Conformal Invariant Processes in the Plane

Mario Bonk

1 Koebe’s distortion theorem

Notations:

C the complex plane,

D ={z e C: |z| < 1} the open unit disk,

C = CU{oo} the Riemann sphere,

D=C\D={zeC:|z] >1} the complement of the closed unit disk.

Definition 1.1. § = {f : D — C : f holomorphic and injective (conformal map onto its image),
f(0) =0, f(0) =1}.
f(2) =24 agz® +azz® + - (1)

(Taylor series expansion).
¥ ={g:D — C: g holomorphic and injective (conformal map onto its image),

g(w) = w+ by + by Jw + by Jw? + - -- (2)

(Laurent series expansion at 0o)}.
g(c0) = 00,/ (w) = 1+ O(1/w?) as w — oo, and ¢'(00) = limy, 00 ¢’ (w) = 1.

Note. If g is a holomorphic map on D, g(c0) = oo, g injective, then
g(1/2) =1/2 4 b + b1z + baz® + - -

is holomorphic in D* = D\ {0}, and has 1% order pole. The series in converges uniformly
on compact subsets in C\ D.

Theorem 1.2. (Area Theorem) If g € 3, then

Area(C\ g(D)) = w(l - Zn!bn\2> > 0. (3)
n=1
In particular,
Zn!bn|2 <1 and |b] <1.
n=1
Here, |bi| =1 iff
21

Ja(w) = w+ by + aeR.

)
w



Proof. Pick r > 1. Define ~, = g(re'), t € [0,27]. v, is a (parameterized) Jordan curve. The

winding number

. 0, w € Out(~y,) (outside of ),
ind,, (w) = for -
+1, w € In(~,) (inside of ;).

By the Jordan curve theorem
I(y,) = €\ g(B) Ug{w € C: 1 < w] < r}).

Moreover, ind,, (u) = 1 for v € In(v;).

Figure 1: here

Proof of :

“2” part: the ind,, (u) = 1 follows from the homotopy invariance of the winding number

(let 7 — 400).

“C” part: it follows because every point on the right hand side is not on ~, or the set on the

right hand side lies in the unbounded component of C \ ~,.
So

C\ g(D) = () In(y),

r>1

and
Area(C\ g(D)) = lim Area(In(y,)).

r—1t

By Green’s theorem,

1

1 Tdu = | in u u) = Area(In
2/7 udu—/c d,, (u)dA(u) = Area(In(v,)),

where dA(u) denotes the area differential. On the other hand,

1 1 [ —— N L[
5 udu = % g(ret)g (re)rie’tdt = 2/ g(w)g' (w)wdt,
1 Yr 1 Jo 0

where it has been set w = re’*. From the Laurent series expansion

= by, =, nb,
gw)=w+y —L.  gw)=1-3 .
n=0

n=1

Note that w = r?/w and

2w ke Z\ {0},
/ whdw = 0, for \ {0}
0 21, k=0.



By uniform convergence, we can integrate “term by term”, and so

21
Area(In(y,)) = » / g(@)g (wywdt

2
1 [, & by, il nby,
—3), ErI ) (- L)
1 27 e "
= 2/ (jwl* - Zn|'b|ln)dt
n=1
= 7r<r2 - Zn!bn|2r 2")
n=1
— 7r<1 — Z n]bn\Q) as r—1 (has to be justified).
n=1
The first part follows!
So |by| < 1. If |by| = 1, then by = b3 = --- = 0, and so
€2ia )
g(w) = ga(w) =w + by + " b =e*, aceR.

(Joukovsky map)

Figure 2: g, Joukovsky map

Corollary 1.3. Let
(wy=wib+ 242 ey
w) =w — 4+ <+ :
9 0T 0 T w2

If u € C\ g(D) (i.e. u is omitted by g), then |u — bo| < 2 and if we have equality then g is a
Joukovsky map.

Proof. Let

gw?)  u
w? w?

h(w) = v/g(w?) —u=w

~ 2
on D. The function g(wwg) — =5 is a zero-free holomorphic function on the simply connected

domain . So h is well defined. So

where b = (bp—u). Note that h is holomorphic and injective on D. In fact, h(w;) = h(wy) =
g(w?) —u = g(w3) —u = w? = w3 = wy = Fwsy. If w; = —ws, then h(wy) = h(wz) = —h(w)

(h is odd), and so h(wy) = oo (0 impossible!) = w; = wq = 0.



So h € ¥. By TheoremE |12(bo — u)| = |b1| < 1, equivalent to |u — bg| < 2.
If [u—bo| = 2, then |b;| = 1, and so h is a Joukovsky map, which implies that g is a Joukovsky
map:

i)l 1bg—u
h(w) = — = = .
(w) w+w w+2 ”
1 (bg — u)?
ngzh(w)2+u:w2+bo—i—4(0w2).
So ) -
1(bg —
g(w):w—i-bo—i-fM:w%—bo—i-—l. 0
4 w w

Theorem 1.4. Let f € S.
fz)=z+a2®+---.

Then
i) |aaf <2,
ii) (Koebe 1/4-Theorem) if v € C\ f(D), then |v| > 1/4, i.e. B(0,1/4) C f(D).

Figure 3: Koebe 1/4 — theorem

We have equality in i) orii) iff f is a Koebe function, i.e.

z

f() = K@), KG) =

K(z)=2+222 4324,

Figure 4: Koebe function

Remark. A long-standing open problem was Bieberbach’s conjecture: if f € S, then |a,| < n
for n > 2, proved by de Brange (early 1980’s).

Proof. If f € S, then g(w) = 1/f(1/w) € X.

1 1
1/w+ as2/w? + - - _w.1+a2/w+a3/w2+---

a a a a 2
(i (E ) (28 )
w o w w o w

2
a az; — a
:w<1—i+ 2 23—1----)
w w

a3 — ag

g(w) =

Moreover, u© = 0 is omitted by g!
i) By Corollary [1.3] |as| = |0 — (—a2)|(= |u — bo|) < 2.



If equality, then the proof of Corollary [I.3] shows

_ 2 2
g(w) = w + by +4(b0w2u>:w—a2+i2:w<1—aal)2.
So
S R z here |as| = 2
T =0 = U@y e el =2

f is the rotated Koebe function.
ii) If v is omitted by f, then u = 1/v is omitted by g. So by Corollary

1
2> ]u—b0|:‘;+a2‘.

So
1 1
‘*‘ < |—a2|+‘*+a2‘ <4,
v v
equivalent to |v| > 1/4.
If |[u] = 1/4, then |1/v] =4 and |az| = 2. Again, f is a rotation of the Koebe function. [

Corollary 1.5. If f € S and Q = f(D), then
1

Proof. The first inequality follows from the 1/4 — Theorem. For the second inequality, let
d = dist(0,09) < oco. Define g(w) = f~(dw), w € D. Then g(D) C D, g(0) = 0; so by the
Schwarz Lemma

d

> 150 = gy = 0

Lemma 1.6. If f € S, then

0 /"(2)
(1—]|) —-2zZ| <4 for zeD.
f'(2)
Proof. Fix zgp € D. Let ¢ € Aut(D), ¢(0) = zp. Then
Z+ 20 / 1 — |zo|? " (1 — |=0)z0
_ _ _ -2 .
o) = o W)= T P =2
Define g = f o ¢. It is a conformal map on I, but not normalized! Let
h— g —/ 9(0)‘
g'(0)
Then h € S and |az(h)] < 2.
Ly 197(0)
az(h) = 2h (0) = 39(0)°

d=(fop)- ¢, g =(f"op) >+ (fop) ¢
=20, ¢(0)= f'(20)(1 = |20]?),

ZO)( — |201*)? + f'(20)(—2z(1 — |20/%)).

So

Lg"(0)] _ 1|f"(20)

2 > |az(h)| = 21g(0)] 2| f(20)

(1—|20|*) — 270] . O




Theorem 1.7. (Koebe’s Distortion Theorem) Let f € S. Then for z € D

. 1—|z| 1+ |z]
1) v SO am
) 2 B
) a3 MO T

Estimates are sharp and the Koebe function is the only extremal (up to a rotation).

Proof. By rotational invariance, wlog, setting z = = € [0, 1).
g(z) =log f'(2) = log(1 + 2asz + -+ ) = 2asz + -+ - ,
g(0) =0and ¢ = f"/f. By Lemmal[L.6]

I () 2z 4
flx) 1—22| " 1—a2
By integration,
1 1
’g(ac)—log1 5 §2log1+7x, z €[0,1).
So 1+ 1 1+
x , x
log 2—210gmglog\f(x)|glogl_x2+2lo —,
i.e. 1 14
T
log—— <1 1 .
e )3_Og\f()| 8 )

Exponentiating, the first inequality follows.

"(t)dt

T 14+t T
ol = SA(uw”“WMmﬂ

The upper bound in ii) follows. For the lower bound, set r € (0,1), m = miny,—, |f(z)| > 0.
Wlog, we can assume f(re'?) = m for some 0. Let v(t) = re',t € [0,2n]. f o~ does not meet
B(0,m). For any w € B(0,m), by the Argument Principle,

# of zeros of f —w in B(0,r)
= ind foy (w) = indfoy(0) = # of zeros of f — 0= f in B(0,r) = 1.

It follows

Figure 5:

B(0,m) C f(B(0,7)), and B(0,m)C f(B(0,7)) C Q:= f(D),
t a(t) = f~1(t),t € [0,m]. Then a(t) is a path in D from 0 = f~1(0) to

fla@) =t = fla@®)d(t)=1.

m= /(ﬁ‘/ Olla'(0)ldt = [ 17| = /ﬂ(M»m

6



where & : [0, L] — C is the arc-length reparametrization of a, L = ¢(a) := length of a > 7,
aft

& (U(a((0,1)))) = a(t), and L
/ g(2)|dz] = /0 o(6(s))ds.

Since &(0) = a(0) =0, |a(s)| < s. So

L 1 —|a(s)] " 1—s B r
m= / $))lds = /0 <1+|a<s>|>3d82/0 TP = W -

Corollary 1.8. S is a normal family, i.e. every sequence {f,} in S has a subsequence {fy, }
that converges locally uniformly in D. Moreover, every locally uniform limit of a sequence in S
also lies in S. (So S is compact with respect to the topology of locally uniform convergence.)

Proof. By Koebe’s Distortion Theorem, (up bound in ii)), S is locally uniform bounded. Hence,
S is a normal family by Montel’s Little Theorem. If {f,} is a sequence in S and f, — f locally
uniformly on D. Then f is holomorphic (Weierstrass), and constant or injective (Hurwitz).
Moreover, f,(0) — f(0) and f/,(0) — f’(0) which implies f(0) = 0 and f(0) = 1. So f is
non-constant, hence injective. So f € S. O

Remark 1.9. Koebe’s Distortion Theorem often gives useful (non-sharp) quantitative informa-
tion:

i) Let ©Q,Q" & C be two regions, f : Q — Q' be conformal map, zp € Q. Then

dist(f(z0),0)
dist(zo, 0N2)

| f'(z0)| ~

with universal constant. Where A ~ B means that there exists a constant C such that
1 A< B<CA
cAsB< .

Proof. Let d' = dist(f(z0),0), d = dist(z9, ). Then B(zg,d) C Q. By 1/4-Theorem (applied

d)—
to u — W), we have

B(f(20), %!f’(zo)\d) c Q.

So

U

F(20)ld, and If’(zo)\§4%

For lower bound, consider f~!. O

d >

e~ =

ii) Let ©, Q' be two regions, f : Q — Q' be a conformal map, K C Q be a compact set. Then

/()] = | (w)]
for any z,w € K with implicit constant only depending on Q, K (and not on f!).

Idea of Proof. If Q = D, then |f'(2)| ~ |f(0)| = |f'(w)| by Koebe. Generalize to 2 = disk.
General case follows from Harnack chain argument. O



2 Boundary extensions of conformal maps

Suppose 2 C C is a bounded region. Then the following are equivalent (TFAE):
i) Q is simply connected;

ii) C\ Q is connected (<= C \ Q connected);

iii) 09 is connected;

iv) €2 is conformally equivalent to D, i.e., there exists a conformal map f: D < .

Theorem 2.1. Let f : D — Q be a conformal map onto a bounded (simply connected) region.
TFAE

i) f has a continuous extension to D;

ii) 0 can be parameterized as a loop, i.e., there exists a continuous map ¢ : 0D — C such
that p(0D) = 08);

iii) 0N is locally connected;

iv) C\ Q is locally connected.

We will prove this in the following:

2.2. Locally connected sets

Let A C C be a closed set. A is locally connected iff for all a € A and € > 0, there exists
9 > 0 such that if b € A is arbitrary and |a — b| < §, then there exists a continuum F C A with
a,b € E and diam(FE) < e.

If A C C is a compact set, then A is locally connected iff for all € > 0 there exists § > 0 such
that for all a,b € A with |a — b|] < 0, then there exists a continuum F C A with a,b € E and
diam(F) < e.

Proof. <= trivial.

= By contradiction. If not, there exist ¢g > 0 (“bad €”) and sequences {a,}, {b,} in A
such that |a, — b,| — 0 but no continuum E such that a,,b, € E and diam E < gy. Wlog,
assume a, b, — c.

Since A is locally connected, for sufficiently large n, there exist continuums E,, E! such that
an,c € El, by,c € E! diam(E)) < £9/2, diam(E)) < g9/2. Then E,, = E| U E! is a continuum
with ay, b, € E,, and diam(FE,) < 2-£¢/2 = €9, a contradiction! O

A compact set A C C is locally connected, iff points that are close have a small connection,
iff there exists w : (0,00) — (0,00) with lims_,g+ w(d) = 0 such that Va,b € A, 3 continuum
E C A with a,b € F and diam(FE) < w(|a — b|).

Boundary of comb domain is connected but not locally connected.

Figure 6: Comb domain

Let A C C be compact and locally connected, ¢ : A — C continuous, and B := ¢(A). Then
B is locally connected. (Continuous images of compact and locally connected sets are locally
connected.)

Proof. By contradiction! If not, then there exist g > 0 and sequences {b,},{b],} such that
|b, — b,| = 0 but there exist no continuum F C B with b,,b, € E, diam(FE) < gp. There exist



an,a), such that b, = ¢(a,), b, = ¢(al,). Wlog, a, — x and a,, — y. Then b,, b, — 2z =
o(x) = p(y). We can find small connections E/, and E! between z,a, and y,al, (resp.) for n
large. Then F,, = p(E}) U p(E)) is a small connection between by, b,, for n large, by uniform
continuity of ¢. Contradiction! O

In particular, if ¢ : 9D — C is conformal, then ¢(9D) is locally connected. (Loops or pathes
are locally connected.) So ii) = iii) in Theorem

Lemma 2.3. (Wolff’s Lemma) Let U C C be open, f : U — V C B(0,Ry) be conformal,
20 €U, C(r):=UnN{z€C:|z— 2| =1} Then

21 Ry

i 7)) £ —/——, or 0<p<l.
YA etz 0’

In particular, there exists a sequence rn, — 0 such that
f(C(rn))) —0 as n — oo.

(If a “thick” family of curves is confined to a set of controlled area, then one of the curves
has to be short.)

Figure 7:

Proof. Let L(r) :=£(f(C(r))) (lower semi-continuous). Then

va=<ému%nw02
< < /C " |dz\) ( /C o | f’(z)]2|dz|) (Schwarz inequality)

< 27Tr/ |f'(z0 + re't)|*rdt
{te[0,27):z0+reiteU}
So w0 (2
/ (:) dr < 277/ |/ (2)]2dA(z) = 2m Area(V) < 27%R2.
0 U
This gives
N/

llog} inf L(r)? S/ L(r )zdr < 27’R2.

2 P p<r<,/p P r
The claim follows. O

Lemma 2.4. Let v:[0,1) — C be a path with the length

Uy) = sup Z |y(te) — Y(te—1)| < oo.
0<to<<tn<ly

Then lim;_,1- y(t) exists.



(If a path has finite length, then it ends some where!)

Proof. Denote L := {(vy) < oo, L(t) := £(7][0,t]). Then L(t) / Last— 17, and so 4(~|(t,1)) =
L—L(t)—0ast—1". Sofor 5,8 € (t,1)

Iv(s) — ()| < L(v|(t,1)) =0 as t—1".

This implies that for every sequence {s,} in [0,1) with s,, — 1, {7(sp)} is a Cauchy sequence.
The claim follows. 0

Let A C C be a closed set, and =,y € C. We say that A separates x and y if z,y do not lie
in one component of C\ A (true if z € A or y € A!). It is equivalent to that every path joining
x,y meets A.

Janiszewski’s Theorem. Suppose that K, L C C are compact sets such that K N L connected.
If K U L separates two points x,y € C, then they are separated by K or by L.

Lemma 2.5. Let K € D be compact, xy € C such that dist(xg, K) > diam(K), u,v € C. If K
separates xo and u, and separates xo and v, them |u — v| < diam(K).

Figure 8: Proof of the lemma, u # v.

Proof. Pick a € K and let R = diam(K). Then K C B(a,R) and |zg — a] > R. So z¢ €
C\ B(a,R) C C\ K. This shows that z( lies in the unbounded component of C\ K.

So both u,v do not lie in the unbounded component of C\ K. This implies if £ € C is the line
with u,v € ¢, then there exist u/,v" € K such that [u,v] C [v/,v']. Hence, |u —v| < |u' — /| <
diam(K). O

Proof of Theorem[2.1]. 1) = ii).

Suppose f has a continuous extension f : D — C. By continuity, f(D) € f(D) = Q. By
compactness of D, Q = f(D) C f(D). So Q = f(D). Since Q = f(D) is open, IN = Q\ Q C
f(0D). Moreover, conformality implies f(OD) C 2\ Q = 9. So f(0D) = 99, which implies
that 02 has a parametrization as a loop.

i) = iii).

Continuous images of compact, locally connected sets are locally connected (see . Since
0D is compact and locally connected, 02 = f(0D) also has these properties.

iii) = iv).

Let u,v € C\ Q be two arbitrary points. Run along [u, v]:

1) If [u,v] N 02 = @, then [u,v] is a continuum in C\ Q joining w, v with diam(E) = |u — v|.

Figure 9:

By assumption, there exists a continuum E’ C 9Q with «/,v" € E’ and 2) If [u,v] N 9Q # &,
then we can find u/,v" € 9Q such that [u,u'] C C\ Q, [v/,v] C C\ Q. diam(E’) < w(|u' —v'|)
where w(d) — 0 as § — 07. Then E := [u,v/] U E’' U [v/,v] is a continuum with £ C C\ Q,
u,v € E, and

diam(E) < |u—v| +w(|u’ = ]) < [u—v| +w(|u - v]) = &(5),

10



where ©(6) = § + w(d) and 6 = |u — v|. Since @(§) — 0 as § — 0T, the claim follows.

iv) = 1i).

It is sufficient to show that f is uniformly continuous on D; i.e., there exists an w : (0, 00) —
(0,00) with w(d) — 0 as 6 — 0 such that

If(x) = f(y)] <w(z—1yl), for all z,y € D.

(then the image of every Cauchy sequence is Cauchy, bla, bla, bla, ...)
equivalently,
diam(f(B(z0,6) ND)) < w(f), for zpe D, 6 > 0.

Here, wlog, § > 0 is small and zg € D is close to dD. By translation and scaling of 2, wlog, we
can assume f(0) =0, zo € D, wg = f(20) satisfying |zo|, |wo| > 1/2.

Figure 10:
By Wolff’s Lemma there exists r € (J,v/d) such that

((f(C)) < wi(d),

where C = CN{z € C: |z — 2| =1}, w1 = Cp/+/log(1/5) — 0 as § — 0 (for some constant
Co > O).

Let us assume C' is not the whole circle |z — 29| = r, but an open subarc. Then Lemma
implies that f(C') has two end points u,v € 9Q. So A := f(C) = f(C)U{u,v} (possibly u = v).
Then |u—v| < U(f(C)) < wi(d). Since C\ Q2 D 9N is locally connected, there exists a continuum
B C C\ Q such that u,v € B and

diam(B) < wa(|lu — v]) < ws(0).
Let K = AU B. Then
diam(K) < diam(A) + diam(B) < w;(0) + w3(d) = w4 (9),

and K N0 # @. So dist(a, K) > diam(K) if ¢ is small enough.

Figure 11:

Now let z € B(z0,9) N D be arbitrary and w = f(z). Then C separates 0 and z in D, i.e.,
(C\D)UC separates 0 and z. This implies (C\Q)U(f(C)UB) separates 0 = f(0) and w = f(z).
Since (C\ 2) N (f(C) U B) = B is connected, and C \ 2 does not separate 0 and w, we get
K = f(C)U B separates 0 and w by Janiszewski’s Theorem. If 2’ € B(zg,d) ND is another point
and w' = f(2'), then K separates 0 and w’ by the same argument. Lemma 2.5 implies

lw —w'| < diam(K) < wy(d),

and so
diam(f(B(z9,0) N D)) < wq(9),

as desired. O

11



Remark 2.6. A similar argument shows that if f : D — Q C C is conformal, then f has a
continuous extension f : D — Q C C if dQ (or C\ Q) is locally connected. Here, we use spherical
or chordal distance in the target! (Versions of Wolff’s Lemma and Lemma still true for
spherical metric.)

Let K be a continuum. A point p is a cut point of K if K \ {p} is not connected.

Proposition 2.7. Let Q C D be a bounded simply connected region, f : 1D — Q be a conformal
map with continuous extension f: D — Q. Let p € 0. Then #f~(p) > 2 if and only if p is a
cut point of 0S).

More precisely, let A := f~*(p) C D, and 0D\ A = Uken Ik be the decomposition into
pairwise disjoint open arcs (A countable indexes set). Then the sets f(Ix), k € A, form the
pairwise disjoint connected components of 02\ {p}. (Note that #N = #A, so #N > 2 iff
#A>2.)

Proof. Note that 00\{p} = f(OD\A) = Upen f(Uk), and the sets f(I}) are connected (conformal
images of connected sets!). It suffices to show that f(I;), k € A, are pairwise disjoint. Let I, I’
be two of these arcs, and C' the circular arc in ID with the same end points as I. Then C divides
D into two parts D and D’ such that I C 9D, I' C9D" and D = DUC U D’ is a disjoint union.

Figure 12:

Let J = f(C)U{p}, U = f(D) and U’ = f(D’). Then J is a Jordan curve, and U,U’ are
open connected set in C\ J. So U C In(J) or U C Out(J); and U’ C In(J) or U’ C Out(J). We
say U, U’ can not lie in the same component of C\ J.

Suppose U,U’ C In(J). By the open mapping theorem, U U f(C) U U’ = Q is an open
neighborhood of each point on f(C) C J. On the other hand, Out(J) is disjoint from U U
f(C)UU’ by the assumption. But d Out(.J) = J which implies that Out(J) contains points near
J. A contradiction.

So U, U’ lie in different components of C\ J, say, U C In(J), U’ C Out(J). Then, f(I) C
f(D) C U C Juln(J). On the other hand, f(I) C 92\ {p}, and 9N\ {p} NJ = @. So
f(I) CIn(J). Similarly, f(I') € Out(J). Hence, f(I)N f(I') C In(J) N Out(J) = &. O

Theorem 2.8. (Carathéodory) Let f : D — Q be a conformal map onto a bounded simply
connected region. TFAE

i) f has a homeomorphic extension to D (i.e., continuous and injective).

i) 9Q is a Jordan curve.

iii) 09 is locally connected and has no cut points.

