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Abstract. For a finite group G, a G-module M , and a field F , an element u ∈ Hd(G,M) is
negligible over F if for each field extension L/F and every continuous group homomorphism
from Gal(Lsep/L) to G, u belongs to the kernel of the induced homomorphism Hd(G,M)→
Hd(L,M). For p a prime and a trivial G-action on the coefficients, the negligible elements
in the cohomology ring H∗(G,Z/pZ) form an ideal. We show that when p is odd or p = 2
and either |G| is odd or F is not formally real, the Krull dimension of the quotient of mod
p cohomology by the negligible ideal is 0. However, when p = 2, |G| is even, and F is
formally real, the Krull dimension of the quotient of mod 2 cohomology of a finite 2-group
by the negligible ideal is 1. We further compute the generators of the negligible ideal in
the mod p cohomology of elementary abelian p-groups.

1. Introduction

The notion of negligible cohomology was introduced by J.-P. Serre in [17] (see also [7,
Part I § 26]). Let G be a finite group, M a G-module, and F a field. A continuous group
homomorphism j : ΓL = Gal(Lsep/L) → G from the absolute Galois group ΓL of a field
extension L of F to G yields a homomorphism j∗ : Hd(G,M) → Hd(L,M) of cohomology
groups for every d ≥ 0. An element u ∈ Hd(G,M) is negligible over F if u ∈ ker(j∗) for all
field extensions L/F and all j.

A fundamental and difficult problem in Galois theory is to characterize those profinite
groups which are realizable as absolute Galois groups of fields. One of the most common
approaches has been to find constraints on the cohomology of absolute Galois groups. For
instance, the Bloch-Kato conjecture, proved by Rost and Voevodsky, provides a presentation
of the cohomology of absolute Galois groups with generators in degree 1 and relations
in degree 2. In the present paper, we make precise the notion that most classes in the
cohomology of a finite group disappear when mapped to the cohomology of an absolute
Galois group. We can interpret the size of negligible cohomology as a further restriction on
profinite groups that are realizable as absolute Galois groups of fields.

For a prime p, we will assume throughout this paper that M = Z/pZ has a trivial G-
action. If char(F ) = p > 0, then Hd(K,Z/pZ) = 0 for d ≥ 2 by [16, Chapter II Proposition
3] so Hd(G,Z/pZ) is entirely negligible for d ≥ 2. We will, therefore, assume F is a field
with char(F ) 6= p when computing the negligible classes of H∗(G,Z/pZ). The negligible
classes of Hd(G,Z/pZ) over F are the same as that over F (ξp) for ξp a primitive pth root

Date: April, 2023.
Key words and phrases. Negligible cohomology, Galois cohomology, formally real fields. Mathematical

Subject Classifications (2020): 12G05, 20J06.
The work of the second author has been supported by the NSF grant DMS #1801530.

1



2 M. GHERMAN AND A. MERKURJEV

of unity by [8, Corollary 2.4]. Hence, we will assume that F contains a primitive pth root
of unity ξp. In order to discuss Krull dimension, we define the commutative ring

H(G,Z/pZ) =

{
Heven(G,Z/pZ) if p 6= 2

H∗(G,Z/2Z) if p = 2.

Since inflation maps are ring homomorphisms, the negligible elements of the ringH(G,Z/pZ)
form an ideal, denoted I(G,Z/pZ). We write Q(G,Z/pZ) = H(G,Z/pZ)/I(G,Z/pZ) for
the negligible quotient. In the possibly non-commutative ring H∗(G,Z/pZ), we denote the
two-sided ideal of negligible elements I(G,Z/pZ).

The level of a field F , denoted s(F ), is the least number of squares that sum to −1 in
F . If −1 cannot be written as a sum of squares, then F is formally real. Pfister’s Level
Theorem, [12, Theorem 2.2], proves that when s(F ) is finite, s(F ) is a power of 2. If F
is a field with s(F ) = 2r, we can, equivalently, say that the r-fold Pfister form 〈〈1, . . . , 1〉〉
is anisotropic over F while the (r + 1)-fold Pfister form 〈〈1, . . . , 1, 1〉〉 is isotropic over F .
By [4, Section 16], the class (−1)r+1 ∈ H∗(F,Z/pZ) is trivial while (−1)r ∈ H∗(F,Z/pZ) is
not. For a proof of the result, see [13, Theorem 4.1].

