# Conformal Invariant Processes in the Plane

Mario Bonk

# 1 Koebe's distortion theorem

Notations:

$$\begin{split} &\mathbb{C} \text{ the complex plane,} \\ &\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \text{ the open unit disk,} \\ &\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \text{ the Riemann sphere,} \\ &\tilde{\mathbb{D}} = \hat{\mathbb{C}} \setminus \overline{\mathbb{D}} = \{z \in \hat{\mathbb{C}} : |z| > 1\} \text{ the complement of the closed unit disk.} \end{split}$$

**Definition 1.1.**  $S = \{f : \mathbb{D} \to \mathbb{C} : f \text{ holomorphic and injective (conformal map onto its image)}, f(0) = 0, f'(0) = 1\}.$ 

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$
 (1)

(Taylor series expansion).

 $\Sigma = \{g : \tilde{\mathbb{D}} \to \hat{\mathbb{C}} : g \text{ holomorphic and injective (conformal map onto its image)}, \}$ 

$$g(w) = w + b_0 + b_1/w + b_2/w^2 + \cdots$$
(2)

(Laurent series expansion at  $\infty$ )}.

 $g(\infty) = \infty, g'(w) = 1 + O(1/w^2)$  as  $w \to \infty$ , and  $g'(\infty) = \lim_{w \to \infty} g'(w) = 1$ .

Note. If g is a holomorphic map on  $\tilde{\mathbb{D}}$ ,  $g(\infty) = \infty$ , g injective, then

$$g(1/z) = 1/z + b_0 + b_1 z + b_2 z^2 + \cdots$$

is holomorphic in  $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$ , and has 1<sup>st</sup> order pole. The series in (2) converges uniformly on compact subsets in  $\mathbb{C} \setminus \overline{\mathbb{D}}$ .

**Theorem 1.2.** (Area Theorem) If  $g \in \Sigma$ , then

Area
$$(\hat{\mathbb{C}} \setminus g(\tilde{\mathbb{D}})) = \pi \left(1 - \sum_{n=1}^{\infty} n |b_n|^2\right) \ge 0.$$
 (3)

In particular,

$$\sum_{n=1}^{\infty} n|b_n|^2 \le 1 \quad and \quad |b_1| \le 1.$$

*Here*,  $|b_1| = 1$  *iff* 

$$g_{\alpha}(w) = w + b_0 + \frac{e^{2i\alpha}}{w}, \qquad \alpha \in \mathbb{R}.$$

*Proof.* Pick r > 1. Define  $\gamma_r = g(re^{it}), t \in [0, 2\pi]$ .  $\gamma_r$  is a (parameterized) Jordan curve. The winding number

$$\operatorname{ind}_{\gamma_r}(w) = \begin{cases} 0, & w \in \operatorname{Out}(\gamma_r) & \text{(outside of } \gamma_r), \\ \pm 1, & w \in \operatorname{In}(\gamma_r) & \text{(inside of } \gamma_r). \end{cases}$$

By the Jordan curve theorem

$$\ln(\gamma_r) = \hat{\mathbb{C}} \setminus g(\tilde{\mathbb{D}}) \cup g(\{w \in \mathbb{C} : 1 < |w| < r\}).$$
(4)

Moreover,  $\operatorname{ind}_{\gamma_r}(u) = 1$  for  $u \in \operatorname{In}(\gamma_r)$ .

#### Figure 1: here

Proof of (4):

" $\supseteq$ " part: the ind<sub> $\gamma_r$ </sub>(u) = 1 follows from the homotopy invariance of the winding number (let  $r \to +\infty$ ).

" $\subseteq$ " part: it follows because every point on the right hand side is not on  $\gamma_r$  or the set on the right hand side lies in the unbounded component of  $\mathbb{C} \setminus \gamma_r$ .

 $\mathbf{So}$ 

$$\hat{\mathbb{C}} \setminus g(\tilde{\mathbb{D}}) = \bigcap_{r>1} \operatorname{In}(\gamma_r),$$

and

Area
$$(\hat{\mathbb{C}} \setminus g(\tilde{\mathbb{D}})) = \lim_{r \to 1^+} \operatorname{Area}(\operatorname{In}(\gamma_r)).$$

By Green's theorem,

$$\frac{1}{2i}\int_{\gamma_r} \overline{u}du = \int_{\mathbb{C}} \operatorname{ind}_{\gamma_r}(u)dA(u) = \operatorname{Area}(\operatorname{In}(\gamma_r)),$$

where dA(u) denotes the area differential. On the other hand,

$$\frac{1}{2i}\int_{\gamma_r}\overline{u}du = \frac{1}{2i}\int_0^{2\pi}\overline{g(re^{it})}g'(re^{it})rie^{it}dt = \frac{1}{2}\int_0^{2\pi}\overline{g(w)}g'(w)wdt,$$

where it has been set  $w = re^{it}$ . From the Laurent series expansion (2)

$$g(w) = w + \sum_{n=0}^{\infty} \frac{b_n}{w^n}, \qquad g'(w) = 1 - \sum_{n=1}^{\infty} \frac{nb_n}{w^{n+1}}.$$