Proof. i) = ii) Obvious, because 92 = f(9D).
ii) = iii) Clear.

iii) = 1)
By Theorem f has a continuous extension f : C — Q. By Proposition oD is
injective. Since 9Q = f(dD) and Q = f(D) are disjoint, f is injective on D. O

A region Q C C is called an (open) Jordan region or domain if 9 C C is a Jordan curve.
If 9 C C (i.e., co ¢ 09), then Q = In(0Q) or Q@ = Out(9N2) U {oco}. A closed Jordan region
is the closure  of an open Jordan region Q C C. An open Jordan region is simply connected,
because 0f) is connected.

12



Corollary 2.9. Let Q,Q' C C be Jordan regions, f: Q< Q be a conformal map. Then f has
a (unique) homeomorphic extension f: Q < Q' (w.r.t. chordal metric on C).

Proof. Wlog, 2,9 C C (use Mobius transform). There exists a conformal map g : D — Q.
Then h := fog: D — Q is a conformal map. By Theorem [2.§] -, g and h have homeomorphic
extensions g : D <> Q, h : D <> O respectively. Then f:=hog ' : Q < ¥ is a homeomorphic
extension of f. O

Lemma 2.10. Let ¢ : 0D — OD be a homeomorphism. Then ¢ can be extended to a homeo-
morphism @ : C—-C.

Proof. Use “radial” extension. Let p(r-&) = 7-¢(§), where 0 < r < 00, £ € 9D, and $(oc0) = co.
This is a continuous bijection with continuous inverse (= radial extension of ¢ ~!). Furthermore,
?|D : D+ D is a homeomorphic extension of . O
Theorem 2.11. Let f : D — Q be a conformal map onto a Jordan region €2 C C. Then f has

A~

a homeomorphic extension f : C « C.

Proof. Wlog, assume J := 02 C C, Q = In(J). Then f has a homeomorphic extension f : D «
Q. Note that D = C\D and Q = C\ Q are two Jordan regions. So there exists a conformal
map f : D — Q with homeomorphic extension f : D Q. If f|0D = f|OD, then f, f would post
together to homeomorphic extension of f. However, it is not true in general!

Let ¢ := f~1o f|OD (“conformal welding map induced by J”). Then ¢ is a homeomorphism
on OD. By Lemma it has a homeomorphic extension @ : C + C. Define

— e D,
/= ‘}i(i) for ‘ .
F@(2) 2 C\D.
This is well-defined, and a homeomorphism Co @, which extends f. O

Theorem 2.12. (Schonflies) Fvery homeomorphism ¢ : J < J' between Jordan curves can
be extended to a homeomorphism @ : C+ C. In particular, every Jordan curve J C C is the
image of 0D under a homeomorphism @ : C+ C.

Proof. Wlog, assume J = 9D and J' C C. Let Q = In(J'). There exists a conformal map
f: D  Q with homeomorphic extension f : C ++ C (Theorem [2.11)). Let ¢ = (f ]E)]D))

This is a homeomorphism ) : 0D « 0D, and so has a homeomorphlc extensmn P C (C
Then f o ¢ is a homeomorphism C « C with fo|dD = fot = fo (f|D) Lo = . O

2.13. Orientation

Let z1, 22,23 € OD be three distinct points. This triple is in positive cyclic order if in the
standard parametrization v : R — 9D, v(t) = €%, whenever y(t1) = 21 and to,t3 € (t1,t1 + 27)
with v(t2) = 22, 7(t3) = 23, we have ty < t3.

Note that every ¢ € Aut(ID) preserves the positive cyclic order of points on 9.

The triple 21, 22, 23 € 0D is positive oriented iff Im(u, 21, 22, 23) < 0 for u € D (D lies to the
left of OD).
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Positive cyclic order on boundary of Jordan region:

Let Q) C C be a Jordan region, wi, wy, ws € 0N are distinct points. wy, wo, w3 are in positive
cyclic order if the following is true: If f is a conformal map f : D + € with homeomorphic
extension f : D <> Q. Let zx = f~'(wy), k = 1,2,3. The requirement is that z1, 20, 23 are in
positive cyclic order on OD.

The definition is independent of the choice of f. Let g : D +> Q be another conformal map
with homeomorphic extension g : D <+ Q. Let 2}, = g~ (wg), k = 1,2,3. Since p = f~log €
Aut(D), we get 21, 22, 23 in positive cyclic order iff 2], 25, 24 in positive cyclic order.

Theorem 2.14. Let Q,€) C C be two Jordan regions, z1, za, 23 in positive cyclic order on OS2,
w1, wa, w3 i positive cyclic order on OSY. Then there exists a unique conformal map f : Q <> &
whose homeomorphic extension f : Q <> Q' satisfies wy, = f(zx), k =1,2,3.

Proof. Pull back by auxiliary conformal maps, we can assume that Q =D, ' = D (see figure)
Then the existence and the uniqueness follow from the fact that there exists a unique Mo6bius
transform ¢ € Aut(D) with w) = ¢(2}). O

Figure 13: pull back

Example 2.15. Let f : D — Q be a conformal map onto the “slit disk” @ = D\ [0,1). 9Q
is locally connected. So there exists continuous extension f : D — . Since 9Q \ {1} has two
components, so by Proposition #f711) =2. Let f~! = {a,b}. OD\ {a,b} = I U I such
that f(I;) = oD\ {1} and f(I2) = [0,1). Since dD \ {1} has not cut points, #f~'(p) = 1 for
pe oD\ {1}. So f:I; — 0D\ {1} is a homeomorphism. Since # f~1(0) = 1, so there exists
unique ¢ € Iy such that f(c) =0.

Figure 14: example

Lemma 2.16. Let Q2 C C be a simply connected region, zy € €2 be a base point, D C C be a disk
with C = 0D such that zo € D. CNQ = Uke{1,2,3,...} Cy, the pairwise disjoint union of circle
arcs. If z € QN D, then one of the arcs Cy, separates zy and z in S (i.e., every path in Q joining
2o and z meets Cy,).

Proof. Suppose it is not. Then none of compact sets Ay, := C \QUCY, k=1,2,..., separates zg
and z. There exists a path « in €2 joining zp and z. It has positive distance to 0f2, so it can only
meet finitely many arcs Cy (C}, NI # @, and diam Cy — 0 as k — oo if there are infinitely
many). So there exists N € N such that B := Ay U Ax41 U--- does not meet -, so B does not
separate z and z. Since 4, N B = C \  is connected, and neither A; nor B separate zp and z,
A1 U B does not separate zy and z either by Janikovski! Repeating this argument, we see that
A1 U Ay U B does not separate zg and z, etc.. So AjU---UAN_1UB = Uke{1,2,...} A4, uC \Q =

cucC \ © does not separate zp and z. But C separates zp, z. Contradiction! O

Figure 15:
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Theorem 2.17. (Fundamental distortion estimate for conformal maps into D) There
exists a function (universal distortion function) w : (0,00) — (0,00), w(d) — 0 as § — 07 with
the following property: Let Q@ C C be a simply connected region, g : 2 — D a conformal map,
and K C Q be a continuum. Then

diam(K) ) , (5)

diam(g(K)) < “’(W

where f =g~ : D — Q. One can take w(d) = co/+/log(1/6).

Proof. Without lose of generality, we assume ¢g(0) = 0 = f(0), ¢’(0) = 1 = f’(0). The proof is
similar to the proof of Theorem using Wollf’s Lemma applied to ¢’. Wlog, assume diam(K)
very small.

Note that f(B(0,1/2)) D B(0,2/9) (follows from lower bounded in Theorem and its
proof). So g(B(0,2/9) C B(0,1/2). By Koebe’s Distortion Theorem, it follows that |¢’| < cg
on B(0,2/9) with ¢y independent of g. So g is uniformly Lipschitz on B(0,2/9). follows if
K close to 0. Pick 29 € K. Let ¢ := diam(K). Then K C B(zp,d). By Wolff’s Lemma, there
exists 7 € (8,v/8) such that for Cy = {|z — 29| = r} we have

L(g(ConQ)) <w(9).

We may assume that 0 lies outside Cy. By Lemma [2.16] there exists a circular arc C C Cp N2
such that C' separates 0 and zg in 2. Then C' actually separates 0 and every point on K in {2
since K is connected. Then

U(g(C)) < L(g(Con ) Sw(d) <1,
and ¢(C) separates 0 and g(K) in D. Hence

diam g(K) < 2diam g(C') < 2w(0).
(Note: if d = diam(K), wy € g(K), and d is small, then g(K) C B(wo,d).) O
Definition 2.18. Let Q C C be a region, a,b € ). We define

Aa(a,b) = inf £(v),
¥

where inf is taken over all pathes in €2 joining a, b, and

pala,b) = i?(f diam(K),
where inf is taken over all continuum K C Q with a,b € K. Both A\q and pq are metrics on 2,
called the inner length metric on € and the diameter metric on €2, resp.

Note that pg < Aq, and pq, Aq induce the Euclidean topology on Q. If a € Q and b is close
to a, then pg(a,b) = Aq(a,b) = |a — b|. If © is a convex region, both po and A\ agree with the
Euclidean metric.

Corollary 2.19. Let Q2 C C be a simply connected region and g : @ — D be a conformal map.
Then g : (Q,pq) = D and g : (2, ) = D are uniformly continuous, where D equipped with
Euclidean metric.
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Proof. Let wi,ws € Q be arbitrary, K C Q be compact with w;,ws € K with diam(K) close to
pa(wi, we). Let z1 = g(wy), 22 = g(ws). By Theorem

|z9 — 21| < diam g(K) < @(diam(K)) — @(pa(w1,ws))
as diam(K) — pq(wy,ws). So
|22 — 21| < @(pa(wr, wa)) < w(Aa(wr, wa))
(if @ is increasing as we may assume). O

Corollary 2.20. Let Q C C be a simply connected region and g : Q — D be a conformal map.
Suppose v : [0,1) — Q is a path with lim,_,;- y(t) = wg € Q. Then lim,_,;- g(y(t)) = 29 € OD
exists.

Proof. Our hypothesis implies that diamy([t,1)) — 0 as ¢ — 17. By Theorem diamg o
v([t,1)) — 0 as t — 17. Hence, lim;_,;- g o y(t) = z9 € D exists. Then zy € 9D, because
otherwise 29 € D, and v(t) = g 1(g(v(t))) — g7 (20) = wp € . Contradiction! O

Remark 2.21. For every simply connected region {2 C C, one can introduce a suitable compact-
ification Q (prime end compactification) such that every conformal map f : Q1 <> Qo between
simply connected regions extends to a homeomorphism f : {1 <> Qy. (Carathéodory 1913)

3 Kernel convergence

Let f,, : D — Q,, n € N be conformal maps with suitable normalization. Can one characterize
when {f,} converges locally uniformly on D in term of the regions 2,7 Yes! Answer related to
kernel convergence of the sequence {2, }.

Definition 3.1. Let {Q,,} be a sequence of regions in C and wy € Q,, for all n € N (wq the base
point). The kernel Kern,,, w.r.t. wg of {§,,} consists of

i) the point wo,

ii) every point w € C with the following property: there exists a region U with wg,w € U
such that U C Q,, for all sufficiently large n.

So one always has wy € Kern,,, and Kern,, = {wo} is possible. If Kern,,, # {wo}, then
Kern,,, is a region ( = the union of sets U in ii)).

Let Q = {wp} or  C C be a region with wy € Q. We say that {€,} converges to Q in the
sense of kernel convergence (w.r.t. the base point wy), written by

Q, — Q, (w.r.t. wp),

if every subsequence of {2, } has kernel .

Example 3.2. Let Q, = C\ ((—o0,—1/n] U [1/n,4+0)), Hy = {z € C : Imz > 0}, and
H_={z€C:Imz < 0}. Then (2, = Hy U{0} UH_. Suppose wy € Hy U {0} UH_ is the
base point, then

H+ wo € H+,
Kern,,, = ¢ {0} for wo =0,
H_ wo € H_.
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Moreover,

H+ wo € H+,
Q, — < {0} w.r.t.  wy =0,
H_ wo € H_.

Lemma 3.3. Let wg € C, {Q,} be a sequence of regions in C with wy € Q,, for all n € N.

a) If {Qn} is increasing, i.e., Qy € Quq1 for alln € N, then Kerny, = Qoo 1= Upen Oy and
Qp — Qoo w.r.t. wy.

b) If {Q,} is decreasing, i.e., Oy D Qpi1 for alln € N, let Qo be the connected component
of the interior of (\,cn 2 containing wo if wo € int(),cy U and Qoo = {wo} if not. Then
Kern,,, = Qo and Q,, = Qs w.r.t. wy.

Proof. a) Kern,, C Qu: clear.

Qs C Kerny,,: if wy € Q, then wy € 2, for some n € N. Take U = (Q,, in Definition
so wp € Kerny,,.

2, — Qo because kernel (= union) does not change by passing to subsequences.

b) Kerny, € (,en 2n is {wo} or a region containing wo, so Kerny, € Qoe.

Qoo C Kerny,: clear if Q,, = {wo}. Otherwise, take U = Q« in Definition 50 Qoo =
U C Kerny,.

Qp — Qo is clear because [),,cy €2 does not change by passing to subsequences. ]

Proposition 3.4. Let f, : D < Q, be conformal maps such that f,(0) = wg and f,(0) > 0.
Suppose that fr, — [ locally uniformly on D. Then, for the kernel of {Q,} w.r.t. wy, we have
Kerny, = f(D).

Proof. Note that f is a constant (= wy) or a conformal map onto 2 = f(D) (Hurwitz), f(0) = wo.

I. f(D) C Kerny,: Obvious if f is a constant. Assume f is not a constant. Let w € f(DD)
be arbitrary. There exists r € (0,1) such that w € U := f(B(0,r)). U is a region such that
wp,w € U (and so w € Kernyy,).

Claim. U C f,(D) =, for large n.

Otherwise, there exists a sequence {n;} in N with nj — oo and points wy € U such that
wi & fn, (D). Since U C f(B(0,r)) is compact, so wlog we can assume that wy — v € U C f(D).
Then hy, = f,, — wy is zero-free on D, and hy — f — v locally uniformly on D. However
v € U C f(D), so f — v is not zero-free. So f — v = 0, equivalently f = v by Hurwitz.
Contradiction!

II. Kern,, C f(D): wo € f(D). Let w € Kerny,, w # wy be arbitrary. Then there
exists a region U such that wg,w € U and U C , for all large n, wlog for all n. Then
gn = fi v : U — D be holomorphic. By Montel’s theorem, there exists a subsequence that
converges locally uniformly to a holomorphic function g : U — . Note that g, (wp) = 0 which
implies g(wo) = 0, and g(U) € D. So g(U) C D by Maximum principle.

Let z := g(w) € D. Then f, — f locally uniformly near z, and so

w=lim fu(gn(w)) = f(2) € f(D).

A combination of T and II gives the proposition. O

17



Theorem 3.5. (Main theorem about kernel convergence) Let f,, : D > €, be conformal
maps such that f,(0) = wo, f},(0) >0 for n € N. Then

i) Q, = {wo} (w.r.t. wo) iff frn — const. = wq locally uniformly on D iff f}(0) — 0.

i) Qp, — Q, where Q C C is a region in C with wy € Q and Q # C iff f,, = f # const.
locally uniformly on D.

iii) Q, — C iff f,, = oo locally uniformly on D\ {0} iff f/(0) — oco.

In particular, Q, — Q # C iff {fn} converges locally uniformly on D.

Proof. By Koebe’s distortion theorem

s <1t ol < 1O L, ©

5Ol e

and
B(wo, 117(0)]) € O = fu(D). (7

iii) First, Q, - C = f/(0) — oco. If not, then {f/,(0)} has a bounded subsequence, wlog,
{f7,(0)} itself is bounded. By (6], {f»} is locally uniformly bounded on D. By Montel’s theorem,
a subsequence of {f,} converges locally uniformly on D, wlog, f, — f locally uniformly. By
Proposition 3.4, Q, = f,(D) — f(D) w.r.t. wo, but f(D) # C (by Liouville). Contradiction!

Now, f/(0) = 0o <= f,, = oo locally uniformly on D by (6)); and f},(0) = co = Q, — C
by .

i) 4 ii) Suppose Q,, — Q # C (possibly Q = {wp}). Then by iii), {f/,(0)} has no subsequence
{ny} with f;, (0) = oo, and so {f;,(0)} is bounded. By (6)), {fx} is locally uniformly bounded,
and so a normal family by Montel. To show that { f,,} converges locally uniformly on D it suffices
that any two subsequential limits g, h of {f,} agree. By Proposition

g9(D) = Kern,,, = Q = h(D).

So if Q@ = {wp}, then ¢ = h = wy, and f, — wy locally uniformly. This shows that €, —
{wo} = fn — wp locally uniformly.

If Q # {wp}, then g, h are conformal maps onto by Hurwitz. We have g(0) = h(0) = wo,
and ¢’, b/ are the subsequential limits of { f],} by Weierstrass. So ¢’(0),4’'(0) > 0. By uniqueness
part of the Riemann mapping theorem, g = h. This shows that Q, — Q # {wo},C = f,, = f
locally uniformly, where f is the unique conformal map with Q = f(D), f(0) = wq, f'(0) > 0.

Conversely,

i) fn — wo locally uniformly <= f/(0) — 0 by (6) = Q, — {wo} by Proposition

i) fr = f # const. = Q,, — Q = f(D) by Proposition so f is a conformal map onto
f(D)=Q#C. O

4 Loewner chains and the Loewner-Kufarev equation

4.1. Loewner chains (whole plane version)

Let I = [a,00], wy be a base point, ; be simply connected regions with wy € Q; for t € T
such that

i) Qo = C (24 = {wp} is allowed as degenerate case),

i) Qs ¢ Q for s,t €1, s <t.
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We say that the family {2} is a (geometric) Loewner chain if € is continuous in ¢ in the
sense of kernel convergence w.r.t. wo, i.e., {2, — € whenever ¢, € I -t e I.

For t € I, let f; : D < € be the unique conformal map with f;(0) = wo, f{(0) > 0 (fx is
left undefined and f, = wg if Q, = {we}). Then {f;} is called an (analytic) Loewner chain if
ft is continuous in t w.r.t. locally uniform convergence on D, i.e., f;, — f; locally uniformly on
D whenever ¢, — t. (It is understood that this means f;{ (0) — oo if ¢, — co. No problem if
Qq = {wo} and fo = wo!)

The Loewner chain is normalized if f/(0) = ¢! for t € I.

Remark 4.2. a) {Q;} continuous in ¢ if and only if { f;} continuous in ¢ (by Theorem [3.5]).

b) For continuity of {f;}, it is enough to check left and right continuity, i.e., that f;, — fi
locally uniformly on DD whenever ¢,, is a monotone sequence in I (decreasing or increasing) with
t, — t (because every sequence has a monotone subsequence).

c¢) By a) and b), for continuity of {€2;}, one only has to check that ; — €, whenever t, is
a monotone sequence in I with ¢,, — ¢. By Lemma this is equivalent to the following two
conditions:

(i) Q = Uyey Qs for t € I, and

(i) ©¢ = {wo}U the connected component of interior of [,_, €2, that contains wyq for ¢ € I.

Note that if

(i) € = interior of (,_, €2, then (ii) is true.

d) Continuity of {£2;} is independent of wy € [ = Q. Indeed, (i) in a) is independent of
wo. Let wo, w1 € ()Q. Then wo,w; € € C interior of (),_, Q, =: Q. So wo, w; lie in the same
connected component of ;. This shows that (ii) true for wy iff true for w;.

Example 4.3. (Loewner chain generated by slits)

Let 7 : [a,00] — C be a simple path ending at oo (called it “slit”), i.e., v : [a,00] — C be a
continuous injective map with v(oco) = co. Let Q; = C\y([t, 00]) for t € [a, 00], wy € C\y([a, >0])
(or wog = y(a), in this case Q, = {wp}). Then Q; is a simply connected region (the complement
of an arc in C has only one component!). Q, ¢ € if s < ¢, because y([s, 00]) 2 ¥([t, 0]).

For continuity,

(1) Uyz: C\ 2[5, 00]) = €\ My 7([5,00]) = €\ Ay als» 00]) (by continuity of 5) = C \
A ([t <)) = 0.

(i) Moy C\1rs 50) = C\Uyey 20, 50) = C\AYUy s, ) = TVt 6) = 2uUA(). So
int(;., C\y([r,00]) = Q. (Ift = a, wo = v(a), L = {wo}, then Q :=int(M,, C\y([r,o0])) =
C\ v([a, 0]). So the component of € containing wy = &, and (i) true for t = a.)

Example 4.4. Let 2 be a bounded Jordan region. Then there exists a Loewner chain {Q };¢[1,o]
such that Q; = Q (wy € Q).

Proof. Let Q be the exterior of the Jordan curve 9 in C. Then there exists a conformal map
f:D— Q with f(co0) = co. It has a homeomorphic extension f : D — Q.

For ¢t € [1,00), let € be the inside of the Jordan curve f({z € C: |z| = t}) and Qs = C.
Then {4 }4e[1,00] is @ Loewner chain with Q; = €.

Q1 = Q is clear. € is strictly increasing. Indeed,

QG =C\fMDUf{zeC:1<z|<t}), forl<t<ooc.

(shown as in the proof of Area Theorem.)
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Continuity:

For1 <t< 00, B

(i) Use: s =C\ fD)U f{z € C: 1 < |2] < t}) = .

(i1") Nget Qs = C\fMUf{zeC:1<|z| <t}) = U = Q. Since  is a Jordan
region, int(€2) = Q.

For t = 00, [Jyco0 €25 =C\fMUf{zeC:1<|z] <o0})=QUQ\ {x} =C. O
4.5. The associated semi-group

Let f,g: D — C be two holomorphic maps. f is subordinate to g, written by f < g, if there
exists a holomorphic map ¢ : D — D with ¢(0) = 0 such that f = go ¢ (then f(0) = g(0), and
|7/(0)] < |4'(0)|, because |¢’(0)| < 1 by Schwarz’s Lemma).

Let {fi}icla,00) Pe @ Loewner chain. For a < s <t < o0, {5 C 4, so fi ! is defined on Q.
Let @g¢ := f{l o fs: D — D. Then ¢, is a conformal map onto its image. ¢, (D) C D and
©s+(0) = 0. We have

fs=fiopsr, a<s<t<oo, (8)

Ptu© Pst=Psu, a<s<t<u<oo, (semi-group property)
©t¢ = idp, a<t<oo.
shows that fs is subordinate to f; for s < t, so
f0) < f(0),  s<t.

Actually, we have strict inequality

12(0) < £/(0). s <t

Otherwise, f{(0) = fi(0) = f{(0) - ¢ ,(0), so ¢ ;(0) = 1. By Schwarz’s Lemma, ¢, ; = idp, and
ft = fs, QU = fir(D) = fs(D) = Q5. A contradiction.