Quillen proved in [15, Corollary 7.8] that the Krull dimension of H∗(G,Z/pZ) is equal
to the maximum rank of an elementary abelian p-subgroup of G. With Quillen’s result as
inspiration, we prove the following two theorems about the Krull dimension of the negligible
quotient.

Theorem (2.2). Let p be a prime, G a finite group, and F a field. If p = 2, assume that F
is not formally real or G has odd order. Then the negligible quotient Q(G,Z/pZ) is finite.
In particular, Q(G,Z/pZ) has Krull dimension 0.

Theorem (3.3). Let G be a finite group of even order and F a formally real field. Then
the negligible quotient Q(G,Z/2Z) has Krull dimension 1.

In [14], Quillen and Venkov proved that nilpotent elements in the group cohomology of
a finite group G are detected on the elementary abelian p-subgroups of G. Likewise, the
elementary abelian p-subgroups of G provide an effective tool for detecting negligible classes
in the cohomology of G. We conclude the paper with a computation of the mod p negligible
cohomology ideal of elementary abelian p-groups in Section 4.

1.1. Notation and Facts. Let K be a field extension of F . We will fix a primitive pth
root of unity ξp ∈ F throughout the paper. We identify the pth roots of unity µp ⊂ K
with Z/pZ. Then H1(K,Z/pZ) ' H1(K,µp) ' K×/(K×)p, and we write an element of
H1(K,Z/pZ) as a class (a) for a(K×)p ∈ K×/(K×)p. Let (ai) ∈ K×/(K×)p for 1 ≤ i ≤ d.
We often write (a1, . . . , ad) for the cup product (a1)∪ · · · ∪ (ad) in Hd(K,Z/pZ). Note that
(a, a) = (a,−1) and (a, b) + (b, a) = 0 for all (a), (b) ∈ H1(K,Z/pZ).

The Norm Residue Isomorphism Theorem [10] reveals that the ideal H>0(K,Z/pZ) is
generated by elements of H1(K,Z/pZ). Therefore, it is often sufficient to check properties
on generators (a) ∈ H1(K,Z/pZ) of H>0(K,Z/pZ).

When p = 2, let (ai) ∈ H1(K,Z/2Z) for 1 ≤ i ≤ d. Since H∗(K,Z/2Z) is a commutative
ring, (a1, . . . , ad)

2 = (a1, . . . , ad) ∪ (−1)d. The squaring map and cup product by (−1)d are
linear. Therefore, α2 = α∪ (−1)d for any α ∈ Hd(K,Z/2Z). An inductive argument reveals
αk+1 = α ∪ (−1)dk.
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2. Krull dimension of the negligible quotient over fields that are not
formally real

In all cases except when p = 2, F is formally real, and G has even order, we prove that
the mod p cohomology of a finite group G becomes entirely negligible after some degree.
We begin with a more general result about the nilpotence of elements in Galois cohomology.

Lemma 2.1. Let p be a prime. If p = 2, assume that the field K is not formally real. Then
every element of H>0(K,Z/pZ) is nilpotent.

Proof. In the graded ring H∗(K,Z/pZ), the sum of nilpotent elements is nilpotent and the
pth power map is linear. It is thus sufficient to check nilpotence on homogeneous generators
(a) ∈ H1(K,Z/pZ) of H>0(K,Z/pZ). When p is odd, we have (a)2 = (a,−1) = 0. When
p = 2 and s(K) = 2r, (−1)r+1 is trivial in Hr+1(K,Z/2Z). Let m be a power of 2 such that
r + 1 ≤ m− 1. Then (a)m = (a) ∪ (−1)m−1 = 0. �

Theorem 2.2. Let p be a prime, G a finite group, and F a field. If p = 2, assume that F
is not formally real or G has odd order. Then the negligible quotient Q(G,Z/pZ) is finite.
In particular, Q(G,Z/pZ) has Krull dimension 0.

