained in Ut = {a ∈ Z×p | a ≡ 1 mod pt}. Choose an element σ ∈ Γ such that
χ(σ) /∈ Ut+1. By assumption, Ut is a topological cyclic group generated by σ. It follows
that Im(χ) = Ut and F (ξpr) for all r > t are all intermediate fields between F (ξp) and
F (µp∞) corresponding to all closed subgroups Ur ⊂ Ut. �

Theorem 4.2. Let G be a finite group, p a prime integer and s a positive integer. Let F
be a field such that char(F ) 6= p and µp∞(F (ξp)) = µpt for some t with 1 6 t 6∞.

(1) If t > s, then

H2(G,Z/psZ)neg =
(
G∗[pt−s] + psG∗

)
/psG∗ ⊂ G∗/psG∗ ⊂ H2(G,Z/psZ).

(2) If t < s and t > 2 in the case p = 2, then H2(G,Z/psZ)neg = 0.

Proof. (1): Since t > s, by Corollary 2.4, we may assume that µps ⊂ F×, hence Z/psZ '
µps as Galois modules. The p-primary component of the exact sequence (3.3) is isomorphic
to the upper row of the commutative diagram

0 // Z/psZ
p−s

// p−tZ/Z
ps //

� _

��

ps−tZ/Z //
� _

��

0

0 // Z/psZ
p−s

// Q/Z
ps // Q/Z // 0.
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Applying cohomology groups to the diagram and using Corollary 3.4 we see that the
group H2(G,Z/psZ)neg coincides with the image of the composition

G∗[pt−s] = H1(G, ps−tZ/Z)→ H1(G,Q/Z) = G∗ → G∗/psG∗ ⊂ H2(G,Z/psZ),

whence the result.
(2): Let L = F (µps). By Lemma 4.1, we have µp∞(L) = µps . The first part of

the theorem applied to the field L show that H2(G,Z/psZ)neg,L = 0. It follows from
Proposition 2.3(2) that H2(G,Z/psZ)neg = 0. �

5. The case p = 2 and t = 1

It remains to consider the case p = 2 and t = 1 and F is a field of characteristic different
from 2. The condition t = 1 means that −1 is not a square in F .

Proposition 5.1. Let b > a be positive integers, L a field such that ξ2b ∈ L(
√
−1) and

let Γ = ΓL. Then

Γ∗[2b−a] ∩ 2Γ∗ ⊂ 2aΓ∗.

Proof. We prove the statement by induction on a. The case a = 1 is obvious.

a = 2: Let x ∈ Γ∗[2b−2] ∩ 2Γ∗. Write x = 2y for y ∈ Γ∗[2b−1]. Consider the cyclic class

(y,−1) ∈ Br(L). As −1 = (ξ2b)
2b−1

in L′ := L(
√
−1), we have

(y,−1)⊗L L′ = (yL′ ,−1) = 2b−1 · (yL′ , ξ2b) = (2b−1yL′ , ξ2b) = 0

in the Brauer group Br(L′) since 2b−1y = 0. We proved that (y,−1) is split by the
extension L(

√
−1) of L, hence (y,−1) is the class of the quaternion algebra (z,−1) for

some z ∈ Γ∗[2]. It follows that (y − z,−1) = 0, hence y − z ∈ 2Γ∗ by Lemma 2.7 and
therefore, x = 2y = 2(y − z) ∈ 4Γ∗.

a − 1 ⇒ a: Let x ∈ Γ∗[2b−a] ∩ 2Γ∗. By the induction hypothesis, x = 2a−1y for some
y ∈ Γ∗[2b−1]. Then 2y ∈ Γ∗[2b−2] ∩ 2Γ∗ and hence 2y ∈ 4Γ∗ by the first part of the proof.
Finally, x = 2a−2 · 2y ∈ 2a−2 · 4Γ∗ = 2aΓ∗. �

Theorem 5.2. Let G be a finite group and s a positive integer. Let F be a field such
that such that char(F ) 6= 2 and −1 /∈ F×2. Write µ2∞(F (

√
−1)) = µ2t′ for some t′ with

1 6 t′ 6∞.

(1) If t′ > s, then

H2(G,Z/2sZ)neg =
(
(G∗[2t

′−s] ∩ 2G∗) + 2sG∗
)
/2sG∗ ⊂ G∗/2sG∗ ⊂ H2(G,Z/2sZ).

(2) If t′ < s, then H2(G,Z/2sZ)neg = 0.

Proof. (1): It follows from Theorem 4.2(1) applied to the field F ′ := F (
√
−1) and Propo-

sition 2.3(2) that

H2(G,Z/2sZ)neg ⊂ H2(G,Z/2sZ)neg,F ′ =
(
G∗[2t

′−s] + 2sG∗
)
/2sG∗.
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Applying Corollary 3.4 in the case m = 2 we see that H2(G,Z/2Z)neg = 0 since t = 1.
The commutativity of the diagram

G∗/2sG∗
� _

��

// G∗/2G∗
� _

��
H2(G,Z/2sZ) // H2(G,Z/2Z)

shows that H2(G,Z/2sZ)neg ⊂ 2G∗/2sG∗. It follows that

H2(G,Z/2sZ)neg ⊂
(
(G∗[2t

′−s] ∩ 2G∗) + 2sG∗
)
/2sG∗.

Conversely, let x ∈ G∗[2t
′−s] ∩ 2G∗. We show that the corresponding element in

G∗/2sG∗ ⊂ H2(G,Z/2sZ) is negligible. Let L/F be a field extension and j : ΓL → G a
group homomorphism. Consider the following commutative diagram

G∗/2sG∗
� _

��

j∗ // (ΓL)∗/2s(ΓL)∗
� _

��
H2(G,Z/2sZ)

j∗ // H2(L,Z/2sZ).

By Proposition 5.1 applied to a = s and b = t′ we see that the image of x in (ΓL)∗/2s(ΓL)∗

is trivial and hence the image of x in H2(L,Z/2sZ) is also trivial, i.e., x is negligible.

(2): Let L = F (µ2s) = F ′(µ2s). By Lemma 4.1 applied to F ′, we have µ2∞(L) = µ2s .
The first part of the theorem applied to the field L shows that H2(G,Z/2sZ)neg,L = 0. It
follows from Proposition 2.3(2) that H2(G,Z/2sZ)neg = 0. �
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