4.6. Heuristics for the Loewner equation

A family of maps ¢, ; with the semi-group property is generated by a time-dependant vector
field.
Assume ¢, ¢(2) is smooth in s, ¢, holomorphic in z. Define

8905,15 . Ps,s 5(2) —Z
R e

V(z,s) forms a time-dependent vector field. Note that ¢, = idp, @5 s45(2) ~ 2+ 0V (z,5). We
have

agps,t (Z) _ lim SOS,tJr(S(Z) - ()05715('2)

o — lim <Pt,t+5(<Ps,t(z)) - <Ps,t(z)

N 6—0t 1) 6—0+ )

= V(Sos,t(z)a t)'

So the semi-group ¢, ; satisfies the following equations

ips

() = Vipwl(2)t), t>s,
Ops ¢ .

5 (2) = V(z,s).
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Let v : [s,u] — C be a C'-smooth curve satisfying

Vs) =z A) =V(y(®),1), t€ls ul.

Then ~ is an integral curve of the vector field V. So t — ¢s(2) is an integral curve of V. In
fact, z at time s — (t) at time ¢ is a map ¢44(2) (map from time s to t).

What can we say about V(z,s) if ps+ comes from Loewner chain?

By Schwarz’s Lemma, ¢;145(2) € B(0,]z|). So Re((pt145(2) — 2)/2) <0, and

prirs(2) =z _ 0.
z 5—0+ 0z -

So V(z,t) can be written as
V(z,t) = —zp(z,t),

where p(z,t) is holomorphic in z and Rep(z,t) > 0 for z € D.
Let {f;} be a Loewner chain and f(z,t) := fi(z). Assume that f(z,t) is smooth in ¢. Denote

i =2en fo=Yen,

For € > 0,
ft(2) = frre 0 Prt1e(2) = f(prte(2),t +¢).
So
0 0
0= J:;iz) 0T Ef(¢t,t+€(z)a t+e) 0
0 c :

= i) 2B )

= fi(2)V (2, 1) + ful2)

=—zp(z, 1) f{(2) + ful2).
The equation ‘

fi(2) = 2p(2, 1) f(2), (9)

ie. of of

et = 2D

is called the Loewner-Kufarev equation.
Have we accomplished anything?
Wlog, assume f(0,t) =wo =0, fo € S (i.e.a1(0) =1). Let

f(zt) = a1(t)z + az(t)z> + - - .

Flet) = a ()2 + as(t)22 + -+ -,

F(z,t) = ai(t) + 2a0(t)z + - -+,
p(z,t) = co(t) + cr(t)z + -
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Then
(a1()z + ao(t)2® + ) = 2(co(t) + c1(t)z + -+ ) (a1 (t) + 2a2(t)z + -+ )
=cpa1z + (cra1 + 2coa2)22 4+
Comparing coefficients, we get
ay = cpay, as = c1a1 + 2cpas.
Making a change of time parametrization, we can assume a; = ap, so
=1 and  ay(t) = €.

Now
dg — 2@2 = clet.
So .
as(t) = C(t)e*, where C(t) :/ c1(s)e”%ds.
0

Since et f; € S, we have |az(t)e!| is bounded. So

C(00) = lim C(t) = lim ag(t)e * =0,

t—o00 t—o00

as(t) = —ezt/ c1(s)e ®ds, and az(0)= —/ c1(t)etdt.
¢ 0

Note that if f(z) = 14 c12 + c22? + - -+ holomorphic in D, and Re f(z) > 0, then |ca| < 2 by
Schwarz’s Lemma. So |¢1(0)| < 2 and

las(0)] < 2/ etdt < 2.
0

Lemma 4.7. Let {fi}ier, I = [a,0], be an analytic Loewner chain. Then there exist a €
[—00,+00), a strictly increasing homeomorphism « : I := [a,00] — I, and a Loewner chain
{fi},ef such that

i) f{(0) = ¢ fort eI\ {-o0,o00},
i) fi = fa)-

(So by a homeomorphic change of time parametrization, one can normalize an analytic
Loewner chain.)

Proof. Define
5@):{5“) op  tET\{oo}

o0 t =00

Then
i) [ is strictly increasing (see [4.5]).
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ii) § is continuous:

Let {t,} be a sequence in I such that t,, — to € I. Then if to = oo, B(t,) = f{ (0) —
oo = f(o0) by the definition of Loewner chain; if to # 00, fi, — fi., locally uniformly on I; so
B(tn) = f{ (0) = f{_(0) = B(tc) by Weierstrass theorem.

By i) + ii), A is a homeomorphism onto its image I := B(I) = [b,o0] C [0,00]. Let & :=
logh € [—00,00), and «a(t) := B71(e!), t € [a,00] (7 = 0,e> = 00). Then « is a strictly
increasing homeomorphism from I := [a, 00| onto I = [a, c0].

~ ex —1
T E2 b, 00] £ [a, o).
Define f; := fa@)- Then { fi} tcf is a Loewner chain (obvious), and
f1(0) = foy(0) = Bla(t)) = €', fortel. O
From now on, all analytic Loewner chain {t; };c; are normalized, i.e., f{(0) = e’ for t € I.

Theorem 4.8. (Vitali’s theorem on induced convergence) Let 2 C C be a region, F be
a normal family of holomorphic functions on , and {f,} be a sequence in F. Suppose there
exists a sequence {z} of points in  such that

i) {fn(zk)} converges for all k € N,

ii) {zx} has a limit point in Q.
Then {fn} converges locally uniformly on Q2 (to a holomorphic limit function f).

Proof. There exists a subsequential limit f € H(2) of {f,} (w.r.t. locally uniform convergence
on ).

Claim. f, — f locally uniformly on 2.

We prove it by contradiction. If not, then there exist £g > 0 (“bad £”), a compact set K C €2,
a sequence n; € N with n; — 0o, and points uv; € K such that

| fry (wr) — f ()| > eo.

Let g; denote f,,,. Then {g;} is a sequence in F, so it has a convergent subsequence, wlog, g; — ¢
locally uniformly on Q. Also, wlog, u; — us € K. Since {f,(2x)} converges for each k € N, we
have g(zr) = f(zk). Since {z} has a limit point in Q, g = f by the Uniqueness Theorem. So

0.< 20 < fim |gu(ur) = f(ur)| = lg(uce) = J ()| = 0.

Contradiction! ]

Theorem 4.9. (Holomorphic functions with positive real part) Let P = {p € H(D) :
p(0) = 1,Rep > 0 on D}. Then the following statements are true.
) 1+ |z]
) ()] <
i) P is a normal family, and it is closed w.r.t. locally uniform convergence, i.e., if {pn} is a
sequence in P and p, — p locally uniformly on D, then p € P.
iii) If p € P, then there exists a unique Borel probability measure i on 0D such that

forallp e P and z € D.

o) = [ SE2aue)  for zeD.
op G — 2
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(Herglotz representation). Conversely, every function of this type belongs to P.
If p(z) = 14+ c12 + co2® + - -+ is the Taylor expansion of p, then

2m
— -n _ —inf 0
cn—Q/aDC d,u(C)—2/0 e "™ du(e") for neN.

iv) Let p(z) =1+ c12 + c22%2 +--- € P. Then |cy| <2 and (Recy)? < 2+ Recs.

Proof. Note that Rep > 0 for p € P by the minimal principle for holomorphic functions.

i) It can be easily obtained by Schwarz’s Lemma (details filled later).

ii) By i), P is locally uniformly bounded. The remains obtained by the Montel theorem and
the Weierstrass theorem.

iii) Let p € P. For fixed r € (0,1), define p,(z) = p(rz). The p, € H(D) and p, has a
continuous extension to . Hence, by the Schwarz formula

C+=z
op G — 2

pe(e) = mpr(0) + 5 [ S Rep (e = )

s et — 2

where

; 1 ; 1
dpr(¢) = duy(e™) = o Rep,(e™)dt = 7 Rep(r¢)dt.

1 is a positive Borel measure on 0D, and

27
Wy (OD) = 1/ Rep(re?)dt = Rep(0) = 1.
2w 0

So p, is a positive Borel probability measure on oD.

By Banach-Alaoglu theorem, there exists a sequence r,, € (0,1) with r, — 1 such that
fn = [y, — p W.I.t. the weak-* topology on C(9D)* = {v : complex Borel measure on 0D},
ie.,

/ udft, — udp for all w € C(9D).
oD oD

1 is also a probability measure. For fixed z € D, we have

p(z) = lim p(r,z) = 1i_>rn Pr,, (2)

. (+z (+z
= lim duy, = du(Q).
nooo op ¢ — 2 ©) op G — 2 (©)

This shows the existence of the Herglotz representation.
Uniqueness and converse will be the homework assignments!
For fixed z € D and ¢ € 0D, we have

C+z 1+2z/¢
(=2 1-2[C

oo
=142 "¢,
n=1
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converges uniformly in ¢. So we can integral term-by-term and conclude

C+z

pE) =1+ et = ()
n=1

- /a ) (1+ 2gz”<—”)du<c>

—1+ 22 (/8@ g—"du(g))z”, for all = € D.

Comparing coefficients, we can obtain

Cp =2 ¢ "du(C) for neN.
oD

iv) In particular,
el =2| [ crauo)| <2 [ 1 dno) =2
oD oD
Here we have used ¢ = €. So

Rec) = 2/31@ Re(e™)du(¢) = 2/

(cost)du(¢), and Re02:2/ (cos 2t)du(().
oD

oD
So
2 _ COS ? COS2 auc -Dcnwarz
(Reer)” =4 /8D< Nau(Q)) <4 /am)( f)du(¢)  (Cauchy-Schwarz)

1+ cos?
:4/ LA Cos2l 1 (¢) = 24 2Reco. -
oD 2

Lemma 4.10. Let {fi}ic[a,00) be a normalized Loewner chain, ps; = fitofs fors <t on
I =[a,o0]|. Then for fized z € D,

2
) lpuile) =2l Sl -l ass<t<o,
.. t 42|
i) |fe(2) = fs(2) < e'ft = s|77—r3, a<s<t<oo,
(1—1z)
2|z|
iii) |osu(z) = @ru(2)] < [t — S‘W; a<s<t<u<oo,
) 2|z|
iv) |¢s,t(2) = su(2)] < fu— t‘?\zV a<s<t<u<oo.

So the following functions are Lipschitz:

t — fi(z) on [a,00), z € D fized;

t— pst(z) on[s,00), z €D, s € [a,00) fized;

t = @iu(z) onla,ul, z€D, u € [a,00) fized.

Moreover, the Lipschitz constants are uniform if the arguments and parameters are restricted
to suitable subdomains. For example, for each n € N, there exists L = L(n) such that t — fi(z)
is L-Lipschitz on [a,n] for each z € B(0,1—1).
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Proof. Some estimates:
L. |h(z1) — h(z)| < max, <, |V (u)||z1 — 22| for h € H(D), 21,22 € B(0,r), 0 <r < 1.
2. |le* —e¥| <|u—wl|, u,veC, Reu,Rev <0.
3. ¢ € Aut(D). Then

1-— |cp(z)|2 1
/

%) <

| (Z)’_ 1—]2\2 B 1—|Z|27

z € D. (Schwarz-Pick)

i) From s <t, f; 0 pst = fs, we have

FHse(0)) - 4 (0) = £2(0).
By 0(0) = 0, f}(0) = ¢!, ! - ¢l,;(0) = ¢, s0 ¢ ,(0) = ¢** < 1. Define

Dyi(z) = log ( =log(e™*+ - )=(t—s)+-.  (10)

s.t(2) etz
Then ®,; is holomorphic in I and ®,,(0) =t — s. Since |z/¢(2)| > 1, so Re ®,4(z) > 0, and
Lq)&t € P. Hence, by Theorem

t—s

L+ 2] < |t — s 2
1=z ~ 1— |z

|@5,(2)] < [t = 5|

From ¢ (2) = z- e~ ®¢(2) Re ®g4(2) > 0, we have
2|z|
1— |z

i) [fe(2) = fs(2)| = |fe(2) = filps(2))] < maxpy <) [f{(w)]|2 — ¢s,(2)], here we have used
lpst(2)| < |z|. By Koebe’s and 1),

|psa(2) = 2| = |zlle™ ) — &%) < [2]|@(2)] < |t — ]

¢ 147 2||

4z|
3" | - 8|
(1= 12]) 12|

< et — 5|2

1fi(2) = fs(2)| <e (1—[zD*

iii) By Schwarz lemma and 1),

[9s,u(2) = @rau(2)] = l@tu(pst(2) — @ru(2)] < max ’90;:,u(a)‘ s t(2) — 2]

lal<|2|

< 1 it 2|z| <t 2|z|

Jt—s — .
T2 1=z ~ (1 —12)?

iv) By i) and |ps¢(2) <],
|05.6(2) = @sul2)] = [@5.4(2) = Prulps(2))]
2w 2|z

< |u—t]1_|h|u| < ‘u_t’1—|]’z\’ where w = @, 4(2). O

Definition 4.11. Let 2 C C be a region, I C R be an interval. HL(Q2 x I) is the set of all
function f: Q x I — C satisfying

i) f(-,t) is holomorphic on 2 for all t € I,

ii) f(z,-) is uniformly Lipschitz on compact set, i.e., whenever, K C Q compact, J C I
compact interval, then there exists L > 0 such that |f(z,s) — f(z,t)] < L|s —t| for all z € K
and all s,t € J.
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Lemma shows that if {f;} is a normalized Loewner chain on [a, oo], then
(Z’t) - ft(z) € HL(D) [a’ OO)),

(2:1) = pos(2) € HL(D, [s,00));

(2,8) = ps4(2) € HL(D, [a,t]), where ps; = £ ' o fs.

Proposition 4.12. Let Q C C be a region, I C R be an interval, f € HL(QY x I). Then
i) f is continuous on Q x I.
There exists a set E C I with |E| =0 (the 1-dim Lebesgue measure) such that

ii) g‘:(z t) exists for all z € Q, t € I \ E. Moreover, g‘:(z,t) is holomorphic on Q0 for all
t € I\ E, = is measurable and uniformly bounded on compact subsets, i.e., whenever K C

ot
0
compact, J C I compact interval, then there exists M > 0 such that ‘6—{(2,25)‘ < M for all

zeK,te J\E.
iii) f is differentiable at each point (z,t) € Q x I\ E, more precisely,

of of

FEE) = [z 0) + 52 G0 = 2) + 5o (0 = 1) + ol — 2| + [t — 1))
as (2, t') = (z,1).
iv) 8Lf € HL(QY x I) for all n € N. Moreover,
o ro" o /0
a(#)(z,t) - @(a—{)(z,t) for all (2,t) € Qx I\ E. (11)

v) Let zo € 2, and
Z an(t)(z — zo0)"

be the Taylor expansion of f(-,t) at zo. Then for each n € N, a,(t) is uniformly Lipschitz on

d
compact interval J C I. Moreover, an(t) == %(t) exists for allt € I\ E, and fort € I \ E,

0
the function —f(-,t) has the Taylor expansion

ot

Zan z—2z9)". (12)

Proof. 1) |f(2,t') = f(z, )| < |f(2',t) = F(", )| + | f (2, 1) = f(z,0)] is small if [z — z| + [t — ]
small, since |f(2/,t') — f(Z/,t)| is uniformly small and |f(2/,t) — f(z,t) is small.
ii) Pick a sequence {aj} in Q of distinct points such that {a;} has a limit point in Q (e.g.
ar = ag + 6/k, ap € Q, 6 > 0 small. Each function t — f(ag,t) is locally Lipschitz on I, and so
0
differentiable a.e. on I. So there exists a set Fy C I with |Eg| = 0 such that 8—{(@;{, t) exists for
each t € I\ Ey. Let E = |J;cy ExU{end points of I'} C I. Then |E| = 0.

Claim. ((;]tc(z,t) exists for all (z,t) € Q x I'\ E.
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It suffices to show that if {J,,} is a sequence in R with J,, # 0 and d,, — 0, then
L Tt 8~ ()

n—o00 on,

(13)
exists (then the limit is independent of {d,}).

Define
f(zla t+ 6n) B f(zlv t)
On
Then {F),} is a sequence of holomorphic functions on € that are locally uniformly bounded on
2, and so form a normal family.

Fo(?) = for 2/ € Q.

F.(a )%Z(ak,t) as n — oo

for each k € N. By Vitali’s Theorem [4.8] {F},(2')} converges for each 2’ € €, and so also for
0
z' = z; so the limit (13) exists. So 8—{(2,15) exists for all (z,t) € Q x I'\ E. Actually, by Vitali,

F, — %j:( ,t) locally uniformly on (¢ € I\ E fixed).

d 0
So —f(, t) is holomorphic on  (Weierstrass). a—{ is measurable as a pointwise limit of contin-

ot

uous functions, and the boundedness property follows from the uniform Lipschitz property of
I
iii) Let (z,t) € Q x I\ E be arbitrary, (z,,t,) € Q@ x [ — (z,t) as n — oo. We have
[lstn) = FC1) O
tn, — 1 ot

(1),

locally uniformly on 2, and so

f(znstn) — f(2n, 1) _ of

(znit) = 0(1),  (tn —t #£0).

by — 1 ot
So
f(znstn) = f(2,1) = f(zn, tn) = f(2n,t) + f(2n, ) — f(2,1)

of of

= gt B G t)(tn = 1) +ol[tn = t]) + 27 (2,1) (20 — 2) + 0(|2n — 2])

/ of
= a(z,t)(tn t) + 8—( —z)+o(|tn — t| + |zn — 2])-
of

iv) For any n € N, %( ,t) is holomorphic on 2 for t € I. Suppose B(a, R) C Q, ¥(t) =
a+ Re®. Then o f | )
" n! t
Z ) =
gan 20 2m/¢g- IR

for 2 € B(a,R), t € I. By the Residue Theorem, if z € B(a, R/2), s,t € J C I compact, then
by the uniform Lipschitz property of f,

o f o f n! 1
ZJ -7 < . — < —
o (508) = (50| S g 2R _sup1F(C8) = SG0)| - Gy < Cls =l
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T

0 _
sot — a—f(z,t) is uniform Lipschitz on B(a, R/2) x J. The uniform Lipschitz property of
z
o f

—(z,1) follows from a covering argument.
Let t € I\ E, {0x} be a sequence in R with §; # 0, 6x — 0. Then

fOt+0) = (1) Of
5]@ %E(.’t)

locally uniformly on €; hence for z € B(a, R).

o F 1wl [ AGte) - FGD)dC
A E=ICE 8zn(z””}‘2m'/7 5 (SR

nt [0f(¢t)  d¢ of
Tomi ) o (C—z)"+1_az”(8t)(z t)-
of .
This shows that a( oan )(z, t) exists, and holds.
1Lof .
V) (In(t) EW(O t) for ¢ S I,

SO ay, is uniform Lipschitz on compact J C I for each n € N by iv). Moreover,

. on f 1 o ,of
an(t):ma<@)(0,t):aazn<at>(0t) fort € I\ E.

So for t € I\ E, the n-th Taylor coefficient of the holomorphic function of z, 6—{(-,15) is given

by an,(t). follows. O
Theorem 4.13. (Main Theorem of Loewner Theory) Let {fi}ier, I = [a,00) be a nor-

malized Loewner chain, ps; = fi ' o fs, f(2,t) := fi(2). Then there exists E C I, |E| =0, such
that

a) V(z,t) := lim Prutelz) = 2 exists for all z€ D, t € I \ E.

e—0t €

b) g{(z,t) exists for all z€ D, t € I \ E, and
?){(z t) = —V(z,t)gf(z,t). (Loewner-Kufarev equation)
z

Moreover, V(z,t) has the following properties:

i) V(-,t) is holomorphic on D for eacht € I \ E,

ii) V is measurable on Q x I, and has the uniform bounded property: whenever K C D, J C I
are compact, then there exists M > 0 such that |V (z,t)| < M for (z,t) € K x J\ E.

iii) V' can be written in the form

V(z,t) = —zp(z,t),

where p(-,t) € P fort € I\ E, i.e., p(-,t) is holomorphic in D, Rep(-,t) > 0 and p(0,t) =
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0
Proof. Since f € HL(D x I), there exists E C I, |E| = 0, such that 8—{(2,75) exists for (z,t) €

D x I\ E. Pick (2,t) € Dx I\ E and ¢ > 0. Then fi1-(¢ri+:(2)) = fi(z). Equivalently,
f@tire(2),t +¢) = f(z,t). Differentiating with respect to € > 0 and setting ¢ = 0, we obtain
by the chain rule

d of Ptt+e of
0=— t = (z,t) T =L (z,1).
dsf((pt,tJrE(z)v +€) o Oz (27 ) Oe (Z) o + ot (Z, )
Actually, this is true for any sublimit of
0pt t4e(2) — lim Dt ire(z) — Z.
Oe —p &0 €

0
Since a—f(z, t) # 0 (f; is conformal!), such a sublimt is unique. Since € — ;14 is Lipschitz, the
z

existence of

Vist) = tim 2B 22 op e,

e—0 e

follows, and
of of
—(z,t)V(z,t) + =—(z,t) =0
LV + e =0

which is equivalent to the Loewner-Kufarev equation.

by Vitali,
(Pt,t—l—az:(z) —c V(z,t)

locally uniformly for z € D, whenever t € I \ E fixed. So V(-,t) is holomorphic on D; V is
measurable (pointwise limit of continuous functions), and has the uniform bounded property as
follows form the uniform Lipschitz property of (z,t) — ¢s4(2).

f(z,t) has the Taylor expansion

fzt)=aot) + ar(t)z +az(t)z + -, ap(0t) =wp, ai(t) =e.
Let for fixed t € I \ E, V(z,t) has the Taylor expansion

Vi(z,t) =co(t) + c1(t)z + ca(t)2® + - -

Then

OF (20) = an(t) + 2a0(t)z +

—(z =a a z e

32 ) 1 2 )
and by Proposition iv),

0 ) .

—f(z,t) =a1(t)z +az(t)2> + - -

ot
So

a1z + ag2® 4+ = —(co+c1z 4 - )(ag + 2a9z + - - -).

So 0 = —cga1 = —cpe! equivalent to cg = 0, a1 = —cra; equivalent to ef = ¢; (t) - e! equivalent

to c1(t) = —1, i.e.,
V(z,t) = —zp(z,t),
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where p(-,t) holomorphic and p(0,t) = 1. By Schwarz’s Lemma, | 4-(2)| < |2]|; so for z # 0,

Re(@utﬁf) - Z) <0,

and for z # 0,
Viz,t -
Rep(z,t) = —Re( (= )) — — lim Re(w) > 0.
z e—07t EZ
This inequality is also true for z = 0 since Re p(0,t) = 1. O

Corollary 4.14. Let {f;} be a normalized Loewner chain on I = [a,0), ps; = fitofs, ECI,
|E| =0, V(z,t) as in Theorem[4.13 Then

i) V(z,t) := lim M: lim wforzeD,te[\E.

e—=0t € e—0t €
.. a@s,t(z) o . . _
ii) 5 = V(psi(2),t) forzeD, t € [s,00)\ E, s € I (left-hand derivative for t = s).
8()08,7?(2:) o / . . .
iii) 5 = - (2)V(z,s) for z € D, s € [0,t] \ E, t € I (right-hand derivative for
S b

s=t).
The existence of limits post of the statement!