Proof. If p = 2 and |G| is odd, H>0(G,Z/2Z) = 0. Hence, we may assume that F is not
formally real when p = 2. By [6, Corollary 7.4.6], the ring H(G,Z/pZ) is finitely generated.
Let K be a field extension of F and j : ΓK → G a continuous group homomorphism. The
image of each generator via j∗ will be nilpotent in H>0(K,Z/pZ) by Lemma 2.1. Therefore,
each generator of H(G,Z/pZ) is in the radical of I(G,Z/pZ) and, hence, Q(G,Z/pZ) is
finite. We conclude that Q(G,Z/pZ) is a ring of Krull dimension 0. �

3. Krull dimension of the negligible quotient over formally real fields

The final case to consider is when p = 2, F is formally real, and G has even order. With
these assumptions, we prove the Krull dimension of the negligible quotient is always 1.

Lemma 3.1. Let G be a finite group of even order. Assume that F is formally real. Then
the Krull dimension of Q(G,Z/2Z) is positive.

Proof. Let H be an order 2 cyclic subgroup of G. By [8, Proposition 2.3(1)], the restriction

res : H(G,Z/2Z)→ H(H,Z/2Z)

factors as f : Q(G,Z/2Z) → Q(H,Z/2Z). By [5, Theorem 7.1], H(H,Z/2Z) is a finite
algebra over the subring im(res) so Q(H,Z/2Z) is a finite algebra over the subring im(f).
[1, Corollary 5.9] shows dim(Q(G,Z/2Z)) ≥ dim(Q(H,Z/2Z)). By Theorem 4.1,

Q(H,Z/2Z) = H(H,Z/2Z) ' Z/2Z[x]

has Krull dimension 1. �

Lemma 3.2. Let G be a finite group. The Krull dimension of Q(G,Z/2Z) is at most 1.

Proof. Let u and v be homogeneous elements of H∗(G,Z/2Z). Denote k = deg(u) and
` = deg(v). We will show that uv(u` + vk) is negligible. Let K be a field extension of F
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and j : ΓK → G a continuous group homomorphism. Let α = j∗(u) and β = j∗(v). Then

j∗(u`+1v + uvk+1) = α`+1 ∪ β + α ∪ βk+1

= α ∪ (−1)k` ∪ β + α ∪ β ∪ (−1)k`

= (α ∪ β + α ∪ β) ∪ (−1)k`

= 0

by Section 1.1. We conclude that elements of the form uv(u` + vk) are negligible.
For a set of generators {u1, . . . , um} of R = H∗(G,Z/2Z) with di = deg(ui), define the

ideal I = 〈uiuj(u
dj
i + udij ) : 1 ≤ i < j ≤ m〉. We showed above that I ⊂ I(G,Z/2Z). Let

P be a prime ideal of R that contains I(G,Z/2Z) and, thus, I. It suffices to show that
dim(R/P ) ≤ 1 since

dim(Q(G,Z/2Z)) = max
P⊃I(G,Z/2Z)

dim(R/P ).

If ui ∈ P for all 1 ≤ i ≤ m, then R/P = Z/2Z and dim(R/P ) = 0. We may assume

that ui 6∈ P for some 1 ≤ i ≤ m. Since uiuj(u
dj
i + udij ) ∈ P and P is prime, uj ∈ P or

u
dj
i + udij ∈ P for every j. For the ring homomorphism ϕ : Z/2Z[t] → R/P defined as
ϕ(t) = ui, uj is integral over im(ϕ) in either case. Thus R/P is a finite Z/2Z[t]-algebra so
dim(R/P ) ≤ dim(Z/2Z[t]) = 1. �

Theorem 3.3. Let G be a finite group of even order and F a formally real field. Then the
negligible quotient Q(G,Z/2Z) has Krull dimension 1.

4. Negligible cohomology ideal of elementary abelian p-groups

In this section, G is an elementary abelian p-group of rank n. We wish to compute
the negligible cohomology ideal of the mod p cohomology of G. We will first study the
p = 2 case, which is a generalization of Serre’s computation of negligible classes over Q for
elementary abelian 2-groups found in [7, Lemma 26.4]. By [2, Proposition 4.5.4], the mod
2 cohomology of a rank n elementary abelian 2-group G is a polynomial ring in n variables,

H∗(G,Z/2Z) ' Z/2Z[x1, . . . , xn]

where {x1, . . . , xn} is a basis for H1(G,Z/2Z) as a Z/2Z-vector space.
Throughout this section, we will denote {1, 2, . . . , n} by [1, n].