Proof. i) For t € I\ E, € > 0, fit o pr—c+(2) = fi—e(2). Differentiating with respect to ¢ and

setting ¢ = 0:
fE) Seal@)| =R =Vt i)

e=0

. t—et\Z) — 2
Hence lim %
e—0t £

ii) For s € I, t € [s,00) \ E, frops: = fs, 1.6, f(pst(2),t) = f(z,s). Differentiating with
respect to t gives

exists and is equal to V'(z,t).

a2 - 2222 4 flipnalz)) =0

equivalent to _
3908t(2) Jtowsy
! =— - =V t).
6t f{ o @s,t (Qﬁs’t(Z), )

ili) For t € I, s € [a,t] \ E, fiowss = fs, i.e., f(psi(2),t) = f(z,s). Differentiating with
respect to s gives

Far(2) - 222 () = fu(2) = —V(a8) - £1(2) = — V(2 9)8,u(2) L pan(2).

ds
So
E(z) = —plu(2) - V(2 9).
In all cases, existence of limits follows from the uniqueness of sublimits. O

4.15. Geometric interpretation
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Figure 16: Geometric interpretation

fulz) = =V (2,0 fi(2) = 2p(z,1) f;(2)-

Since Rep(z,7) > 0, zp(z,t) is a vector which points out of the disk B(0, |z|). Hence, fy(z) =
zp(z,t) f1(z) is a vector which points out of f;(B(0, |z|))

8gz7t (Z) = V(‘Ps,t(z)’ t)'

So t — s +(2) is an integral curve of the vector field V(z,t). z — ¢s+(z) is a map which shrinks
D for large t, with ¢/ ,(0) = e*~".

Figure 17: Shrink

s
gs’t (2) = —ps(2)V (2, 5).
So
Vs—c,s(2) 2 z+V(z,s).
We have

QOS,&t(Z) = Sps,t(z) + ESD/s,t(Z)V(Za S)'

Figure 18: transfer

5 Existence results for Loewner chains and applications

Proposition 5.1. Let {f{'} be a sequence of normalized Loewner chains on I = [a,o0), f*(0) =
wo € C, (f1)(0) =€, t € I. Then {f]} subconverges to a Loewner Chain as n — 0o; more
precisely, there exists a sequence {ny} with ny — oo as k — oo and a normalized Loewner chain
{fitier such that f"" — fi locally uniformly on D as k — oo, for allt € 1.

Proof. Wlog, wg =0. Let z; =1/1,1 > 2. Then z; — 0 € D as | — oo. For fixed [ € N, the maps
t € [0,00) — f{*(2), n € N, are uniform Lipschitz (cf. Lemma and uniformly bounded
(Koebe) on compact set J C I. In particular, the family {t — f;*(z)}nen is equicontinous
and uniformly bounded at each ty € I. Hence, by the Arzela-Ascoli Theorem, there exists a
subsequence that converges locally uniformly on I and in particular pointwisely on I.

Applying this successively for each | = 2,3,..., and passing to a diagonal subsequence, we
find a sequence {n;} in N with ny — oo as k — oo such that {f,"*(2;)} converges as k — oo for
allt eI, 1> 2.

Fix t € I. Then e !f"™ € S, and so these functions form a normal family. Since we have
pointwise convergence at each z; € D, | > 2, by Vitali’'s Theorem, {f;"*} converges locally
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uniformly on D to some limit function f; € H(D). So f;"* — f; locally uniformly on D as k — oo
foreach t € I.
It is suffices to show that {f;}ics is a normalized Loewner chain.

f:(0) = lim f;"(0)=0

k—00

and
f1(0) = Jim (f*Y(©0)=¢e"#0 fortel. (14)

By Hurwitz, f; is a conformal map f; : D <> Q; = fi(D). If s,¢t € [ and s < ¢, then
Q% = frR(D) = Qy,  Q* = f*(D) = Q, w.r.t. wo,

and Q% C Q'*. So
Qs C Q. (15)
A combination of and implies the Lipschitz estimates for ¢ — f;(z) as in Lemma ii)

(pst = ft_1 o fs is defined, etc.). Hence f;, — f; locally uniformly on D whenever ¢, € I — ¢ € I.
So {f:} is a Loewner chain. O

Corollary 5.2. Let f € S. Then there exists a Loewner chain { fi}e[0,00) with wo = 0 such that
Jo=1.

Proof. Forne N, n>2 let r, = (1 —1/n) € (0,1), and

(z) = if(rnz), zeD.
n
Then f™(0) =0, (f™)'(0) =1, and so f™* € S. f™ is a conformal map from D onto the Jordan
region Q" = f*(D) = f(B(0,7y)). So Q" can be embedded in a Loewner chain; equivalently,
there exists a normalized Loewner chain {f{*}icj0.00) With f{*(0) = 0, (f7*)/(0) = ¢’ for t € I =
[0,00), and f§' = f™. By Proposition the sequence { f{'} of Loewner chains subconverges to
a normalized Loewner chain {f;}; i.e., for some sequence {n;} with ny — oo, we have f;'"* — f;
locally uniformly on D for each ¢ € I. In particular, fy* = f™ — fy locally uniformly on D. On
the other hand,
F(2) = o (r02) = 1)

locally uniformly for z € D. So fy = f, the claim follows. O

5.3. Loewner chains and Taylor coefficients

Let f € S be arbitrary. f:D — Q = f(D) conformal, f(0) =0, f'(0) = 1. By Corollary[5.2]
there exists a normalized Loewner chian {f;},c(0,0)} such that fo = f, fi(0) =0, f{(0) = €".

fi(z) = ian(t)z”, t €10, 00), with ay(t) = .
n=1

Let f(z,t) = fi(2), I =[0,00). There exists E C [0,00) with |E| = 0 such that

of, of
E(zvt)_zp(z)t)&(z)t% ZEDatEI\Ea
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where f € HL(D x I), p(-,t) e P fort € I\ E, i.e., p(-,t) € H(D), p(0,t) = 1, and Rep(-,t) > 0,

o
p(z,t)zl—l—ch(t)z”, zeD,tel\E.
n=1

From Proposition
—(zt)—— E d(t)z" ZE]D)tEI\E.
at ) 1 n bl Y

Fixt € I\ E. Then

> (03" - z(l + icn@)z”) <i nan(t>zn—1>

n=1 . n=1 . n=1
=y <nan(t) +)° kak(t)cn_k(t)> 2"
n=1 k=1

Comparing coefficients, we get
n—1
(n(t) = nan(t) + > kag(t)eni(t), teI\EneN.
k=1

Each a,, is locally Lipschitz (cf. Proposition 4.12)), ¢, is measurable (homework!). Moreover,
len(t)] < 2 forn € N, t € I\ E (Theorem 4.9 (iv)). Noting that h; := e~ 'f; € S and S is a
normal family, there exists C), > 0 such that

hi™ (0)

n!

lean(t)| =

’SCn, fort eI,

hence e ™a,,(t) — 0 as t — oo for n > 2.

n—1
d
p (e™™an(t)) = e ™an(t) — e Mnay(t) = Z e "ka(t)cn_p(t), fortelI\E.
k=1
For s > 0,n > 2,

—ns . d -n — > —n
—e "ay(s) = lim %(e Lan (1)) dt—;k/s e " ap(t)cn_p(t)dt.

U—00 s

So .
an(s) = —e* Z k/ e " ag(t)c,_p(t)dt, s>0,n>2.
k=1 “%

Taking s =0, n = 2,
ag = az(0) = —/ e 2lay (t)ey (t)dt = —/ e tey(t)dt.
0 0

34



Taking s =0, n = 3,

2 [e’e)
as ==Yk /O () es_p(t)dt

=1

/°° Bt — 2 /OooegtCLQ(t)Cl(t)dt

By Sy S S
/Ooo Odt + 2 /°° e—t( / - e‘“q(u)du)@(’f)dt
/O‘X’ e + / / e~ler(t)e ey (u)dtdu

s (i)

Corollary 5.4. Let f € S, f(z) = z + agz® + azz® + ---. Then |az| < 2, |az] < 3.

ol

o

Proof. Using notations from we have

ag = —/ e tey(t)dt.
0

Now, |e1(t)| < 2 (cf. Theorem [4.9iv)), and
jas| g/ e_t\cl(t)|dt§2/ etdt = 2.
0 0

(case of equality can be analyzed!)
By rotation invariance (f € S +— ¢ f(ze™) € S), wlog, we assume az > 0. Then, using

Theorem iv),
2
t)dt>

(
)

(t)dt + ( e "Rec
0
< —/ e 2 Recz(t)dt+/ e '(Recy(t))2dt (Cauchy-Schwarz)
0 0

o0
= Reaz < —/ 6_2tReCQ t
0

< 2/(;00 e tdt + /Doo(Re cg(f))((g*t — 672t>dt ((Recl)2 <2+ Reey)

o0
<2+ 2/ (et —e )t (Jc2] €2 and et — 7% > 0)
0

1 (o9}
:2+2+2[2e—2t] =3. O
0

Lemma 5.5. Let p € P. Then

o | 2
0) 7)< =

. 2|u — v|
(i) ) = p(o)] < 553

z €D,

u,v € B(0,7), r € (0,1).
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Proof. Let 2o € D, r € (0,1) and r > |2|, y(t) = re®, t € [0,27]. Then

1/
2 —ZO

On the other hand, there exists a probability measure p on 0D such that

_ 77+C
p(C)—/aD77 : du(n),  for ¢ eD.

Let K,(¢) denote (n+ ¢)/(n — ¢). By Fubini,
R p(<) _ 1 Ky (Q)
Ve = g | = am | [ i

L o | s

(so we can differentiate under the integral sign in the Herglotz formula)

here J 5 )
+z
K/ - ”7 - = K/ < -
10 =3 Gl = < e
and 5 5
/
(2 S/ — = .
Pl s T ) = T Tzl
(ii) follows from (i). O

Lemma 5.6. Let I = [a,00), p: D x I — C be a.e. defined, p be measureable, p(-,t) € P for
a.et € I. Let J = [a,b] C I, and suppose u,v : J — D are absolute continuous and solutions of
the ODE

w(t) = —w(t)p(w(t),t) for a.e. t. (16)

If u(ty) = v(to) for some ty € J, then u=wv.
Proof. 1) For a solution w : J — D, t — |w(t)| is decreasing:

L
dt

2 [u(t)p(u(t), 1) — o(p(e(0), 1)
< (o) (), ) = p(o(2), )]+ fu(t) = o(0) ]p(0(2), )
<1 ) — o)+ fule) = o(0)
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for a.e. t, where K is independent of t. Let D(t) := (u(t) — v(¢))?, t € J. Then D is absolute
continuous, and

d . .
|ZD()] < 2fi(®) — s ult) - v(t)

= 2fu(t)p(u(t),t) — v(t)p(v(t), t)][u(t) — v(t)]

< 2K |u(t) —v(t)|* = K'D(t).
Hence

D(t) < eX't=ID(tg) fort e J. (special case of Gronwell’s inquality)

Since D(tp) = 0, we conclude D(t) = 0 and so u = v. O
Theorem 5.7. Let I = [a,b) CR, V:D x I — C be a.e. defined measurable function such that

a) V(z,-) is a.e defined and measurable for each z € D,
b) V(-,t) is holomorphic on D for a.e. t € I and

V(z,t) = —zp(z,t) for z €D,

where p(-,t) € P. Then for each z € D, s € I, there exists a unique map w : [s,00) — D such
that

i) w is Lipschitz on [s,0),

i) w(s) =z (initial condition),

iii) w(t) = V(w(t),t) for a.e. t € 1.

Proof. Need a technical lemma that will be formulated afterward!
Idea of proof: Picard-Lindelof iteration scheme!
Le z € D, s € I fixed. Define wy(t) =0 and

t
Wpt1(t) = 2 - exp(—/ p(wn(u),u)du>, for n € Ny, t > s.

(so wy(t) = zest.)
i) Jwp(t)] <r:=lz|,t > s, neN (note Rep > 0).
ii) wy, is L-Lipschitz on [s,00) with L = 2r/(1 — r):

eXP(—/:Q...)—exp(—/stl...)‘
[l [ = [

t1
r

~—1-r

[wny1(t2) — wnr1(t1)| = |2|

IN

E
2

[ta — t1], t1 >t > s,

here we have used the fact |~ — e~°| < |a — b| for Rea, Reb > 0, and

2 2
< < .
pln(w)w) < T T S T
Nt — g\
iii) |wp41(t) —wp(t)| < M, for n € No,t > s:
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By induction: for n = 0,

wi(t) —wo(t)] =e*lz| <1, OK.

exp(— /Stp(wn(u), u)du) — exp(— /:p(wn_l(u),u)du>

|p(wn(u)a u) - p(wn—l (u)> u) |du

S

< el [ ) = wena ()l

2 ton(y — g)n ontl t —s)ntl
<ty [ 20 (t~5)

Q=2 T 2ot ()

So

n—oo

w(t) == lm wn(t) = wo(t) + Y (wn(t) — wnpa(t))
n=1

exists for each t € I, convergence uniformly on compact subsets J C I, i.e., w, — w locally
uniformly on 1.

Thus, w is L-Lipschitz on I, |w(t)| < r < 1fort € I, p(wy(u),u) = p(w(u),u) for a.e. u € I.
Since |p(wp(u),u)| <2/(1 —7), so

/ p(wy, (u), u)du — / p(w(u),u)du for each t € [s,00)

by the Lebesgue dominated convergence theorem.
For each t € I,

t
w(t) = nl;rgo Wn41(t) = nl;&zexp(—/s p(wn(u),u)du>

= zexp(— /Stp(w(u),u)du) for ¢ € [s,00).

So w(s) = z, w(t) exists for a.e. t € [s,00), and

i(t) = —zexp (- / plw(u), w)du) - p(w(t),£) = ~w(Bp(w(t),t) = V(w(t),1)

Existence of w follows.
Uniqueness is clear by O

Corollary 5.8. For fized z € D, s,t € I with s <t, let ps4(2) = w(t), where w is as in Theorem

[5.7 Then
i) wsi(+) is holomorphic and injective on D, ¢, (D) C D.

i) ¢s¢(0) = 0, ¢ ,(0) = e*".
111) Psu = Pt © Psit, 0<s<t<u<oo.
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iv) fs(2) :=lim o0 €'s1(2) exists for z € D, s € I. Moreover, e'pss — fs locally uniformly
on D.
v) {fs}ser is a Loewner chain with

fs(2) = V(z,8)fi(2) for ze D and a.e. s € I.
Proof. As in the proof of Theorem [5.7], define for z € D, t > s,
wo(Z, t) = 07

Wpt1(2,t) := zexp(— /Stp(wn(z,u),u)du).

Using induction and Morera, one shows that wy(z,t) is holomorphic on D for each ¢ € [s, 00).

Since |wy(z,t)| < |z|, we have {wy(+,t) }nen is a normal family for each ¢ € [s,00). Then
wp(z,t) = w(z,t) = ps+(z) pointwise on D for each ¢ € [s,00), convergence is locally uniformly
on D by Vitali.

i) Hence w(-,t) = ¢4 is holomorphic on D for s,t € I, s < t. Let s,tg € I, s < to,
21,22 € D, and suppose @ +,(21) = @s.1,(22), equivalently w(z1,t9) = w(z2,tp). Then by Lemma
w(z1,t) = w(z2,t) for all t > s; hence z1 = w(z1,s) = w(z2,5) = 22. S0 Y44, is injective on
D.

ii) w(0,t) = 0 solves ODE; so ¢, +(0) = 0.

psi(z) = zexp (— /:p(gos,u(z),u)du).
So
‘p;,t(o) = exp < - /S p(ps.(0), u)du) =exp(—(t—1s)) = eSSt (17)

iii) Let v(u) := @su(2), 0(w) := @ru(pst(z)), where z € D, s < t < u fixed. Then v(t) =
0st(2), V(t) = @ri(psi(2)) = ws1(2), since ¢ (2) = 2. So v, 0 have the same initial values at
time u = t. They satisfy equations

o(u) = V(v(u),u), o(u)="V((u),u) for a.e. u.
So v(u) = o(u) for u > ¢ by Lemmal5.6] i.e.,
Vsu(2) = prulest(2)) for zeD,s <t <u.
iv) By (17), t
¢ ps(2) = zexp (/s [1 = p(psul2), U)]dU) €S,

so by Koebe,
65_t|z‘
lpst(2)] < ——75, z € D.
(1 —1]2])?
So
11— p(psul(2),u)] = [p(0,u) — p(psu(2), u)]
2
< MS,U(ZMW (Lemma

2
< es—u(1|T’D4 < Ce™™, for fixed s, z.
— |z
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/ 11— p(psu(2),u)|du < oo

with uniform convergence in z on compact subsets of ID. Hence
fu(2) = lim (=) = lim e, (2)
oo
=e- zexp(/ [1-— p(gps,u(z),u)]du)
S
exists with locally uniform convergence in z € D. So fs € H(D),
f5(0) = lim e’ 4(0) =0,
Fi(0) = lim €' ,(0) = e*.

Since e'ps; is injective on D, fs is injective on D by Hurwitz.
For zeD, s <t,

ft(SOS,t(Z)) = uh_{go euSDS,U(SDS,t(Z)) = uh_g)lo e“apsyu(z) = fs(2).

So frowsy = fs for s < t. Hence Q; = fi(D) O fi(ps(D)) = Q. (Strict inclusion for s < t
comes from ¢, ,(0) = e*~* < 1 and g is a conformal map.) As in Proposition we conclude
that {fs}ser is a Loewner chain.

Since {fs}ser is a Loewner chain, (z,t) — f(z,t) € HL(D x I). Since f(pq:(2),t) = fa(2),
there exists £ C I — [a,00), |E| = 0, such that

d d
0= &fa(z) = af(@a,t(z)at)

= H(Patl2)) - 5 Pai(2) + flpasl2)).

Since §@at(2) = V(ap(2),1),
filw) = =V (w,t) - fl(w),  fort eI\ E,we€ @ (D) CD.

We may assume that f;(-) and V(-,t) are holomorphic for ¢ € I\ E. Then by the uniqueness
Theorem,

fi(z) = =V(z,t)- fi(z), forzeD,tel\E. O
Continuity of wy,(z,t) in z for ¢ fixed:

wo(z,t) = 0;
Wpt1(2,t) = zexp(— /:p(wn(z,u),u)du>.

By induction on n. n — n + 1:
zk €D — 29 €D, |z <7 <1, wy(zk,u) = wp(z0,u) as n — oo for each u € [s,t].
Moreover, |wy, (2, u)| < r and so

1+
1—

<

p(wn(zk, u)v u) <

<
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So .
/ p(wn 2k, u),u du—>/ (wp (20, u), u)du

by the Lebesgue dominated convergence theorem.
In the proof of Theorem the following fact was used.

Lemma 5.9. Let U C R? be open, M C R? be measurable, g : U x M — C be a.e. defined such
that

i) g(-,t) is continuous on U for a.e. t € M,

ii) g(z,) is a.e. defined on M and measurable.

Let ¢ : M — U be measurable. Then h : M — C a.e. defined by h(t) := g(¢(t),t) fort € M
s measurable.

Outline of Proof. 1. For each n € N, pick a countable open covers U,, = {U, 1 : k € N} of U such
that U, € U and

mesh(Uy,) = sup{diam(U, ) : k € N} =0 as n — oo.

Pick z, 1 € Uy i, and let {¢), 1 : k € N} be a partition of unity subordinate to U,,. For f € C(U),
define

Tof = Z f(zn,k)@n,k e CU).

keN
Then T, f — f locally uniformly on U for all f € C(U).
For z e U,
|h(2) ()] < D 1h(2) = h(znp)|oni(2)

keN
< sup{|h(u) — h(v)| : |u — | < mesh(U,)}.

II. There exists E C M, |E| = 0 such that g(-,t) € C(U) for t € M \ E. Then

n.th Zgznkv Sonk )_)g(z’t) as n— o0
keN

forzeU,te€ M\ E. So for a.e. t € M,

Y 9Gngs Den k(1) = g($(t),1) = h(t)  as n — oo,

keN
So h is measurable. ]
Lemma 5.10. Let f € S. Then

||

(1—12[)?

where C' is an absolute constant independent of f.

f(z) -4 <C for zeD,
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Proof. Define
1
o) = 5(7z)—2), zeD.
Then g € H(D) (0 is a removable singularity). Pick 0 < r < 1. Then by Koebe and Maximum

principle,
92 < [t ] < for|2] <
—|— [ T 3
VN =13 (1—r)2 " —r(l—r)? orE =T

When |z| < 1/2,r=1/2,
16

\g(z)] <16 < m

When 1/2 < |2| < 1, r = |2|,
9(2)] < ——
9g(2)| < —v-.
(L —[z])?
So C' = 16 works. ]

Proposition 5.11. Let {f;} be normalized Loewner chain on I = [a,0), f+(0) =0, f/(0) >0,
tel. Let pg4 := ft_1 ofs fora<s<t. Then

etgos,t — fs locally uniformly on D

ast — oo (i.e., along any sequence t, — o).

Proof. Suppose a < s <t, ¢s:(0) =0, ps+(D) CD. So
(1) |pst(2)] < |2| for z € D by Schwarz.

Since s ¢ is injective on D, ¢ ,(0) = et so
@)l < €' for 2 € D by Koce.
— |z
Since fi o pst = fs, €' ft €S, so by Lemma
et|w\2
|fi(w) — e'w| < C———.
(1= [wl)?

Using this for w = ¢, (z) € D and (1) + (2), we obtain

|fs(2) = €'0st(2)] = | fe(s2(2)) — €'psu(2)]

6t|905 t(z)’2
<SC———5 (e <z))
(1—1z])? ’
< C€t€25—2t|Z4’2 _ e*t 0628|Z|24 0
(1—z[) (1—1z[)
locally uniformly on D as t — oo. O
‘PS,t:f;lofs
{ft}: Loewner chain — s+t Semi-group

fs= lim etgasyt
t—ro0

42



Theorem 5.12. (Existence and uniqueness for solutions of Loewner-Kufarev equa-
tions) Let I =[a,00) CR, V :D x I — C be a.e. defined measurable function such that

i) V(z,-) is a.e. defined and measurable for each z € D,

ii) V(-,t) is holomorphic for a.e. t € I,

iii) V(z,t) = —zp(z,t) for z € D, t € I, where p(-,t) € P.

Then there exists a unique normalized Loewner chain { fi}1er with fi(0) = wo = 0 such that
the Loewner-Kufarev equation hold:

filz) = =V (2,0 fi(2)

Suppose g : D x I — C is a function such that

i) g(-,t) € HD), g(0,t) =0, ¢'(0,t) = e fort eI,

ii) g(z,-) is uniform Lipschitz on compact subsets of D x I,
iii) g solves (18)), i.e.,

for zeD, ae tel. (18)

g‘z(z,t) = —V(z,t)gg(z,t)
for each z € D and a.e. t € 1.

Then there exists an entire function h : C — C with h(0) = 0, h'(0) = 1, such that g, =
fortel.

Suppose g satisfies the following additional assumption:

iv) there erist ro € (0,1) and C > 0 such that |g:(2)| < Ce! fort € I, z € B(0,rg).
h =idc and so g, = f; for allt € I.

ho fi

Then

Proof. We know that there exists a normalized Loewner chain {f;} solving . (See Corollary
Find unique ¢,4(2) such that ¢ss(2) = 2, z € D, Ops /0t = V(psi(2),t) for ae. t > s.
Let fs = limy—00 €' ps4. Then g = ft_1 o fs. {fi}ter is a Loewner chain solving )

Let g be a function as in hypotheses, g, := g(-,t).

Claim. g, o ps; = gs fora <s <t

Fix s. Then for z € D and a.e. ¢ > s. By Proposition m (iii), g is differentiable for a.e.
tel

000 0sl) = alpsil2).1)
9y s t(2)

= g1 © pst(2) -
= gi(w) - V(w,t) + gi(w) =

Opsi(2) | g
az( (Z)’t) : ot + a(()@s,t(z)vt)
V(psit(2), )+9t090st( )

Since t — g(ps,(2),t) is local Lipschitz, we have

gt 0 s1(z) = const.

For t =s,

The Claim follows. By Claim,

gt © Pst

=9gs, <~ gtoft_

int>s, and for fixed s € I,z € D.

gs © (Ps,s(z) = gs(z)'

lzgsofs_l
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on Qs := fs(D) for ¢t > s. Note Utza Q; = C, because ; D B(0, 46 ) by Koebe. Define

h(z) = (g: 0 fi 1)(2) if ze Q.

Then h is well-defined and holomorphic on C = | J,.; €2; hence entire.
By definition, g = ho f; for t € I.

h(0) = h(f(0)) = g:(0) = 0,

and
W'(0)o f(0) = g;(0) = W(0)e'=e" = H(0)=1

Suppose that g satisfies (iv) in addition, then
l9:(2)] = |h(fi(2))| < Cé! for z e B(0,ro).

By Koebe, fi(B(0,70)) 2 B(0, 1€'ro), and so
1
|h(w)| < Cé, for w € B(0, Zetm), tel.
So there exists C’ > 0 such that
|h(w)| < C'(1 + |w)), w e C.

By Cauchy estimate, h(w) = aw + b, a,b € C. Since h(0) =0, h'(0) = 1, we have b =0, a = 1,
and so h(w) = w, i.e., h =idc.
Suppose {f;} is another normalized Loewner chain with f;(0) =0, ¢ € I, solving (18). Then

|

|fi(2)] < W

zeD,tel,
by Koebe, and so
~ 1
’ft(z)|§2et7 |Z’§§,t61,

i.e., (iv) is true. Moreover, (i)—(iii) are laos true and so f; = f; for all t € I, i.e., there exists a
unique normalized Loewner chain solving ([18)). O

Remark 5.13. It is likely that the second part of Theorem [5.12] can be proved under weaker
regularity assumptions, e.g., namely that g(-,¢) € H(D) for each t € I, and g(z,-) is absolutely
continuous on compact J C I for each z € D. It is not clear that under those hypotheses g is
differentiable for a.e. (z,t) € D x I, not even local boundedness is clear!

Figure 19: The Loewner triangle

Recent papers by Bracci, Contreras, Diaz-Madrigal, et.al.
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Theorem 5.14. Let f € H(D), f'(z) #0 for z € D, and
f"(z)
f'(2)

Then f is univalent on D (injective and holomorphic).
Conversely, if [ is univalent on D, then f'(z) #0 for z € D, and

/1
Nie

f'(z)
Proof. 1. Suppose first that f is univalent on D. Wlog f(0) = 0, f/(0) = 1, so f € S. Then
f'(z) # 0 for z € D, and by Lemmal[L.6}

(1= 2]

<1 for zeD. (19)

(1= %)

’<6 for zeD.

"
‘(1—|z|2)J},((§))—2z‘<4 for zeD.
Hence,
1
(1—1z[?) z‘]}/((zz))‘ <4zl + 212> <6 for zeD.

IT. Suppose now that f satisfies the hypotheses of the first part. Wlog f(0) =0, f/(0) = 1.
Define

f(z,t) = fle7'2) + (e —e )zf'(e t2), ze,tel:=][0,00),
fi(z) :== f(z,1).
Then f(-,t) € H(D), t € I, and f(z,-) € C'[0,00), z € D.

ﬁ(z, t)=—etzf(e7t2) + (et + e Dzf(e7z) — (e — e )22t f(e7t2)

ot
=elzf(e7t2) — (ef — e H)22etf"(e7t2)
—elzfi(etz)|1— (1 - e—2t)€_t2’f”(€_tz)
- frlle7tz) |
So
of
%
Hence f € HL(D x I).

g(z,t) =e lf(e7t2) +(eh —e )| f(et2) + ze_tf”(e_tz)}

0z
=e'fl(e72) + (e — e Hze tf(e7"2)
e tzf"(e7tz)
e |

(z,t)'ﬁM(r,T) for |z|<r<1, 0<t<T.

=elf'(e72) [1 +(1—e?%

Denote w = e 'z, Then |w| < e ! < 1.

e tzf"(et2)

fr(etz)

< (1= |uwl)

=)

o |=
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So 0f(z,t)/0z # 0. Define

V(z,t) = jf’((zz’,tt)) = —2p(z,t),
where - e
plzt) = 1;3&2 B(z,t) = (1 - e—%)w

For each t € I, B(-,t) € H(D), B e C(D x I), |B(2,t)| < 1 for (2,t) € D x I, and B(0,t) =0
for all t € I. Then p(0,t) =1 and Rep(-,t) >0 for all t € I, i.e., p(-,t) € P, or V is a “Herglotz
vector field”.
f(zat) = —V(z,t)f’(z, t).
So fi = f(-,t) solved the Loewner-Kufarev equation.
There exist M > 0 such that |f(z)] < M, |f'(z)| < M for |z| <1/2. Then

[fi(2)] < [f(e2)| + €|zl f'(e7"2)| < M(1 +¢') < 2Me', for t > 0.

By Theorem {ft}ieo,00) s @ Loewner chain, so f; is univalent for ¢ > 0. In particular,
fo = f is univalent. O

6 Variants and special cases of the Loewner-Kufarev equations

6.1. Slit domains

Let 7 : [a,00] — C be simple path ending at co such that 0 ¢ 7[a, oc], y(c0) = co. Let
Q; = C\ 7([t,©)) be simply connected domains. Then {€;} is a geometric Loewner chain.
Let f; : D — Q; be the unique conformal map such that f;(0) = 0, f/(0) > 0. Then {f;} is a
Loewner chain. By a homeomorphic reparametrization of time we may wlog assume that {f;}
is a normalized Loewner chain, i.e., f/(0) = ¢!, t € I (cf. Lemma[4.7).

Figure 20: Slit Loewner chain

For a < s <t < oo, v([s,t)) C Q, limy_,,— v(s') = v(t) € 9. Hence, by Corollary
At):= lim f;7(y(s") € OD exists.

s/ —t—

Denote

Jaa=f7 (1) CD,  Jae= T U{A®)-

Since C \ Q = 7([a, oc]) is locally connected (w.r.t. chordal metric), f; has a continuous
extension f: — C (cf. Theorem and Remark [2.6). Then

FON®) = Tim fi(f7 0() = Jim 5(s) =2(0)

So fi(A(t)) =~(t). At) is uniquely determined by this equation (cf. Proposition [2.7).

Let @5 = f{l o fs. st is a conformal map of D onto the slit domain D\ Js; =: Ugy.
oUsy = j&t U 0D is locally connected, so by Theorem ©s,t has a continuous extension
Pst - D — U&t. As in Example one shows that there exists an open arc I,; € JD such
that

go;tl(JSJ) = I (cf. Proposition
Then )\(5) S Is,t, @S7t(A(S)) S Js,t'
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Figure 21:

Lemma 6.2. Fiz T € [a,00). Then there exists a distortion function w : (0,00) — (0,00),
w(d) — 0 as § — 0T such that

i) diam(Js;) < w(]s —t]),

i) diam(ls¢) < w(|s—t|), fora <s <t <T.

Proof. By uniform continuous of v on [a, T it follows that
diam(v[s, t)) < wi(|s —t|), a<s<t<T,

for some distortion function w; (here and in what follows, we assume the distortion function
w(0) is monotonically increasing as ¢ increasing).
Set g; = f; *. By Theorem

diam(Js ) = diam(g;(v[s,1)))

gu&(éﬁfﬁlﬁfD);gu&@—amamcﬂ&t»)gumqs—tu
fi(0)
So diam(Js¢) is uniformly small if s < t are close in [a,T]. Wlog, assume s < t are so close that
diam(Js ) < 1/2.

Let zp := A(t), r = 2diam(Js¢). Then Jsy C B := B(zp,r) but 0 ¢ B(zp,7). So the arc
C C DN OB separates 0 and J,; in D. Then C = gos_tl(C) separates 0 and I, in D. Hence, by
Theorem

diam(C)
90;1:(0)

Let © C C be open, f : © — C be holomorphic (f holomorphic at co if z — f(1/2)
holomorphic at 0). Define

@m@pgm@mwmg%( )g%wﬂ@mw»g%@@gww—m.g

CI(f,9) = {w € C : there exists sequence {z,} in Q
such that z, — zp € 02 and f(z,) — w},

the set of cluster values of f on ).

Proposition 6.3. Let 2 & C, f: C — C holomorphic. Then
i) sup|f(z)| = sup{|w| : w € CI(f,2)} € [0,00] (a version of maximum principle),
eQ

ii)zif CI(f,Q2) C C, then osc(f,Q) := sup{|f(z1) — f(22)| : 21,22 € Q} = sup{|w1 — wa| :
wy,wy € CI(f,Q)} = diam(CI(f, Q).

Proof. i) The proof is standard. “>” is clear. For “<”: there exists a sequence {z,} in Q such
that
Fz)l = Mi=sup|f(z)l,  as n— ox.
2€Q
Wlog, assume 2, — 29 € Q, f(z) = w € C with M = |w].
Case 1: zy € 0Q. Then w € CI(f,2), and M = |w|. We have done!
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Case 2: zp € Q. Then |f| attains a maximum at zp. By the maximum principle, f = w on
the component U of Q with zp € U. Then we also have w € CI(f,Q) and M = |w|.

ii) “>” is clear. For “<”: Let 21, 22 €  be arbitrary. Consider the map z — f(z) — f(22).
It is holomorphic on €2, so by i) there exists w; € CI(f,2) C C such that

[f(21) = f(22)] < |wr = f(22)].
Applying the same argument to z — wy — f(z), we find wy € CI(f, ) C C such that
|f(21) = f(22)] < w1 — f(22)] < w1 — wal.
The result follows. 0
Lemma 6.4. Setup as in T € [a,00). Then there exists a distortion function w such that
lpst(2) — ez < w(|s —t|), for 2€D, 0<s<t<T, |s—t| small

Proof. Let R : C — C, R(z) = 1/z, be the reflection w.r.t. . Let Jii = R(Jsy). By the
Schwarz reflection principle, ¢, has an extension to a conformal map

Qop 1 Qi=C\{Ly} = Q== C\ {J,, UJ,}.

by
©s,t(2) = R(psi(R(2))) for |z| > 1.

Near 0, s+ has the expansion
psi(2) =€ agZ® 4

So near oo,
t—s Cl
osi(2) =€ z+co+ —+---,

which implies that ¢, has a 15 order pole at co. Let
f(2) = psi(z) — 52, for z e Q.
Then f : 2 — C is holomorphic on ) with removable singularity at oc.

CI(f,9Q) = {w € C : there exists {z,} in Q, 2z, — 20 € 0N = Iy, f(2,) — w}
CA+B:={a+b:acAbe B},

where A = J; U JZ;, B={—e"5z: 2 € I,;}. Note that f(0) = 0. By Proposition
sup [@s,1(2) — €'°z| = sup|f(2)| = sup|f(z) — f(0)]
zeD 2€D z€D
< osc(f, ) < diam(Cl(f,Q)) < diam(A) + diam(B).

If |s — t| small, diam(J, ;) is small,

diam(J;;) < diam(Js ;) < wi(|s — ).
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So diam(A) < wa(|s — ¢t]).
If |s — t| small, e=* < 1, and

diam(B) < diam(/s;) < ws(]s —t]).

Hence,
sup |ps¢(2) — 72| < diam(A) + diam(B) < w(|s —t]). O
2€D

Corollary 6.5. \ (as m is a continuous function on [a,o0).

Proof. Let a < s <t <T for any given T. Then A(t), s +(A\(s)) € Js+. We have

(1) M) — 9oe(A(3))] < diam( ) < wi(ls — 1),
(2) [@st(A(s)) — " *A(s)| S wa(ls —t[),  (Lemma

(3) |6 *A(s) — A(s)| < [t — 1] < w(ls — 1]).

By (1) — (3), [M(t) — A(s)] < w(|s —t]). So A is continuous on [0,7]. Since T is arbitrary, A
is continuous on [0, 00). O

Theorem 6.6. (Loewner equation for slit mappings) Let { f;} be a Loewner chain generated

by a slit (as in[6.). Then
fi(z) = =V (z,t) fl(2) for a.e. t € [a,00), z €D,

where

V(z,t) = -z (z,t) eD x 1.

Here, A : I = [a,00) — 0D is continuous.

Proof. Let ps; = ft_l o fs. We know from Theorem that {f;} satisfies the Loewner-Kufarev
equation with

V(z,t):limw, z€D, ae. t el

e—0 )

For a < s <t < oo, define

D4 (2) = log( ) =(t—s5)+---

Sos,t(z>
which is holomorphic in D (cf. in the Proof of Lemma [4.10). Actually, z — 2/¢,4(2)
has a zero-free continuous extension to D; hence this function has a continuous logarithm on D
(uniquely determined by a point normalization). Hence, ®5; has a continuous extension to D.
By the Schwarz formula

21
(Ps,t(z) =iIm (I)s,t(o) + % /0 g i— j Re (I)s,t(g)|d<’a

where ¢ = e, |d(| = dt. Note Im ®+(0) = 0,

¢
@s,t(()

Re ®@,+(¢) = log

‘zlog




and
lpss(Q)] =1 for ¢e€dD\ I,
So Re ®,+(¢) is supported on fzs,t > A(s).

Since

27
f— 5= By 4(0) = — /0 Re B, ,(¢)|dc],

:27r

We can define a probability measure s on 0D by

dss(C) = Re ,4(C)|dc].

27(t — s)

Then supp(pst) € Ist 2 A(s). Fix s, and let t = s+¢, € — 0. Then diam(I5s4c) — 0 (Lemma
6.2)). Hence,

s, s+e AN dxs) (Dirac mass at A(s)) as e —07.

i.e.,

| 1©diasc©) = [ hOdbn = HAE), for ke C@D)

) o

So

o Pesre(2) C+z

51—1>rél+ € a al—l>r(§l+ oo C — Zd'LLS’SJrg(C)
¢+z A(s) + =
= = for all 1 D.
8@(_2615/\(8) o) =2’ orallsel,z €

On the other hand, ¢;+(2) = —zexp(—®s+(2)). So

@s,ers(Z) — li eXP(_(I)S,SJrs(Z)) —1

V(z,t) = lim m z
e—0* € e—0t €
0 . OPs s1e(2)
- Z% eXp(_q)s,erE(Z)) o - _Zexp(O)T o
A8+ 2
YO
Here, we have used the fact
lim @ypre(z) = Tim e 22erelE) g O
s—lgl‘*‘ ’ +a(2) E—l>%l+ c €
Example 6.7. If A(t) = 1, then
ez
ft(’z) (1 +Z)2
In fact,
fi) = —°F /() = et L2
BT 14 2)? BT (1423
So 14
. z
fie) = 21 H(2).
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Example 6.8. Stationary solutions of the Loewner-Kufarev equation.
Let f € H(D) with f(0) = 0, f/(0) = 1. Suppose that fi(z) = a(t)f(z) is a normalized
Loewner chain. Then f/(0) = a(t)f’(0) = a(t) = €. So

fi(z) = €' f(2).

Note )
fiz)=€f(2),  filz) =€'f'(2).

The Loewner-Kufarev equation implies

filz) = e f(2) = =V (2,0)f{(2) = zp(z, t)e' f'(2),

where
p(z,t) = Z‘;E?i) eP. (0 is a removable singularity)
” ) 72
z zf'(z
Rep(z,t) > 0 << Re<zf’(z)) >0 <= Re( ) ) > 0.
Theorem 6.9. Let f € H(D), f(0) =0, f/(0) =1. TFAE.

i) Re <z ];((;)

ii) f €S and Q = f(D) is starlike with respect to 0, i.e., [0,w] C Q for all w € Q.

) > 0 (has removable singularities by assumption),

Proof. 1) = ii): By Example F(z,t) = fi(2) — €' f(2) solves the Loewner-Kufarev equation.
F is C*®-smooth on R x D and |f;(2)| < Ce! for t € R, z € B(0,1/2); f/(0) = €', t € R. Hence,
{ft} is a normalized Loewner chain; so f = fj is a conformal map and

Qt = ft(]D) = etQ g QO =Q

forall t < 0. So f € S and (2 is starlike w.r.t. 0.
ii) = i): If f € S and Q is starlike w.r.t. 0, then {Q;};cr with Q; = €'Q forms a geometric
Loewner chain, corresponding to the analytic Loewner chain {f; };cr with f;(2) = e’ f(2). Hence,

Re(zf'(2)/f(z)) > 0 by Example O

7 The radial and chordal versions of the Loewner-Kufarev equa-
tion

7.1. Radial Loewner chains (disk version of Loewner chain).

Let I = [0,b] with b € (0, 00]. The sequence of regions {2 }:cs is called a (geometric) radial
Loewner chain if

i) Q C D is a simply connected region with 0 € Q; for t € I,

ii) Qo =D,

i) Qs 2 Q for s < t, s, t €1,

iv) {Q:} is continuous in ¢ in sense of kernel convergence with respect to wp = 0.

If f; : D +— € be the unique conformal map with f;(0) = 0, f/(0) > 0, then {f;}:cs is the
corresponding (analytic) radial Loewner chain. It is normalized if f/(0) =e~! for t € I.
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Simplest situation: Q; =D\ [1/¢,1), “a radius grows out of JD towards 0”.
Study of radial Loewner chain can be reduced to whole plane version. If {€},c[o is a radial
Loewner chian, define

~ Q_ t € [-b,0|,
Q, = K for [=5,0]
etD t > 0.

(continuity clear, also at t = 0.) Then {2 };c[_p,00) is a (Whole plane) Loewner chain. If the {€2;}
is normalized (i.e., the corresponding analytic Loewner chain is), then {€;} is normalized. {Q;}
can be obtained from {Q;} by “time reversed and restriction of time interval. So the regularity
theory for whole plane Loewner chains remains valid in radial case, in particular, if { f; };cj0,5) 18
a normalized radial Loewner chain, then

fi(z2) =V(z,t)f/(z)  for ae tel, allzeD,

where V' is a Herglotz vector field (radial Loewner-Kufarev equation). Note the sign change in
comparison to Loewner-Kufarev equation due to time reversal!.

7.2. Radial Loewner chains generated by slits.

Let v : [0,0] — C be a simple path, v(0) = 1, v(t) € D, t € (0,b], 0 ¢ ~[0,b]. Let
Q =D\ v([0,¢]) € D be a simply connected region with 0 € Q;, Qo =D, Q C Q,, t < s. Then
{Qt}te[o,b] is a geometric radial Loewner chain. We can assume that the corresponding analytic
radial Loewner chain {f;} is normalized: f;(0) =0, f/(0) = e~

Figure 22: Radial Loewner chain and corresponding maps

SrAM@®) =), @sa(A(s)) € Jsp.
Lemma Jst, Isy are uniformly small if |s — t| is small.
Lemma st s uniformly close to idc if |s — t| is small.
Corollary IA(s) — A(t)| is uniformly small if |s — t| is small. X is continuous.
Proof of Theorem [6.6] shows
fi(z) = —zi\\ggi_zft’(z), (z,t) € D x [0,b].

7.3. Idea of chordal Loewner chains.

Figure 23: Conformal maps

Let f; : D — ; be conformal maps. We want to normalize conformal maps at boundary
point, say 1 € 0D. Meaningless, unless we have additional assumptions:
Q2 € D such that B(1,7(t)) ND C Q, 2 D Qg as t < s.

Figure 24: Additional assumptions for €2

Simplest situation: Q;, =D\ (—1,1 —¢], t € [0,2]. (figure)
Mostly, one switches to upper-half plane H = {w € C : Imw > 0}, 0H = R U {00}, and
DU{1l} +— HU {oco}.
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Lemma 7.4. Let Q C D be simply connected region, g : Q) < D be conformal map. Suppose
¢ € D NON and there exists v > 0 such that D N B((,r) C Q. Then g has a holomorphic
extension to a neighborhood of ¢ and ¢'(¢) # 0.

Proof. Wlog, we assume ¢ = 1 and there exists an open arc o C 9DNIJN with 1 € a. By Wolff’s
lemma, g has a continuous extension to QUa«. Then g(a) C 9D, and g extends to a holomorphic
function near . Points in D near ¢g(¢) € dD have precisely one preimage near ¢, so g is locally
injective near ¢ and ¢'(¢) # 0. O

Note that f = ¢g~! has a locally injective extension to n = g(¢) € D.

Corollary 7.5. Let Q C H be a simply connected region such that H\ B(0, R) C Q for some
R > 0. Then there exists a unique conformal map f : H < Q such that f has a holomorphic
extension near oo and

a, a
f(z):z+f1+f;—|—--', for z near co.
z oz

Proof. Existence: By Lemma [7.4] there exists a conformal map g : Q <> H such that g has a
holomorphic and locally injective extension to co with g(co) € RR. Post-composition by a Mobius
transformation, we may assume g(oo0) = oo. Since ¢ is locally injective, g has the first order pole
near oo, and so

by b
g(z) =biz+bo+ 4+ L
z z

g(z) € R for z € R near co; so

by = lim 7g($) ER;
rzeER—oc0 X

bp= lim g(z)—bix € R.

rER—00

Since Im g(iz) > 0 for z € R, so

by = Reby = lim Re(g(m)) >0,

T—+00 X -

s0 by > 0. Then p(w) = (w — bg) /by preserves H, and § := ¢ o g is a conformal map of {2 onto
H with

b_
Gz) =2+ —+---, near oo.
z
Let f:= g ' Then f:H « Q is a conformal map, holomorphic near co, and
f(z):z+ﬂ+z—§+~-- for z near co.
z oz
Uniqueness: Suppose fi, fo : H <> € are two conformal maps, holomorphic near oo, and
fi(z) = z+ o(1), fao(z) = z+ o(1).

Then ¢ := fyo f;' : H « His a conformal map, hence a Hébius transformation with o(H) = H.

az+0b
cp(z)—m, a,b,c,d € R, ad — bc > 0.
Moreover, ¢(c0) = 00, 50 ¢(z) =az+0b,a>0,beR. p(2) =2+0(l),s0a=1,b=0, and
¢ =1idg. Hence, f1 = fa. O
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Theorem 7.6. (Herglotz representation for positive harmonic functions) a) (disk ver-
sion) Let h : D — (0,00) be a positive harmonic function. Then there exists a unique positive
measure i on 0D with 0 < p(0D) < oo such that

h(z) = /E)DRe(gji)du(g), zeD.

b) (half-plane version) Let h : H — (0,00) be a positive harmonic function. Then there exist
a unique constant a > 0 and a unique positive measure v on R such that

1
0<CL+\/RHt2dV(t)<OO,

and

h(z):a-Imz—i—/[RIm(tiz)dy(t), z € H.