Theorem 4.1. Let G be an elementary abelian 2-group of rank n and F a field with
char(F ) 6= 2.

(a) If F is formally real, then I(G,Z/2Z) over F is generated by

{xix2j + xjx
2
i : 1 ≤ i < j ≤ n}.

(b) If s(F ) = 2r > 1, then I(G,Z/2Z) over F is generated by

{xix2j + xjx
2
i : 1 ≤ i < j ≤ n} ∪ {xr+2

i : 1 ≤ i ≤ n}.

(c) If s(F ) = 1, then I(G,Z/2Z) over F is generated by

{x2i : 1 ≤ i ≤ n}.
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Proof. Let I be the ideal generated by the elements in the proposition statement for an
elementary abelian 2-group of rank n. We will first prove that I ⊂ I(G,Z/2Z). Let K
be a field extension of F and j : ΓK → G be a continuous group homomorphism. Denote
(ai) = j∗(xi) ∈ H1(K,Z/2Z) ' K×/(K×)2.

j∗(xix
2
j + xjx

2
i ) = (ai, aj, aj) + (aj, ai, ai) = (ai, aj,−1) + (aj, ai,−1) = 0

If s(F ) = 2r, then (−1)r+1 is trivial and

j∗(xr+2
i ) = (ai)

r+2 = (ai) ∪ (−1)r+1 = 0.

We will now show that I(G,Z/2Z) ⊂ I. Define the iterated Laurent series field E =
F ((a1))((a2)) · · · ((an)) with indeterminates ai. For S ⊂ [1, n], denote xS =

∏
i∈S xi and

(aS) =
∏

i∈S(ai) in H |S|(K,Z/2Z). Then H∗(E,Z/2Z) is a free H∗(F,Z/2Z)-module with
basis {(aS) : S ⊂ [1, n]} by [11, Theorem 3]. The field extension E(

√
a1, . . . ,

√
an) over E is

Galois with Galois group G acting by g · √ai = (−1)xi(g)
√
ai for g ∈ G. As a result, there

is a continuous group homomorphism jE : ΓE → G, which induces a ring homomorphism
j∗E : H∗(G,Z/2Z)→ H∗(E,Z/2Z).

Define the subset T = {xSxij : S ⊂ [1, n], j ∈ S maximal, 0 ≤ i} of H∗(G,Z/2Z) if F is

formally real or T = {xSxij : S ⊂ [1, n], j ∈ S maximal, 0 ≤ i ≤ r + 2} if F is not formally
real and s(F ) = 2r. Denote by W the subspace of H∗(G,Z/2Z) generated by T . Note that,
modulo I, every element of H∗(G,Z/2Z) may be reduced to an element of W . Further, for
all xSx

i
j ∈ T ,

j∗E(xSx
i
j) = (aS) ∪ (aj)

i = (aS) ∪ (−1)i.

Since {(aS) : S ⊂ [1, n]} is linearly independent in H∗(E,Z/2Z) as a H∗(F,Z/2Z)-module,
the restriction of j∗E to W is injective. We build the following commutative square.

W H∗(E,Z/2Z)

H∗(G,Z/2Z)/I H∗(G,Z/2Z)/I(G,Z/2Z)

j∗E

f

j∗E

A diagram chase implies that f is injective and I(G,Z/2Z) ⊂ I. �

We will now focus on the case when p is an odd prime. By [2, Proposition 4.5.4], the mod
p cohomology of an elementary abelian p-group G is a polynomial ring over the exterior
algebra of the character group G∗ of G,

H∗(G,Z/pZ) ' Λ(G∗)[y1, . . . , yn]

where deg(yj) = 2. Let {x1, . . . , xn} be a basis for H1(G,Z/2Z) as a Z/2Z-vector space.
For each 1 ≤ i ≤ n, yi = B(xi) for B : H1(G,Z/pZ) → H2(G,Z/pZ) the Bockstein
homomorphism.