Proof. a) h is a positive harmonic function on D if and only if there exists a unique f € H(D)
such that Re f = h > 0, f(0) = h(0) > 0, if and only if there exists a unique measure x> 0 on

0D such that it
f = [ > 2au(©),
ap ¢ — 2

with 0 < p(0D) = f(0) < oco. The existence and uniqueness follow.
b) Let ¢ : DU {1} <» HU {oo} be conformal map with ¢(1) = oo, say

zZ—1
241

A4 w
i
1—w’

w=1(z)=¢}(z) =

z=p(w) =

Suppose that h : H — (0, 00) is harmonic, Ah = 0. Then g = hoyp : D — (0, 00) is harmonic on D,
Ag = 0. There exists a unique holomorphic function on D such that Re f = g, f(0) = ¢g(0) > 0.
By (a),

1+ w C+w B
flw)=a- — + /BD\{l} ﬁdﬂ(o’ where a = u({1}) > 0.

Let 7 := @.u|op\ 13 be the measure on R, 7(A4) = u(p~'(A4)) for A CR.

/ pdr = / (po)du,  pe L (1),
R aD\{1}

0 < p(dD) = a+ 7(R) < co. (a,T) are unique.
Let f(2) = f(¥(2)), z € H. Since (1 +w)/(1 —w) = —iz,
Re(%) = Re(—iz) =Imz.

Set (= (t—1i)/(t+1),t e R+— (€ ID\{1}. Then

C+w 14tz 1412
(1) ()
(—w t—=z t—=z

and

(1) = ref (L) =+ (L)

—w z—1

o4



Define measure v on R by
dv(t) = (1+*)dr(t).

Then 1
/]R et = /RdT(t) =
and 1
Then 2
- ] /14t
f(z) = a(—iz) + /R(—Z)( T t)dT(t)» zeD.
Hence

Im(%)du(t), z € D.

h(z) = Re f(z) = aImz+/

R
Setting z = x + iy, y > 0, the integral converges since

t—z (t—x)—1iy (x—t)2+y> ~ 1+t

for x,y fixed, |t| large.
The uniqueness of (a,v) is clear. O

Remark 7.7. If g € H(H), Img > 0. Let f = —ig, g =if. Then Re f > 0. The proof shows
that there exist unique constants a,b € R, a > 0, and a Lebesgue finite measure 7 > 0 on R,
such that

—Qm@, =

Theorem 7.8. (Julia’s Lemma) Let f : H — H be holomorphic, and

c:= inf M > 0.
zeH Imz
Then I .
= lim S0 (20)

Yy—r+o0 Yy

Suppose in addition that f is holomorphic near oo, and has a Laurent expansion of the form
al a9
., %, 02 21
f(z) z+z+22+ (21)
near co. Then ¢ =1 and a; <0 (so a; € R) with equality iff f(z) = z for z € H.

Note: Im f(z) > Im z for z € H, and so f(H;) C H; (t > 0), where H; = {z € C:Imz > t}.

Proof. Let h :=Im f. h > 0, Ah = 0. Wlog, h > 0 (otherwise, f = a € R, claim true). By
Theorem [7.6]

h(z)=a-ITmz+ /le(t i Z)dz/(t),
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where a > 0, ¥ > 0 and

B(z):/RIm(tiz)dy(t)zo, for z € H.

So -
h(z) _  h(2)

Im 2 Imz’

which implies ¢ > a. For claim, it suffices to show that

lim hiy) =0, (then ¢ = @ and (1) true.)
y—+oo Yy
However,
1 1
Im(;——) = 50— < e L'(v),

t—iy’ 242 2+1

and 1/((t?> +y?) — 0 as y — +oo. By the Lebesgue dominate convergence theorem,

h(iy) / 1
= | =——=dv(t) =0 — 400.
; T v(t) as y 00

Suppose now in addition that f has expansion as in . Then

I ; 1
c¢c= lim ;nf(zy) = lim 73/4-0()

Y—r+00 Yy Yy—+00 Yy

=1.

So, by the definition of ¢, Im f(z) > Imz for all z € H. Set a; = a+ i, z =z +iy € H, |z|

large.

Im(ﬂ) = Im<|azl|z) = |21’2([3x —ay).

Thus ) .
0 < |2/(Im f(2) — Im2) = —(Bz — ay) + o(m).

E

So fx — ay > 0 for x + ¢y € H. This implies that 8 =0 and a < 0. So a1 € R and a; < 0.

Case of equality: If a; = 0, then inductively, ag = a3 =--- = 0.
Let z =re"?, r > 0, ¢ € (0,7). Suppose a1 = - = a,_1 = 0, inductively,
Gnp,
f(Z) =2+ 27 +
So

0 < |2["(Im f(2) — Im 2) = Im(a,e”"™%) + O<|i|)

So Im(a,e™?) > 0, ¢ € (0,7), equivalently, Im(a,e’®) > 0 for all a € [0,2x]. This implies

an = 0.
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Theorem 7.9. (Integral representation) Let Q C H be a simply connected region such that
H\ B(0,R) C Q for some R > 0. f:H < Q be unique conformal map such that

f(z):z+ﬂ+%+--~ for z near co.
z

Then there exists a unique finite Borel measure v > 0 on R with compact support such that

f(z):z—l—/Rtide(t).

Proof. Uniqueness: follows form the uniqueness of Herglotz representation of h = Im f.
Existence: Revisit proof of Herglotz representation. Let ¢ : DU{1} <» HU{oo} be conformal

Figure 25:
map defined by
d+w N
=pw)=iz— and  f=fop

By the Schwarz reﬂeqtiop principle, f has a holomorphic extension across an open arc o C 9D
with 1 € a. f(a) CR; f(a\{1}) CR, Im f(¢) =0 for ¢ € a'\ {1} (c.f. proof of Lemma ,
Imf>0onH. Let g=—if. Then f =ig, Reg=Im f > 0, and Re g({) =0 for ¢ € a\ {1}. So

Reg(r{) — 0 as r— 17, (22)

locally uniformly for ¢ € o\ {1}. In the Herglotz representation for g, the measure p on 9D can
be obtained as w*—limits of measure u, on 9D as r — 17, where

ld¢|

() = Reg(r¢) 5

Then implies that
supp(u) € 0D\ (\ {1}) = 9D\ a U{1}.

So
flw)=b+i C—1—7wd,u(C), for some b € R.
op ¢ —w
Going back to H,
142
f(z)az+b+/R(t_Z —t)dr(t),

where a = u({1}), b € R, and 7 is finite measure with support in (9D \ o) € R. Let
dv(t) = (1 +t3)dr(t), b=>b+ / tdr(t).
R
Then v > 0 is a finite measure with compact support, and

f(z)—az+5+/ !

Rt—Z

~ 1
du(t) :az—i—b—i-O(;).
On the other hand, f(z) = z 4 o(1),s0 a =1, b = 0. O
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Remark. If f: H < Qisasin Theorem and Im f has a continuous extension to H = HUR,
then

1 1
= — I t)dt.
fe) ==t 2 [ = m)

So )

dv(t) = —Im f(t)dt.

T

Note that if f has a continuous extension to R, then g has a continuous extension to 9D \ {1},
and

Au(Q) = - Reg(Q)ldc]  om oD\ {1}
Set w = (z—1)/(z+1), ( = (t —i)/(t +14). Then d/dt = 2i/(t + )2, |d¢/dt] = 2/(1 + t?),

1 1 d
ar(t) = 5 Reg(Old¢] = o Tm f(1)| % |t =

) Im f(t)dt.

Note that for |z| large,

/Rt i ) = _i/R 1 —1t/zdy(t)

oo
1
= _Z B / t"dv(t). (uniformly converges)
z R
n=0

If f(z) =24 > .2, a,/z" is the Laurent expansion of f near oo, then
an = —/ t"tdu(t) <0 for neN,
R

if a; =0, then ¥(R) =0, and v = 0. So f(z) = z.

The proof shows that supp(v) € I, if I is an interval such that f has a holomorphic extension
to R\ I with f(R\I) C R. In particular, if the Laurent expansion converges outside B(0, R), then
supp(v) C [—R, R], and conversely, the integral representation shows that if supp(v) C [—R, R],
then the Laurent expansion converges in C\ B(0, R).

Definition 7.10. a) Let K C C be a set. Then rad(K) = sup{|z|: z € K}.

b) Let A be a set. A C H is called an H-hull if A is relatively closed in H, i.e., A = A NH,
and if Q4 = H \ A is a simply connected region, then there exists a unique conformal map
fa:H <+ Q4 with holomorphic extension near oo of the form

T
fa(z) =z+ St et
We call hcap(A) := —a; > 0 the half-plane capacity of A.
¢) Q = set of all H-hulls.
Lemma 7.11. Let A be an H-hull,

fA(Z)—ZJF/tl

RUL—Z

dv(t)

be the integral representation as in[7.10, Then
) vA(R) = heap(4),
b) rad(supp(rv4)) ~ rad(A),
c) hcap(A) < rad(A4)2.
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Proof. a) Suppose fa has the Laurent expansion fa(z) = z+ ai/z + -+ near oo, then

heap(A) = —a; = /RdyA(t) = v4(R).

b) We know that R := rad(supp(v4)) is the smallest number such that the Laurent expansion
of fa converges on C\ B(0, R). Then by the Schwarz reflection principle, f4 has a holomorphic
extension to a conformal map on C\ B(0, R) into D. Define

h(w)::%fA(Rw):w—k%—l---' for w e D*:=C\D.
Then h € ¥ (c.f. Section[I]), and so
C\ g(D*) € B(0,2), (c.f. Corollary
So +A C B(0,2), and so A C B(0,2R), i.e., rad(A) < 2R.
Conversely, let R = rad(A). Then g4 = f;* has a conformal extension to C\ B(0,R). Let

h(w) ::EgA(Rw):w—i———i—-u.

Then h € ¥, and h(D*) D C\ B(0,2), i.e
g4(C\ B(0,R)) D C\ B(0,2R).

So fa is holomorphic on C\ B(0,2R), i.e., R < QR =2rad(A4). So R~ R.
c) Notation as in b). fa(z) =z + al/z +-
1
h(w) = EfA(Rw) Z+RT+ eX.
By the Area Theorem la1/R?| < 1, and so
hcap(A) = —a; < R* < R? =rad(A)% O

Remark 7.12. Let A be a family of H-hulls, 7 = {f4 : A € A} be corresponding family of
conformal maps f4 : H <> H\ A with usual normalization f4(z) = z+ o(1) near co. If rad(A) is
uniformly bounded for A € A (i.e., if {rad(4) : A € A} bounded), then one has good “a priori”
control for the maps in F. For example,

1
i) fa(z) =2+ / tid,uA(t), where measures p4 have uniformly bounded total mass with
RU—Z

supports contained in a fixed interval (follows from Lemma .

ii) F is locally uniformly bounded, and in particular, a normal family. Actually, F is uni-
formly bounded on bounded subsets of H. There exists R > 0 such that f4 € F has extension
to a conformal map on C\ B(0,R). Let ha(w) = Efa(Rw), w € D*. Then hy € %, and
ha(D*) D C\ B(0,2). So f4a(B(0,R)NH) C B(0,2R).

7.13. Chordal Loewner chians (half-plane version of Loewner chains)
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Let I =10,b], b € (0,00]. {Q:}ier is a (geometric) chordal Loewner chain if

i) each €, C H is a simply connected region of the form Q; = H\ A;, where A, is an H-hull.
i) Qg & Q for s > ¢, s,t € I (equivalently, A; 2 A;).

iv) {Q}ier satisfies a continuity requirement (cf. Lemma [7.14)).

If f; : H < ©; be the unique conformal map such that

fi(z) =2+ alt) | alt)

+ o) + -, near oo,
z z
then {fi}ier is the corresponding (analytic) chordal Loewner chain. It is normalized if

2t
filz)=2——+--+, near oo for tel,
z

ie,a1(t)=—-2t, tel.

Lemma 7.14. Let {Q;}ier be a chordal Loewner chain corresponding to analytic Loewner chain
{fitier. Let {t,} be a sequence in I with t, — too as n — oo. Denote Q, = Q., fn = fi.,

Q, =H\ A,, and
fu(z) =2 —|—/ d,un(u)’ z € H.
R

u—=z

Then the following are equivalent:
i) fn = foo locally uniformly on H.

.. w .
i) pin — foo, i€,

/cpd,un — /cpd,uoo for all p € Co(R) (equivalently, for all ¢ € C(R)).

iii) hcap(A4,) — hcap(Ax).

iv) Q, — Qu in the sense of kernel convergence with respect to oo, where the kernel of
{Q,} with respect to 0o, Kerneo ({2,}) = the set of all points w € C for which there exists an
unbounded region U with w € U and U C Q,, for all large n.

Proof. Let T'= > {t, : n € NU{o0}} € I. So A, C Ar and rad(4,) < rad(Ar) < oo for
n € NU{oo}. In particular, f,, n € U{oo}, is uniformly bounded on bounded subsets of H and
there exist Cy > 0, Ry > 0, such that

pn(R) < Co, supp(pn) C [—Ro, Ro] for n € NU {oo}.
0) = ii).
I) If ¢ € C.(R?) is arbitrary, then

/H FabdA — /H FoothdA.

Suppose supp(1)) C€ B(0, R) and let K5 = {z € B(0, R) : Im z > §} for § > 0. Then

/(fn—fooW‘S/ ] f = foldA
H HNB(0,R)
< AR |Wlo - $UD [fu(2) — Foo(2)

z€Ks
+ 40 R||Y |00 sup{| fn(2)] : n € NU {00}, z € B(0, R) N H}
e €
< 4=
=5 + 5 =€
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if § > 0 is sufficiently small and n is sufficiently large.
IT) Let P be an arbitrary polynomial (in z). Then

/Pd,un — /Pduoo.

Pick x € C2°(C) such that x|5 z) =1, and h = x - P. Then hz = xz- P € C2°(C). Hence

h(z) = —1/C W) Ay, zec

™ w—z

So

/R Pdy,, = /R XPdyu,, = /R hdin = —% /R /(c ZZ(_widA(w)dun(u)
=2 (L2 Y stwpaace) =+ [ (Fuw) - whhs(wiaaw

o ™ C u—w
1
=+ [ (sl) = whs(w)dA(w) = [ P,

IIT) Let ¢ € C(R) be arbitrary. By the Weierstrass Approximation Theorem, there exists a
polynomial such that |P — ¢| < & on [—Rg, Ro]. Then

‘/s@dun - /soduoo‘ < epn(R) + efios(R) + ‘/Pdun - /Pd:uoo‘ < (2Co +1)e

for n large.
i) = iii)
Suppose iy i lhoo- Then

hC&p(An) = :U’H(R) = /Rld,un — /Rld/loo = NOO(R) = hcap(Aoo)'

iii) => 1)

Suppose hcap(4,) — hcap(A). We want to show that f, — fo locally uniformly on H.
Equivalently, for all sequence {z,} in H with 2z, — zo, € H, we have f,,(zn) = foo(200)-

Spacial case 1. t, < ¢, for all n € N. Then A, C A,, equivalently, QO D ,. Let
©On = flo fu, n €N, equivalently, f, = foo © . Then @, (H) C H, and ¢, is conformal near
oo. Let ¢, (H) = H\ B, where B,, is a H-hull.

Let a,, = hecap(A,), aso = hcap(As). Then

a a
fn(z):z+7n+"-, foo(z):z—I—%o—l---',

and

So
hcap(By,) = an — aoo = hcap(4,) — hcap(As) — 0 as n — oo.
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Write

1
on(2) =2+ /R . zdun(u),
where v, > 0, supp(v,) € R. Then v, (R) = hcap(B,,) — 0. Since

< vn(R)
— Imz

lon(z) — 2| for z € H,

we have ¢,, — idy locally uniformly on H. If z, € H — 2o € H, then ¢,(2,) — 200, and so
fn(zn) = foo(en(2n)) = foo(zoo)-

Spacial case II. t, <t for all n € N. In this case A,, C Ay, equivalently, Q, D Q.. Let
©n = 10 feo, equivalently, f, 0@, = foo. Then ¢, (H) C H, and ¢, is conformal near co. Let
on(H) =H\ B, where B, is a H-hull. Similarly, we have

hcap(By,) = hcap(As) — hecap(4,) - 0 = ¢, — idy

locally uniformly on H. If 2z, € H — 2o € H, then ¢, (2,) = 20c. From Remark {fn}isa
normal family. So {f,,} is equicontinuous at zo,. We have

Joo(Zn) = foo(200) + 0(1)
foo(2n) = fule(2n)) = fr(2e0) +0(1)
fn(zn) = fn(zso) + 0(1).

So
fn(zn) = foo(200) +0(1).

Special case I 4+ II imply general case.

i) = iv)

Assume f, — foo locally uniformly on H. We want to show that Kerny, := Kerne ({Q2,}) =
Q0 (applied to all subsequences gives €2, — Qo with respect to oo).

Note that rad(A,) < R < oo for n € NU {oo}; so U := H\ B(0, R) € Q,,, n € NU {oc0}.

I. Qx = foo(H) C Kerng.

Let w € Qo be arbitrary. Then there exists V € Qo open with w € Vand UNV # @. It
is enough to show that V' C ), for large n (= w € Kerny). If not, there exist ny € N — oo
and wy, € V' \ Q,, (without lose of generality wy — woo € V C Q) such that f,,, — wy zero free
on H. Note that f,,, —wr — foo — Woo locally uniformly on H. Since woo € Qoo, S0 foo — Woo is
not zero free. So foo — Woe = 0 by Hurwitz, and fo, = weo, contradiction!

II. Kerng € Qg

Note that there exist Ry, R} > 0 and C1,C] > 0 such that

(1) |fu(2) — 2| < Oy for z € H\ B(0, Ry),

2) |f H(w) —w| < C} for w € H\ B(0, R}).

Let woo € Kerny, be arbitrary. We want to show ws € oo, i.€., there exists zo, € H such
that foo(200) = Weo. Since ws € Kerny, there exists a region V€ H with VNU # &, we € V,
and V € Q, for large n (wlog, for all n). Then W =U UV C Q, CH. Let g, = £, {w-.

Claim. {g,} is locally uniformly bounded and hence a normal family.

Proof by contradiction. Suppose not. Then there exist K C W compact and a sequence {w, }
in K such that {g,(wy,)} is unbounded. Without lose of generality, w, — w € K, g, (wy,) — 0.
Then wy, = fn(gn(wn)) = gn(wy,) + O(1) by (1) and w, — ws. Contradiction!
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Using claim and passing to a subsequence, we may assume g, — goo € H (W) locally uni-
formly on W. ¢,(W) C H, so goo(W) CHUR.

Claim. g.(W) C H.

Otherwise, goo =const. by open mapping theorem. But by (2), |goo(w) —w| < Cf for w € H
with |w| large. Contradiction!

Define zoo = goo(Woso) € H. Then

foo(2ec) = nlgrolo Frn(gn(woo)) = woo

since f;, = foo is locally uniform convergence.

vi) = i)

Assume Q,, — Q. We want to show that f, — f locally uniformly on H. Since {f,}
is a normal family, it suffices to show every subsequence { fn} of {fn} has a subsequence that
converges to fso locally uniformly on H. Write

fn(Z) :ZJF/Rdﬂ”(“),

u—=z

where supp(fin,) C [—Ro, Rol, iin(R) < Cy. Passing to a subsequence, wlog, fi, SN floo, Where
fico > 0 is a measure supported on [—Rp, Ro]. Then

/ od iy, — / Odfiso for all p € C(R).
R R

fn(z) :z+/Rdfi(z) —>foo(z) :z—l—/ M

R U—2

pointwise for all z € H. Since { fn} is a normal family, fn — foo I8 locally uniformly on H.
foo is a conformal map, foo(2) = z 4+ 0o(1) near oo, foo(H) = H\ Ay, where Ay is a H-hull.
By implication i) = iv), we have

Qo = Kernoo({fln}) = Q-
S0 both feo, foo : H > Qs = Qoo are conformal maps. Since
foo(2) = 2+ 0(1), foo(2) = 2+ 0(1), near 0o,
by uniqueness (Corollary , foo = foo- SO fn — foo locally uniformly on H. 0

Lemma 7.15. Let A, B be H-hulls. Then
i) hcap(A) > 0 with equality if and only if A = .
ii) hcap(z + A) = heap(4), = € R.
iii) hcap(AA) = A2 hcap(4), A > 0.
iv) Suppose A C B. Then hcap(A) < hcap(B) with equality if and only if A = B.

Proof. Let fq :H <> H\ A be conformal, with

d
fA(z):z—FZl—F-":z—i-/M near oo.
R U—
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Then hcap(A) = —a; = pa(R).
i) So hcap(A) > 0 with equality if and only if u4 = 0 if and only if f4(z) = z if and only if
H\ A =Hif and only if A = @.

ii) Let = € R.
fosa(z) =+ faz—2) =24 - =24 L g
z— z
So hcap(z + A) = hcap(A).
iii) Let A > 0.
A A2
f)\A(Z):)\fA(Z/)\):z—i-%-i--'-:z—l— “

So hcap(AA) = A2 hcap(A).
iv) Let o = f;' o fg : H <> H\ C. Then hcap(C) = hcap(B) — hcap(A) > 0 with equality if
and only if C' = @ if and only if ¢ = idy if and only if f4 = fp if and only if A = B. O

Remark 7.16. Let {2 }1cs be a chordal Loewner chain, ; = H\ A;, A; € H be H-hull, 4; ¢ A,
if t < sand Ay = &. The map t — hcap(A4;) is continuous (Lemma and strictly increasing
(Lemma [7.15)). So ¢ — hcap(4;) is a homeomorphism of I = [0, ] onto its image J = [0,']. By
reparametrizing t, we may assume that hcap(A;) = 2t for ¢ € I. Then

filz)=2——+--- near oo,
z
and {f;} is normalized. So, without lose of generality, one can assume that a chordal Loewner
chain is normalized.

7.17. The associated semi-group

Let {fi}ter be a chordal Loewner chain, f; : H < @, = H\ A;. For 0 < t < s, let
Vst = ft_1 o fs, or equivalently, fs = fi o ¢s;. Then ¢, satisfies the following semigroup
property

Ot ©Pst = Psuy 0 u<t< s, and O = idg .

Lemma 7.18. Let {fi}ier be a normalized chordal Loewner chain with associated semigroup
st Then fort,s € I, t <s, ps; is a conformal map H <+ H\ By, where By is a H-hull, and

2(s—t
wst(2) =2 — (s =¢) + near 0o.
z
There exists a measure jisy > 0, supp(st) € R such that
dvs +(u
<ps7t(z):z+/s’t(), z € H.
R U—2Z

vst(R) = 2(s —t). Moreover, if t < s <T, then rad(Bs;) < Co (and so supp(vs:) is uniformly
bounded).
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Proof. Clear that pg; = ft_1 o fs has a conformal extension near co that maps real axis near co
into itself. So ¢, is conformal map of H onto H\compact set, i.e., ps,(H) = H \ By, where
B4 is a H-hull.

hcap(Bs,) = hcap(As) — hcap(A4;) = 2(s — t).