The following result can be found in [3, proof of Proposition 3.2].

Lemma 4.2. Let K be a field and α ∈ H1(K,Z/pZ). Then B(α) = α ∪ (ξp).
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Proof. Let B̃ : H1(K,Z/pZ) → H2(K,Z) denote the integral Bockstein homomorphism.
The homomorphism f : Z→ K×sep satisfying f(1) = ξp factors through Z/pZ. We can build
the following commutative diagram.

H1(K,Z/pZ) H2(K,Z) H2(K,K×sep) ' Br(K)

H2(K,Z/pZ)

B̃

B

f∗

By [9, Proposition 4.7.3, Corollary 2.5.5, and Proposition 4.7.1], f ∗(B̃(α)) is α ∪ (ξp) in
H2(K,Z/pZ). Therefore, B(α) = α ∪ (ξp) by commutativity. �

Let K be a field extension of F and j : ΓK → G be a continuous group homomorphism.
The Bockstein commutes with inflation so, for x ∈ H1(G,Z/pZ),

j∗(B(x)) = B(j∗(x)) = j∗(x) ∪ (ξp) (1)

by Lemma 4.2.

Theorem 4.3. Let p be an odd prime. Let G be an elementary abelian p-group of rank n.

(a) If F does not contain a primitive p2 root of unity, then I(G,Z/pZ) over F is generated
by

{xiyj + xjyi : 1 ≤ i ≤ j ≤ n} ∪ {yiyj : 1 ≤ i ≤ j ≤ n}.
(b) If F contains a primitive p2 root of unity, then I(G,Z/pZ) over F is generated by

{yi : 1 ≤ i ≤ n}.

Proof. Let I be the ideal generated by the elements in the proposition statement for an
elementary abelian p-group of rank n. We will first prove that I ⊂ I(G,Z/pZ). Let K
be a field extension of F and j : ΓK → G be a continuous group homomorphism. Denote
(ai) = j∗(xi) ∈ H1(K,Z/pZ) ' K×/(K×)p so

j∗(yi) = j∗(B(xi)) = B(j∗(xi)) = B(ai) = (ai, ξp)

by equation (1). We have

j∗(xiyj + xjyi) = (ai, aj, ξp) + (aj, ai, ξp) = 0

j∗(yiyj) = (ai, ξp, aj, ξp) = −(ai, aj, ξp, ξp) = −(ai, aj, ξp,−1) = 0.

If F contains a primitive p2 root of unity ξp2 , we obtain

j∗(yi) = (ai, ξp) = (ai, ξ
p
p2) = p(ai, ξp2) = 0.

We will now show that I(G,Z/pZ) ⊂ I. Define the field extension E of F as in the proof
of Theorem 4.1. Once again, by [11, Theorem 3], H∗(E,Z/pZ) is a free H∗(F,Z/pZ)-module
with basis {(aS) : S ⊂ [1, n]}. As before, we have j∗E : H∗(G,Z/pZ)→ H∗(E,Z/pZ).

Define the subsets

T1 = {xS : S ⊂ [1, n]}
T2 = {xSyj : S ⊂ [1, n], i < j for each i ∈ S}

of H∗(G,Z/pZ). If F does not contain a p2 root of unity, let T = T1 ∪T2. If F does contain
a p2 root of unity, let T = T1. Denote by W the subspace of H∗(G,Z/pZ) generated by T .
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Note that, modulo I, every element of H∗(G,Z/pZ) may be reduced to an element of W .
Further,

j∗E(xS) = (aS)

j∗E(xSyj) = (aS) ∪ (aj, ξp) = (aS∪{j}) ∪ (ξp).

Since {(aS) : S ⊂ [1, n]} is linearly independent in H∗(E,Z/pZ) as a H∗(F,Z/pZ)-module,
the restriction of j∗E to W is injective. We build the following commutative square.

W H∗(E,Z/pZ)

H∗(G,Z/pZ)/I H∗(G,Z/2Z)/I(G,Z/pZ)

j∗E

f

j∗E

A diagram chase implies that f is injective and I(G,Z/pZ) ⊂ I. �
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