S0 2 t
SOS,t(Z) :Z_M_‘_ near OO,
z
and J
0st(2) =2+ / M, z € H. (Theorem [7.9))
R U—Z

We know vsy > 0, supp(vs:) € R, and v (R) = heap(Bs;) = 2(s — t). Finally, rad(Bs;) <
2rad(As) < Cp for t,s <T. O

Lemma 7.19. Let {fi:}ier be a normalized chordal Loewner chain. ¢g; = f[l ofs, t < s,
s,t € I. Then for fized z € H,

) fpur(z) — ol < 200
) () - £} < T+ (Im )P
2(t —u)

iii) [pst(2) — @su(2)] < , foru<t<s, u,t,sel.

Im 2
iv) |psu(2) — ¢ ()|<2(8 t)[Qt (I )2] J <t< t I
1v z ¥4 + (Im z or Uu S, u sel.

S,u t,u = (I 2)3 ’ =0V =9, Uiy

So the maps (z,t) — fi(2), (2,t) = @si(2), (2,t) — wru(z) belong to HL(H x I), HL(H x
[0,s]), HL(H X [u, b)), respectively, where I = [0,b].

Proof. Recall

Ao =z [ @)~
=z L/S’t(u) v =2(s—
puale) =2+ [ @) =25 —0),

By Julia’s Lemma on integral representation, Im ¢, +(z) > Im 2.

D) [ps(z) — 2 < / dvsi(u) _ vsi(R) _ 2(s —t)

R lu—z = Imz  Imz

[fe(2) = fs(2)] < [fe(2) = felpse(2))]

<le—pu()l (1+

) < 25 =8 1oy 4 (tm 2)2).

S —
(Im 2)?2 (Im 2)3
iii) @ty 0 Yst = Psu. SO

(00a(2) = D] = [ntlz) — fralpus(2))] £ o) < 22,

Imps(2) = Imz
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2(t — u) 2t
< —_.
<1+ (2 = 1+ (Tm 2)2 So

iv) |pt(2)] = ’1 _/R (d:cytf(zg;)

l@s,u(2) = @ru(2)] = lotu(psi(2) — pru(z)]

<lpsi(z) — 2| - (1 + (Irr21tz)2) < Q(SH;;S [2¢ — (Im 2)?]. O

Corollary 7.20. Let {fi:}ier be a normalized chordal Loewner chain, psi = ft_1 ofs, t <s,
s,t € I. Denote f(z,t) = fi(z). Then there exists a set E C I with |E| =0 such that
i) f is differentiable at each point (z,t) e Hx I\ E, i.e.,
of of

f(Z 1) = f(z,t) + a(z,t)(z’ —2)+ E(z,t)(t’ —t)+o(|t' —t|+ |2 —2]) mnear (z,t).

In particular, Of(z,t)/0t exists for all (z,t) e Hx I\ E.

ii) V(z,t) = lim Pri—e(z) = 2 exists for all (z,t) e Hx I\ E, and

e—0t 15

of B of
a(zat) - V(Zat) ’ &(Z,t)
Proof. 1) follows from Lemma and Proposition [4.12]

ii) Let (z,5) e Hx I\ E, t <s, tnear s. f;0@ss = fs, 2 = ps1(2).

|2 = 2| = lps,i(2) — 2| < Cls — 1], (Lemma [Z.T9).
0= filpss(2)) — fs(2) = F(2',1) = f(2,9)
= Zﬁ(z, 5)(2' = 2) + g‘:(z, s)(t —s) +o(]t — 5| + 2/ — 2|)
= X s =2+ )t~ 5) ol — s
Note that 9f(z, s)/9z # 0. So
V(o) = fim 2O i S i ST o) - 25

Theorem 7.21. (Loewner-Kufarev equation for chordal case) Let { f; }1cr be a normalized

chordal Loewner chain, ps; = fitofs, t<s, st l. Denote f(z,t) = fi(2). Then there eizsts
E C I with |E| =0 such that

(a) V(nt) = lim P8 =2

e—0t €
exists for all (z,t) e Hx I\ E.
(b) 0f(z,t)/0t exists for all z € H, t € I \ E, and

g z,t) =V(z,t a—f z,t). Loewner-Kufarev equation
ot ot

Moreover, V(z,t) has the following properties:
i) V(-,t) is holomorphic on H for each t € I \ E,
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i) V' is measurable on H x I,
iii) for each t € I\ E, there exists a probability measure vy on R, supp(v) € R such that

d
V(z,t):2/ vi(w) teI\E, z €M
R

u—z

Proof. We know that there exists £ C I, |E| = 0, such that
V(eyt) = lim P77
e—0t 5

exists for all z € H, t € I \ E, 0f(z,t)/0t exists for all z € H, t € I \ E, and

0 0
=V (z0)

We know 9f(z,t)/0z # 0, 0f(-,t)/0t € H(H) for ¢t € I \ E (Proposition [4.12)). So

V(. t)= f,(("’ﬁ)) € HMH) fortell\E,

and V is measurable on H x I.

Pri—e(z) —z 1/ dvyi—c(u)
R

9 9 u—=z

Here v;4—-(R) = 2¢, supp(vs¢—-) € R. Actually, the supports of v4;_. are uniformly bounded
for e > 0, t fixed (Lemma , say supp(v4;—.) C [—Ro, Ro]. Let

1

Te = - Vtt—e-
2e 7

Then 7. subconverges to a probability measure 14 on [—Rp, Ro] as ¢ — 0 with respect to w*-
convergence. So

V(zt) = lim Pre—elz) 2
e—0 g
1 d
— lim 2/ dT€:2/ wl) e tel\E. O
e=0% J[—Ro,Ro] U — 2 [~Ro,Ro] W%

Remark 7.22. The following are equivalent:

i) V(z) = /R dv(u) for e H

u—z

where v > 0, ¥(R) = 1, and supp(v) > 0.
ii) V' is holomorphic on H, Im V' (z) > 0 for z € H, V has a holomorphic extension near co

such that 1
V(i) =—+--- near 0o,
z

and Im f(x) =0 for x € R, |z| large.
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Proof. i) = ii) Let z = = + iy.

Im< 1 >: i > 0, for z € H.
u—z (u—x)% +y?

ii) = i) Follows as in the proof of Theorem from Herglotz representation. Note that if
ImV has a continuous extension to R, then

1
dv(u) = = Im V(u)du. O
7r

Example 7.23. Q, =H\ [0, is]

Figure 26:

2 2
z:i\/—w2—s2:\/w2+52:w\/1+5—:w+5—+~~ near oo.
w2 2w

Let 2t = s2/2, s = 4t. Then z = Vw? + 4t or 2% = w? + 4t or w = f;(z) = V22 — 4t, which is

the normalized Loewner chain.

. 2 , z
Mo=-Toa—w "W TEmw
R 2 dop(u)
Ve = =2 [

ft(z)=z+1/RImft(z)du,

T u—z
{\/475 2 u € [~2V4, 2V
Im fi(2) = for
0 elsewhere
ft(Z) =z+ A C/luﬂt_(t),

where

dpg(u) = %\/ 4t — u2x[72\/z’2\/ﬂ (u)du, t>0. (semi-circle law)
1m
() = ju(20) = 2 (28 = 1.

Example 7.24. Q; = H\ B(0, s). Using Joukowski function v = u + 1/u.

2 op—s2 2t
zzS(EJri):erS—ZtES T —

s w w w
[.2
9 z z 1 ( 3 )
w zw+2t=0, w 5 + 1 t 2 zZ+Vz 8t
So )
fi(z) = 3 (z + V22— 8t> , (normalized Loewner chain)
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_ 2 oy L z
fulz) = 22 — 8t () = 2<1+ 22—875)
ft(Z) 1
t) = == ——(z— /22— 8t
V0= i V),
V8t — u2 € [—V8t, V8t
ImV (u,t) =< 2 St~ for | ] :
0 elsewhere
V=2 [ T g0 = L s (u)d
Z, = Ru_z, I/tu—4ﬂ_t ux[f\/@\/gt]u u,
V8t —u? u € [—/8t,\/8t]
Im fi(u) = for
0 elsewhere
B dp(u) 1 5
fi(z) =2+ o dp(u) = o V8 — uix g e (W) du,
R U—Z 2 '
1
pe(R) = 2t, opHe =t

8 Basic probabilistic concepts

8.1. Probability space

Let (2, <7, P) be a probability space, where

Q) is a sample space, the space of outcomes. w € € is a elementary outcome or event.
o/ is a og-algebra or “o-field”. A € &7 is an event.

P is a probability measure defined on <7, P > 0 and P(Q2) = 1.

Example 8.2. Let 2 ={1,2,3,4,5,6}, & = p(2), P = 1/6 - counting measure. Pick w € Q “at
random” = roll a dice.

8.3. random variables

A measurable map X : Q — R is called a random variable (i.e., X 1 (B) € & for each Borel
set B C R).

E[X] ::/QX(w)dIP’(w)

is called the expectation or mean of X.

Var(X) = E[(X — E[X])?] = /Q (X — E[X])*dP = E[X?] - [X]?

is called the wvariance of X.

Lemma 8.4. (Borel-Cantelli-I) Let A,,, n € N, be events. If > .° | P(Ay) < oo, then
P(Anio) =0,

where Ay, io. means that events in {Ay} infinitely often occur. That is,

Anvi'o = {w € Q VNS An for Znﬁnltely many ’n,} = ﬂ U ATL
k=1n>k
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Proof. P(Anjio.) = klirgo P(U,>xAn) < limsup Z P(A,) = 0. O

k—o0

n==k
Lemma 8.5. (Chebyshev Inequality) If X > 0, then
E[X
P(X >a) < [ ], a> 0.
a
1 E[X
Proof. P(X >a) = / Xxso W) dP(w) < [ —XdP = [ ] O
O - 0 a a

8.6. The distribution of a random variable

Let X : @ — R"™ be random variable. The distribution or law of X is the push-forward
measure Px := X,P on R"”, i.e.,

Px(B) =P(X Y(B)) for each Borel set B C R".
We have
E[X] = / 2dPx(z).
The characteristic function of X :  — R" H?s defined by
f(u) :== E[e®X] for uweR™

or

Flu) = / (X @) P() = / ¢ Py (v)
Q n
= the Fourier transform of its distribution.

Let Xi,...,X, : Q@ — R be random variables, and let X = (X1,...,X,) : @ — R™. Then
the joint law of X1,...,X,, is defined to be the law of X.

8.7. Independence
Let A, B € & be events. A and B are independent if
P(ANB) =P(A) - P(B).
Denote A€ :=Q\ A. Then if A, B are independent, then A, B are independent. In fact
P(A°NB)=P(B)-P(ANB)=P(B)(1 -P(A)) =P(A°)P(B).
It #1,...,%, C & are o-algebras. #1,...,.%#, are independent if
P(A1N---NA,) =P(A4)---P(4,)

whenever A € 41,...,A, € F,.

A, B are independent iff the o-algebras generated by A and by B are independent.

Let X1,..., X, are random variables. They are independent if the o-algebras o(X1),...,0(X,)
generated by them are independent, where for a random variable X,

o(X)={X"*(B): B C R" Borel}.
If Xy,...,X, are independent, and fi,..., f, : R — R are Borel, then fi(X1),..., F(Xy)
are independent. Note that o(f(X)) C o(X).
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Theorem 8.8. Let X1,..., X, : Q — R be random variables, and let X = (X1,...,Xy) : Q —
R™. then TFAE:

(i) X1,...,X,, are independent,

(ii) P(X; € By,...,X,, € By,) =P(X; € By)---P(X,, € By,) for all Borel sets By,...,By, C
R,

(iii) the law of X is a product of the laws of X1, ..., X,, i.e., Px =Px, x--- x Px,,

(iv) the characteristic function of X is the product of the characteristic functions of Xy, ..., Xy,
that is,

E[ein] — E[eiule] . E[eiuan]

foru= (u1,...,u,) € R™.

Idea of proof. (i) <= (ii): By definition.

(iii) = (ii): Clear.

(ii) = (iii): Follows from fact: if two Borel probability measures v, ;1 on R™ agree on sets
of form By X --- X By, B; Borel, then v = p.

(iii) = (iv): Clear.

(iv) = (iii): Follows from fact that a measure is uniquely determined by its Fourier trans-
form. O

Corollary 8.9. If X,Y are integrable and independent, then
E[XY]=E[X]-E[Y].

Proof. Let Z = (X,Y): Q — R2,
BIXY) = [ aydPs(e.y
R2

:/ xy dPx (x)Py(y) (Theorem [8.8)
R2

- ([earx@)( [ varv)) - E0x) B .

Lemma 8.10. (Borel-Cantelli-IT) Let A, n € N, be independent events. If Y 7 | P(A,) =
o0, then
P(Ap o) = 1.

Proof. Note that e=* > 1 — x for z € [0,1]. So

P(Un_pdn) =1 = P(N)4AS) =1 — T[0,(1 — P(4y)) (independence)
N
>1- H e P =1 — o= Xtk B(An) g as N — oo.
n==k
So
and

]P)(An,i-O-) = ]P)(mzozl U?C’)LO:k Ap) = limg 00 P(Uzozk Ap) =1 O

71



Lemma 8.11. Let X,Y : Q — R"™ be random variables, let Z = X +Y. Then
Py; =Px x Py (convolution)

and

0z(u) :=E[e" 7] = dx(u) dy(u),  for ueR",
Proof. Let m: R"xR" — R", 7(x,y) = x+y. Then Pz = m.P(x y). Since X,Y are independent,
Pixy)=Px x Py. So if A CR" is a Borel set, then

P2(4) = Py (4) =[x, s7dPixy) = [ a4 9)dPx(@Pr () = [ x,dPx#Py.
Hence P; = Px * Py.
b2 () = B[ X)) = B[ X v Y] Bl X] Y] = gy (u) - gy (u). =
8.12. Gaussian random variables

Let X : Q@ — R be a real-valued random variable. Then X is Gaussian with mean p € R
and variance o2 > 0 if its distribution is given by

dPx(x) =

(Gaussian or normal distribution)

1 (z — p)?
o exp (— 552 )daz.

We write X ~ N(u,0?).
X is standard Gaussian or normal if X ~ N(0,1), i.e.,

—xz2/2

e

dPx(x) =

2

If X ~ N(0,1), then E[X] = p and Var[z] = 02, and o = Var[z]'/? the standard deviation.
Characteristic function: if X ~ N(u, o), then

dx(u) = exp(—%aZu2 + z'n,u).
If X ~N(u1,02), Y ~ N(uz,02), and X,Y are independent, then
Z=X+Y ~ N+ pa, 07 + 03).
Proof. ¢z(u) = ¢x(u) - ¢y (u) = eXP(-%(U% +o3)u? 4 du(pn + M2))- u

It is convenient to consider a random variable x such that X = p a.s. as a “generalized”
Gaussian, where o2 = 0. Namely,

. 1 .
Px =0y, ox(u) = exp(—iup) = exp(—§0u2 + zuu).

Definition. A random variable X = (X1,...,X,,) : & — R" is a (generalized, vector valued)
Gaussian, if

ox(u) = E[e™X] = exp(—%utCu +iu - ,u> for weR",

where u € R™ and C' is a positive semi-defined n x n-matrix.
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Let
Cov(X,Y) = E[(X - EX])(Y —E[Y])]

be the covariance of X,Y. Then C is the covariance matrix of X, i.e., C' = (¢;5), where
Cij = COV(XZ', Xj).

X is Gaussian iff X = BY, where B is a n X n-matrix and Y = (Y1,...,Y,) such that
Y1,...,Y, are real-valued independent generalized Gaussians iff X = DZ + a, where a € R™, D
is a n x k-matrix, Z = (Z1,...,2Zk), Z1,...,Zy is independent Gaussians.

Let Y = AX, where A is a n x k-matrix, X : Q@ — R™, Y : Q — RF. If X is Gaussian, then
Y is Gaussian.

Proof. ¢Y(U) — E[eiv-Y] _ E[eiv.AX] _ E[eiAtv'X]
1
= 9x(4') = exp(—5(40)'C(A") + i(A'v) - )
AR S
= exp( 5Y (ACA")v + iv A,u>,
So ' = Ap, C' = AC At. 0

If X : Q — R™ has a multi-normal distribution given by

dP)(({L‘)

_ ’A‘1/2 (_1

e (5@ = A =),

where u € R”, and A is a positive defined n X n-matrix, then X is Gaussian and
1
ox(u) = exp(—gutC'u +i(u - M))7
where C' = A%,

8.13. Modes of convergence of random variables

Let X,,, n € NU {00}, be real (or vector valued) random variables.
i) X,, » X a.s. (almost surely) iff

P(X, — Xoo) = P({w € Q1 Xp(w) = Xoo(w)}) = 1,

iff X,, - X4 for a.e. w € Q.
ii) X;, = Xoo in probability iff

lim P(|X,, — Xo| >¢)=0  forall ¢>0.

n—oo

(equivalent to “convergence in measure”.)
iii) X;, & Xoo in LP, p > 1, iff

E[| X, — Xxo|P] — 0,
equivalently

/ﬂ | Xn(w) — Xoo(w)[PdP(w) — 0.
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1
X, > X as. —

319 subseq. Xn = Xoo

in probability
X, = Xoo in LP =2
Proof. (easy) e.g. 1: Fix € > 0, define
E,={weQ:|X,(w) — Xoo(w)| > e}

Then X,, - X a.s. implies

0=P(Enio.) =P, UanEk) = lim, o P(UanEk) > lim sup,,_, P(E,). O

Lemma 8.14. Let X,, be R%-valued Gaussian random variables, n € N, X,, — X0 in probability.
Then Xo is Re-valued Gaussian.

Proof. (outline) 1. If X,, — X, in probability, then
ox, (u) = ox. (u) locally uniformly on R< (23)

In fact, A .
e Xn — e X | < Xy —u- Xoo| < Jul - [ X — Xool.

So
|6, (1) — ¢x . (u)| < E[|e™ X — e Xo|] < Juld + 2P(| X, — Xoo| >0) <€

for n large. So follows.
2. X,, Gaussian, so

1
¢Xn (u) = eXp<_§utCnu +iu - Mn)a
where C,, > 0 and u, € RY. If
ox, (u) = dx. (u) locally uniformly,

then ¢x_ has the same form, i.e.,
1, )
ox. (u) = exp(—iu Cu+iu- u),

where C' > 0 and p € R?. O

Lemma 8.15. Let X1,..., X, be real-valued random variables with joint Gaussian distribu-
tion (i.e., X = (X1,...,X,) is R"-valued Gaussian random wvariable). Then Xi,...,X, are
independent iff they are pairwise uncorrelated, i.e., Cov(X;, X;) =0 fori,j=1,...,n, i # j.

Proof. “=" Clear:
. ind.
Cov(Xi, X;) = E[(X; — Elz])(X; — E[X —j])] = E[X; — E[X;]] - E[X; — E[X;]] = 0.
“«<=" Since X Gaussian,

1
ox(u) :exp<—§ut0u+iu-u>, u € R",
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where C' = (Cj;) is the covariance matrix. So ¢;; = Cov(X;, Xj), 1,7 =1,...,n.
By assumption, ¢;; = 0 for ¢ # j, and so C is a diagonal matrix. Hence,

Px (u) = ¢x, (u1) - - dx, (un)
for u = (uy,...,uy) € R™ This shows that Xi,...,X,, are independent by Theorem [8.8 O
8.16. Stochastic processes

A stochastic process in R™ is a collection { Xy }1er of random variables defined on a probability
space (2, .o/, P), where T' C R the parameter set of “times”.

If T = Np,N, it is a “discrete time stochastic process”, which is a sequence of random
variables: X1, Xo, ..., X, ....

If T'=10,00),[a,b] etc., it is a “continuous time stochastic process”.

If t € T fixed, w — X;(w) is a random variable on Q. If w fixed, t € T +— X;(w) is a sample
path of the stochastic process.

Definition 8.17. (Brownian motion) A real-valued stochastic process { By }/c[0,«) is called a
(version of ) Brownian motion if the following conditions are true:

(i) the process is a Gaussian process, i.e., for all n € N, 0 < #; < --- < t,, the random
variables By, ..., By, have a joint Gaussian distribution.

(ii) By for t € [0,00) is centered, i.e., E[B;] = 0.

(iii) Cov (B¢, Bs) = E[BiBs| = s A t, s,t € [0,00).

(iv) sample paths ¢t — B; are continuous a.s., i.e., t — B(w) is continuous for a.e. w.

Remark 8.18. Let {B;};c[0,o0) be a Brownian motion.

1) E[B] = 0, Var(B;) = Cov(B¢, By) =t for t > 0. So By ~ N(0,t) for t > 0, By = 0 a.s..
Brownian motion starts at 0 from time 0 a.s..

2) Brownian motion has “independent increments”. If ¢; <ty < ... < t,, then

X, Xy — Xy oo Xty — Xy (24)
are independent Gaussian random variables.
th - th71 ~ N(O,tk - tk—l)-

Indeed, the random variables in are joint Gaussian, centered, and for k <[, tp_1 < t; <
t11 <1y,
COV(th - thfl’th - thﬂ) = E[(th - thﬂ)(th - thﬂ)]
=t ANt — Tt Nt —tp N1 +1te_1 N1
=ty —tp—1 — g +tr—1 = 0.

So by Lemma the random variables in (24)) are independent.

8.19. Hilbert space bases

Let H be a separable real Hilbert space. A sequence {z, },en is called a complete orthonormal
system or a Hilbert space basis if

i) the vectors are orthonormal, i.e., (z;,2;) = 6;5, 1,5 € N,

ii) if x € H and (z,zy,) =0 for all n € N, then z = 0.
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In this case,

00
T = Z(x> xn)xm
n=1

o0 oo
|z||* = Z (z,2,) %, (z,y) = Z(w,xn)(y, Tn). (Parseval’s identities)
n=1 n=1
Equivalent to ii) is
ii’) the set S of all (finite) linear combinations of the vectors z1,xa, ..., &y, ... is dense in H.

1
Example. Let H = L?[0,1], with inner product (f,g) = / f(z)g(z)dz. The Hilbert space
0

bases:
1. trigonometric functions basis

1 1
— cos(2mnx), — sin(2mnx), n € N.

V2 V2

2. Haar basis

1 [k/2", (k+1/2)/2"),
On(z) = ¢ —1 for ze€ [(k+1/2)/2" (k+1)/2"),
0 else,

where n € Ng, k =0,1,...,2" — 1. ¢_10 = 1. Denote I the set of indices.
Obviously, ¢n 1 € L?[0, 1], pairwise orthogonal.

1
1
||90n,k||2 = /0 ‘Pn,k(x)2d$ = 27, n € Ny.

Set
wn,k = 2n§0n,k7 w—l,o =1

Then {tnk}(nk)er forms an orthonormal system. Its linear combinations are dense in L?[0, 1]
(because step functions on dyadic intervals are). So {¢n,k}(n,k)e 7 is a Hilbert space basis of
L?[0,1].

If {x,} is an orhtonormal system, then
o0 o0
Z AnT, converges iff Z ai < 0.
n=1 n=1
In fact, it follows from the Cauchy criterion since the partial sum s, = >_;_; apzy satisfies

n
|50 — Sml> = Z a2, n > m.
k=m+1

8.20. Construction of Brownian motion
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1. Brownian motion on 7' = [0, 1].

Let Z,,, n € N, be i.i.d. random variables, i.e., independent, identically distributed random
variables on the same probability space (€,.«7,P), and Z, ~ N(0,1). For example, let Q =
(R, A, 1), where £ is the Borel o-algebra, and

dp(x) = \}Qe_w2/2dx.

Set Q = QN and Z,, = the projection onto the n-th coordinate.
Zn, n € N, forms an orthonormal system in L?(12). In fact,

/ (@) Zi(@)AP(w) = Cov(Zn, Z) = 6us 1k €N,
Q
Let v, n € N, be a Hilbert space basis of L?[0,1]. Let

t
= / VYn(u)du = (¥n, X[0,4) inner product in L*[0,1].
0
Define

=Y falt)Zn,  for tel0,1].
n=1

i) For each t € [0, 1], the sum converges in L?[0, 1], equivalently,

an 223 (o xion)? 2 ol =t < 0. (s Parseval
n=1

ii) Each By is a Gaussian; actually, for ¢t < to < -+ < t,,, By, By, ..., By, have a joint
Gaussian distribution.
In fact,

is Gaussian (linear combination of Gaussians), and B — B; as n — oo in L?(Q2). So B is
Gaussian by Lemma

Similarly, (B{;,Bg, ..., B} ) have a joint Gaussian distribution, and (B, Bf.,..., B ) —
(Biy, By, ..., By,,) as n — oo in L2(,R™). So (By,, By,, - - ., By,,) have a joint Gaussian distri-
bution.

iii) By is centered.

E[Bt]Z/QBt( w)dP nhjolo/Bt JdP(w nILH;tok E[Zx] =0,

because Z,,, n € N, is centered.
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iv)

COV(BS,Bt):/B )Bi(w)dP(w) = lim B?(w)Bf(w)d}P’(w)

n—oo
= nlglolo Z Tr(8) fi( )COV Zy, Z1) = Z fk fk (x Cov(Zy, Z;) = 5kl)
k,l=1
= > (ks X(0.5) ks X0,) = (X[o,s] X[o) = S A (+* Parseval)
k=1

To check the continuity of ¢ — B;(w) for a.e. w € 2, we choose the Haar basis for the Hilbert
space basis of L?[0,1]. Let {tnx}(nr)er be the Haar basis of L?[0,1], let

frk(t) /wnk

Then f,,  is Lipschitz with Lipschitz constant Lip(fy ) = on/2,

L1 e 1 1

Hf”’f||°°—§272 = 9n/2rl ~ guja

Claim. Let {Z, 1} rer be i.i.d. standard normal random variables. Then for a.e. w € Q,

the series
oo 2"—1

Bt(w) = Zfl,Offl ot + Z Z an fnk (25)

n=0 k=0

converges uniformly in ¢ (and hence represents a continuous function in t).

Proof. Note that
e~/ 2y < e—’/2 for a>0.

\/27r/a
So ,
P(|Z| > a) < e /? for a>0

if Z ~ N(0,1). Denote
Angy = {1Z0sl > 2¢/1og(2nn) }.

Then )
_ n/2
So
oo 2"—1 00 on (o) 1
22 FAD =D qu =D i <o
n=1 k=0 n=1

By Borel-Cantelli-I, we have P(A, o) = 0, i.e., for a.e. w € Q, we have

| Zoi(@)] < 24/log(27/2n) < vV (26)

for all sufficiently large n (depending on w), say for n > N(w).
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For such w,

00 2" —1 00 Vﬁi
ZE: }: Zﬁk jﬁk )’ 2: §@E<<OO
n=N(w)' k=0 n=N(w)

So series represents a continuous function in ¢ by the Weierstrass M-test.
Actually, for such w,

2" —1

Z Zn (W) fa(t)  (9-1(t) = Z-10(w) f-10(1))

is Ly,-Lipschitz with L,, < v/n2"/? for all n > N(w); so by adjusting constants wlog for all n > 1.
Moreover, ||gnlloe < /02?2 for all n > N(w), wlog for all n > 1.

Suppose w is “good” so that it satisfies (26). Let s,t € [0, 1]. Pick suitable N = N(s,t) € N.
Then

| Bs(w) |<Z\gn = gn(t)]

n=-—1
N 00
<D Lals—tl+ Y 2lgall
n=— n=N+1
w
5(1+Z\F2"/2)\s—t\+ Z YR

n=N+1
w
S VN2N2 s — ] + VN2TN/2,

Pick N = N(s,t) such that 2V/2|s — t| = 27N/ equivalently |s — t| ~ 2=, equivalently

1
Nlog‘

1
N =logy —— —_—
a2 |s s —t

_ t’
Then

|Bs(w) = By(w)| < |s — t]'/?, [log

1
s =t

Conclusion. For a.e. w, there exists M (w) > 0, such that

1Bule) = Bulw)| < M)l — "2 log ! 0

Almost surely, the sample path ¢ — B;(w) has modulus of continuity

w(6) = 052 /log(1/9).

So for every € > 0, t — By(w) is (1/2 — )-Holder almost surely.

2. Brownian motion on [0, c0).
Idea. Let a Brownian motion run until time 1, start a “new” Brownian motion at endpoint,
let it run until time 2, etc.
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Let B}*, n € Ny, be independent copies of Brownian motion on [0, 1]. Define

lt]—1
By(w) =Y Bf(w)+ B, ().

k=0

(e Bus(w) = B(w)+ Bjsw).)

Then {Bt}te[o,oo) is a Gaussian process, B; centered, and for s < t,

[s]—1 [t]—1
Cov(Bs, Bt) = [( Z Bf + BELJ) ( Z BY + Bﬂg)]
k=0

ls]—1
= Z 1+(s—|s])=s=sAL.

k=0

For each n € Ny, t — B}*(w) on [0, 1] is continuous a.s., so for a.e. w, t — B}'(w) are continuous
for all n € Ny. Hence ¢t — By(w) is continuous a.s..

8.21. w-systems

Let X be a set, .¥ be a family of subsets of X. .¥ is called a w-system if ANB € . whenever
A,B € 7. (ie., a m-system is “stable” under the finite intersection.)

Facts. 1) Let . be a m-system, let &/ = o(.¥) be a o-algebra generated by ., and let u, v
be probability measures on o7. If u(A) = v(A) for all A € .7, then p =v. (ie., u(A) =v(A)
for all A € &7.) (Exercise!)

2) Let (2, &7, P) be a probability space. Let .7, .7 be two m-systems, and let Z = 0(.), € =
0(T)C . f P(ANB) = P(A)P(B) whenever A € ., B € .7, then % and € are independent.
(ie., P(AN B) =P(A)P(B) for all A € B, B € ¢.) (Exercise!)

8.22. The space X = C(]0,00))

Let
X :=C([0,00)) = {f :[0,00) — R continuous}
equipped with “topology of locally uniform convergence”: f,, — f iff f,, — f locally uniformly

on R.
This is a metrizable topology: Let

f,9)
(f, )

Then d is a metric on X. d(fn, f) — 0 iff f,, — f locally uniformly on [0,00). (X,d) forms a
separable space.

Let B = PBx, the Borel og-algebra on X (i.e., the smallest o-algebra containing all open sets
in X). We want to find 7-system . such that # = o(.¥).

For ¢t € [0,00), let

dul(f0) = swp |f(x)—g(a)) -2 T

z€[0,n]NQ

m: X >R, f— f(t)
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be the evaluation of time ¢. Let
S = {7Tt_11<B1>ﬂ~--ﬂ7T,;€1(Bk) tkeNt < <tgin [0,00),Bl,...,Bk G%R}.

Obviously, .7 is a m-system!
Claim. ¢(¥) = A.

Proof. (Outline) 1. For ¢t € [0,00), m; : X — R is continuous. So m; (B) € %Bx for each
B € %R, and .¥ C Pgr. Hence () C ABx.

2. Bx Co(Y).

Let fy € X be arbitrary. Then f +— |f(t) — fo(t)| is o(.#)-measurable. So f — d,(f, fo) =
SUpefo, (1) — fo(t)] is o(.7)-measurable, and f + d(f, fo) = Yooy ppatllels is o(.)-
measurable. Thus, open balls By(fo,e) = {f : d(f, fo) < €} are o()-measurable. Since
every open set in X is a countable union of open balls, every open set is in o(.¥). Hence,

Bx Co(S). O
Let (2, .27, P) be a probability space.
Claim. 7 : Q) — X is measurable (w.r.t. & and %x) iff Z; := m o Z is measurable for each
t €[0,00)
0L x
Ze N\ ™
R

Proof. “=" If Z is measurable, then Z; = m; o Z is measurable, because 7; is continuous.
“e="Let € = {Ac X :Z 1 (A) € &/}. Then ¥ is a o-algebra. Let B C R be a Borel set,
t € [0,00). Then
Z N my(B)) = (my 0 Z)"Y(B) = Z;'(B) € o

since Z; is measurable. So 7; ' (B) € €. Hence, . C € and o(.¥) = Bx C €. O

Theorem 8.23. (Canonical Brownian motion) Let X = C([0,00)), and £ = $Bx the Borel
o-algebra on X . There ezists a unique probability measure W on (X, %), called Wiener measure,
with the following properties: if we define By = my, then {Bi}ie(o,00) 95 @ Brownian motion (on
R). More explicitly,

i) for t; < --- < t, the random variables By,,... By, have a joint Gaussian distribution.
Equivalently, let F C [0,00) be a finite set,

X >R ={p: F > R}y=RF 7 flp.

Then

is a “Gaussian measure” on RE.
Set i == (1) (W).
i) By is centered, equivalent to

/ zdut(x) =0, for each t € [0,00).
R
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iii) Cov(Bs, Bt) = s A t, equivalent to
/ zydpgs (T,y) = s At.
R2

Proof. 1. Uniqueness. Suppose W, W are two measures with the properties i)-iii). Then

(7F)«(W) = pp = fir = (7p)«(W)

for each finite set F' C [0, 00), because the Fourier transforms of p g, fir, and hence pp, fip them-
selves are uniquely determined by i)—iii). This implies that for t; < ... < tg, F = {t1,...,tx},
and Bq,..., B, € $r, we have

W(m,"(B1) NNy (By) = W(np (By X -+ x By)
:/LF(Bl X“-XBk):ﬂF(Bl X'”XBk)
= W(m, (B1) N -+ N (Br),

ie., W(S) =W(S) for all S € .. Since o(.¥) = Bx, we have W = W.
2. Ezistence. There exists Brownian motion { Bt };¢[0,o0) on some probability space (€2, &7, P).
By disregarding a set of measure 0, we may assume that ¢ — B;(w) is continuous for every w € Q.
Define
B:Q— X =0C(0,0)), wr (te€][0,00)— Br(w)).

Then for each t € [0, 00), we have the commutation diagram

02 x
By \(
R

Since By is measurable for each t € [0,00), the map B is measurable (see two Claims in [3.22)).
Hence, W := B,(PP) is a Borel probability measure on X, and if F' C [0, c0) is finite, then

pr = (7p)«(W) = (77)«(B«(P)) = (7F 0 B)+(P) = (Br)«(P),
where Br(w) := (B, (W), - . ., By, (w)). Hence {m:}c[0,00) is @ Brownian motion defined on X. [
8.24. Brownian motion on R"

A R"-valued stochastic process {Bi}c[o,0c) 18 called a (version of) Brownian motion on R"
if the following conditions are true:

(i) the process is an R™-valued Gaussian process, i.e., for all k € N, t; < ... < t, the
R™_valued random variable (By,, ..., By, ) has a Gaussian distribution.

Let By = (B},...,B}), where B} is real-valued.

(ii) B} is centered for i € {1,...,n}, i.e., E[B{] =0, t € [0,00).

(iti) Cov(BE, B]) = 655 At, i€ {1,...,n}, s,t € [0,00).

(iv) sample paths t — By(w) are continuous a.s..
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Remark 8.25. (i) If B; = (B},...,BP") is a Brownian motion on R", then B},..., B! are
independent Brownian motions on R. Conversely, if B},..., B® are independent Brownian
motions on R, then B; = (B},..., BP) is a Brownian motion on R"™. (This proves existence!)

(ii) Uniqueness. One can show (as in Theorem that there exists a unique Wiener
measure W on X = C([0,00),R") = {f : [0,00) — R" continuous} such that {m}ic[,c) is a
Brownian motion, where 7, : X — R”, f — f(t). Described by “marginal” on RIFI*" where
F C[0,00) finite, up := (7p)e(W), 7p : X — (RMF, f = f|p.

(iii) By = (B},...,B?) is an R"valued Brownian motion iff W; := A B! + -\, B! is a
1-dimensional Brownian motion for each unit vector (Ay,...,A,) € R™.

“=" Clear:

Cov(Ws, Wy) = Mjs At+---+A2s ANt =sAt.

“=" Need fact: “Let Z1,...,Z, be RF-valued random variables. Then they have a joint
Gaussian distribution iff \{Z1 + --- + A\, Z,, is Gaussian for all Aq,..., )\, € R. Details left as
exercise!

8.26. Basic properties of Brownian motion

Let {Bt}te[o,oo) be a Brownian motion on R™. Then the following processes are also Brownian
motions.

(i) Wi = Byys — Bs for fixed s € [0,00) (Markov property). That is, Brownian motion is
memoryless!

(ii) Wy = AB;, if A is an orthogonal transformation.

(iii) Wi = (1/a) B2, a > 0 fixed (Brownian scaling).

. | Bo, t=0, . . .
(iv) Wy = {tB1/t, £ 0 (time inversion).

Proof. All processes Wy in (i)—(iv) are Gaussian, and W is centered. One checks covariance: for
example in (iii) and (iv).

o 1 . 1. 1
Cov(Wi, W) = cov(a iy aBgﬂt> = —501(a%) A (a®t) = Gigs At
S A . 1 1
Cov(W2, W{) = st COV(Bi/S,B{/t) = stdij— N ;= dijt \ s, s,t > 0.
s

Almost sure continuity of sample paths are clear for (i)—(iii), and on (0, 0c0) for (iv) (up to
measure 0). Continuity of W; at 0 is the following event:

A= U N {w: IWi(w) - Wo(w)| < e}
e>0 6>0 0<t<d
eeQecQ teQ

If we replace W; by By, then this is an almost sure event. Since W; and B; have the same
marginals, it follows that A is almost sure. (Note: this shows that lims_,~ |Bs|/s =0 a.s..) O

8.27. The stochastic Loewner equation (SLE)

Chordal Loewner equation: Let {f;}c[0,00) be a normalized chordal Loewner chain.

ft(z):z—;+~-' near oo.
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The Loewner-Kufarev equation gives

of
E(z, t) =V(zt)

of
0z’

where

d
V(Z,t) = 2/ 7Vt(U),
R U—Z
v is a probability measure with supp(v;) € R.
One obtains SLE,, k > 0, if one take a probabilistic driving term here

N A
where B; is the 1-dimensional Brownian motion. Then

2
Viz,t) = JiBw) =%

Depending on w, one gets a “random” Loewner chain and corresponding random hulls A;(w).

One is interested in these hulls, because they can be used to study many conformally invariant
processes in the plane.

Problems.

1) What are the characterizing properties of SLE?

(i.i.d. increments, Markov (= memoryless) property, conformal invariance, etc.)

2) What are the techniques to study SLE?

(Martingales method, etc.)

9 Survey of martingale theory

9.1. Conditional expectation

Example. Random expectation in two stages: Assume roll two dices with outcomes X1, Xo €
{1,2,3,4,5,6}. Let Z = X1+ X9, Q={1,...,6} x {1,...,6}. Then E[Z] =T.
Suppose the outcome of X is known (partial information). Then we have to adjust E[Z]
depending on X;:
E[Z| X1 =z] =2+ 3.5 = X1(w) + 3.5.

We get a new random variable E[Z]X].

Theorem and Definition 9.2. (Conditional expectation) Let (£2,.27,P) be a probability
space, let X be a random variable with E[|X|] < oo, let B C o/ be a o-algebra. Then there exists
a random variable Y on Q such that

i) Y is B-measurable.

i) E[|Y]] < oc.

iii) for every B € A, we have

E[Y;B]:/BY(OJ)dIP’(w):/BX(w)dIP’(w):E[X;B]

Y is essentially unique determined: if Y is another random variable with properties i)-ii),
then Y =Y a.s..

The random variable Y is called a (version of) conditional expectation of X for given %,
denoted by E[X|4#)].
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Idea of proof. Wlog X > 0. Define
w(B) ::/ X(w)dP(w), for Be %.
B

Then p < P|%. So p has a Radon-Nikidyn derivative Y w.r.t. P|%. Then i)-iii) are evident.
Uniqueness is also clear:

E[X|Z1,...,Zn] = E[X|o(Z1,...,Zn)]- O
9.3. Properties of conditional expectation

Let (Q,47,P) be a probability space, all random variables X satisfies E[|X|] < co. Let
B C of be a g-algebra.

(i) If Y = E[X|4], then E[Y] = E[X].

(i) If X is # measurable, then E[X|%] = X a.s..

(iii) Linearity.

(iv) If X > 0, then E[X|%] > 0.

(v) (Monotone a.s. convergence) If X,, >0, X,, /X, then
E[X,|%8]) "E[X|%4] as..

(vi) (Dominated convergence) If | X, (w)| < V(w), E[V] < o0, X,, = X a.s., then
E[X,|%8] — E[X|4] as..

(vii) (Jensen) If ¢ : R — R convex, E[|p(X)|] < oo, then

p(E[X]2]) <E[p(X)|Z] as..

In particular, |E[X|%]| < E[|X||%)] and HIE[X\%’]HP <N X[lp, p > 1.
(viii) (Tower property) If 2, are two o-algebras satisfying ¢ C % C &, then

(ix) If Z is #A-measurable, then
E[ZX|%] = ZE[X |4).
(x) If X and &£ are independent, then
E[X|#] =E[X] as. (constant function)

Proof. Mostly straight forward from the definitions:
(vii) Jensen: () = Supy <, afiine L(7), L(X) = aX +b < p(X). So

L(E[X|%)]) < E[L(X)|%] linearity
< E[p(X)|H] monotonicity

Taking sup over all L gives
¢(E[X|2]) < E[p(X)|4].
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Incorrect proof! Because we take sup over an uncountable family. Can be corrected if we
write (¢ = sup Ln<g L, for a countable collection L,,, n € N.

(vi) for dominated convergence, we need Fatou’s lemma:

If X,, >0, then

E [lim inf X,,| 2] <hm1nfE[X | A]. O

n—oo

Example 9.4. Let (2, o7, P) be a probability space, let {4, },en be a countable partition of
with A, € &7, P(A,,) > 0. Define

= o0({An}nen) = {U A, SCN Countable}
nes

Then
E[X|Z] =

W)dP(w) - x4, (W) = Y E[X; Ay
An neN

Check definition!

Example 9.5. (Fair games and martingales) Two players I (P;) and II (P) roll dice. Consider
a zero-sum game: at each step, player I wins or losses 1 unit. Let X,, be winnings of P; after n
rolls (corr. —X,, be winnings of P, after n rolls).

Game 1. P; wins if roll € {1,2} (so losses if € {3,4,5,}. A not fair game!

Game 2. P; wins if roll even. A fair game!

Game 3. P; wins if roll even, if one of players has won > 100 units, then game biased against
player as in Game 1. Game 3 is a fair game (E[X,,] = 0 for all n), but not fair at all times (or
all situations).

How to modal a game that is “fair at all times”: E[X,41 — X,] = 0 (true if E[X,,4;] =
E[X,] = 0). The better is E[X,+1 — X,|X,, = 2] = 0, whatever x.

Let .#,, be a o-algebra of events that will be known at time n (E[X,,|.%,] = X;,). Then
E[Xp+1 — Xn|Zn] =0 equivalent to E[X,,+1]|%,] = X

Definition 9.6. (Martingales; discrete-time case) Let (2, .<7,P) be a probability space
with filtration given by o-algebras %, C & for n € Ny, ie., %, C F,11 for n € Ny. Let
X = {Xn}nen, be a sequence of random variables on §2. Then X is called a martingale if

(i) X, is F,-measurable for n € Ny, and X,, € L, i.e., E[|X,]] < oo,

(i) E[Xp41|-Zn] = X5 (a.s.) for n € Np.

If in (ii), we have < or >, then X is called a supermartingale or submartingale, respectively.

(Submartingale: tendency to increase, supermartingale: tendency to decrease.)

Often, %, = o(Xo, ..., Xp), n € Ny, called natural filtration.

Example 9.7. a) Games as in with natural filtration, X = {X, }nen. Then Game 1, Game
3 are not martingales, Game 2 and Game 4(?) are martingales. Game 1 is a supermartingale.
b) (dyadic martingale)
Let = [0, 1] with Lebesgue measure, f € L[0,1]. Let

E k+1

27"727"}7 neNO?k:O’l’-",Qn_l'

Dn,k = [
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be the dyadic interval, let .%, be the o-algebra generated by dyadic intervals of level < n, and

let
on 1

Xp(w) = Xp, (W) 2" flw)dw, n € Np.

Then X = {X,, }nen, is a martingale.

(i) X, is .#,-measurable.
2n—1 2n—1

(i) EXni1 [ 7] = D xp, , ()27 /D Xon(W)dw =) xp, (w)2" /D fw)dw = X,
n,k k=0 n,k

k=0 =

Note that X, (w) — f(w) as n — oo for a.e. w. This is an instance of martingale convergence
theorem!

¢) (Brownian motion)

Let B; be a Brownian motion on R. For given 0 <tg <t < --- <t, <---, let X;, = By,
n € Ng. Then X = {X,,}nen, (with natural filtration) is a martingale.

Note that By, , — By, is independent of By, ..., B;,, and E[B;] = 0. We have

(i) X», = By, is %, = 0(By,, ..., B, )-measurable.

(il) E[Xn41]Fn] = E[Bthrl | Fn] = E[Bthrl — By, | 0] + By, = E[Btn+1 = Bi,|+ Bi, = B
Xn.

n =

Definition 9.8. (Martingale; continuous-time case) Let (2,27, P) be a probability space
with filtration {%;}i>0, i.e., # C & is a o-algebra and #; C % for s < t. A stochastic
(often extra technical conditions) process is called adapted if X; is .#;-measurable for all ¢ > 0.
X = {X:}>0 is a martingale if

(i) X is adapted and E[|X¢|] < oo for all ¢ > 0.

(i) E[X¢|.Z5] = X for all 0 < s < t. The natural filtration: . % = o(Xs:0 < s <1).

Example 9.9. a) Brownian motion {B;};>¢ with natural filtration is a martingale.

b) By is Brownian motion, .#; = o(Bs : 0 < s < t). Then X; = B? —t is a martingale.

(i) X; is adapted, and E[|X¢|] < oc.

(i) E[X;|.Zs] = E[B? — t|.%,] = E[(B; — Bs + B;)?*|.%s] —t = E[(B; — Bs)? + 2Bs(B; — Bg) +
B2|.F,| —t = B[(B; — Bs)*.Zs| +2BE[B; — Bs|-Fs] + B2 —t = E[(B; — B)?| + 2BsE[B; — Bs] +
B2 —t=(t—s)+B2—t=DB?-s5=X,.

Conversely,

Theorem 9.10. (Lévy) Let {X;}i>0 be a continuous martingale (i.e., martingale with almost
surely continuous sample paths). If X2 —t is a martingale (w.r.t. 1 = 0(Xs:0< s <t)), then
{Xi}t>0 is a Brownian motion.

Important facts about martingales: martingale convergence theorem; Doob’s LP-submartingale
inequalities; sub- and supermartingale decompositions; optional stopping; stochastic integrals.
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