Note that  $\overline{w} = r^2/w$  and

$$\int_0^{2\pi} w^k dw = \begin{cases} 0, & k \in \mathbb{Z} \setminus \{0\}, \\ 2\pi i, & k = 0. \end{cases}$$

By uniform convergence, we can integrate "term by term", and so

$$\begin{aligned} \operatorname{Area}(\operatorname{In}(\gamma_r)) &= \frac{1}{2} \int_0^{2\pi} \overline{g(w)} g'(w) w dt \\ &= \frac{1}{2} \int_0^{2\pi} \left( \overline{w} + \sum_{n=0}^{\infty} \frac{\overline{b}_n}{\overline{w}^n} \right) \left( w - \sum_{n=1}^{\infty} \frac{nb_n}{w^n} \right) dt \\ &= \frac{1}{2} \int_0^{2\pi} \left( |w|^2 - \sum_{n=1}^{\infty} n \frac{|b_n|^2}{|w|^{2n}} \right) dt \\ &= \pi \left( r^2 - \sum_{n=1}^{\infty} n |b_n|^2 r^{-2n} \right) \\ &\to \pi \left( 1 - \sum_{n=1}^{\infty} n |b_n|^2 \right) \quad \text{as} \quad r \to 1 \qquad \text{(has to be justified)}. \end{aligned}$$

The first part follows!

So  $|b_1| \leq 1$ . If  $|b_1| = 1$ , then  $b_2 = b_3 = \cdots = 0$ , and so

$$g(w) = g_{\alpha}(w) = w + b_0 + \frac{e^{2i\alpha}}{w}, \quad b_1 = e^{2i\alpha}, \quad \alpha \in \mathbb{R}.$$

(Joukovsky map)

Figure 2: 
$$g_{\alpha}$$
, Joukovsky map

### Corollary 1.3. Let

$$g(w) = w + b_0 + \frac{b_1}{w} + \frac{b_2}{w^2} + \dots \in \Sigma.$$

If  $u \in \mathbb{C} \setminus g(\tilde{\mathbb{D}})$  (i.e. u is omitted by g), then  $|u - b_0| \leq 2$  and if we have equality then g is a Joukovsky map.

*Proof.* Let

$$h(w) = \sqrt{g(w^2) - u} = w \cdot \sqrt{\frac{g(w^2)}{w^2} - \frac{u}{w^2}}$$

on  $\tilde{\mathbb{D}}$ . The function  $\frac{g(w^2)}{w^2} - \frac{u}{w^2}$  is a zero-free holomorphic function on the simply connected domain  $\tilde{\mathbb{D}}$ . So *h* is well defined. So

$$h(w) = w \left( 1 + \frac{b_0 - u}{w^2} + \cdots \right)^{1/2}$$
  
=  $w \left( 1 + \frac{1}{2} \frac{b_0 - u}{w^2} + \cdots \right) = w + \frac{\tilde{b}_1}{w} + \cdots,$ 

where  $\tilde{b}_1 = \frac{1}{2}(b_0 - u)$ . Note that h is holomorphic and injective on  $\tilde{\mathbb{D}}$ . In fact,  $h(w_1) = h(w_2) \Longrightarrow g(w_1^2) - u = g(w_2^2) - u \Longrightarrow w_1^2 = w_2^2 \Longrightarrow w_1 = \pm w_2$ . If  $w_1 = -w_2$ , then  $h(w_1) = h(w_2) = -h(w_1)$  (h is odd), and so  $h(w_1) = \infty$  (0 impossible!)  $\Longrightarrow w_1 = w_2 = \infty$ .

So  $h \in \Sigma$ . By Theorem 1.2,  $|\frac{1}{2}(b_0 - u)| = |\tilde{b}_1| \le 1$ , equivalent to  $|u - b_0| \le 2$ .

If  $|u-b_0| = 2$ , then  $|\tilde{b}_1| = 1$ , and so h is a Joukovsky map, which implies that g is a Joukovsky map:

$$h(w) = w + \frac{b_1}{w} = w + \frac{1}{2} \frac{b_0 - u}{w}.$$
$$gw^2 = h(w)^2 + u = w^2 + b_0 + \frac{1}{4} \frac{(b_0 - u)^2}{w^2}$$

So

$$g(w) = w + b_0 + \frac{1}{4} \frac{(b_0 - u)^2}{w} = w + b_0 + \frac{\tilde{b}_1^2}{w}.$$

**Theorem 1.4.** Let  $f \in S$ .

$$f(z) = z + a_2 z^2 + \cdots$$

Then

i)  $|a_2| \leq 2$ , ii) (Koebe 1/4-Theorem) if  $v \in \mathbb{C} \setminus f(\mathbb{D})$ , then  $|v| \geq 1/4$ , i.e.  $B(0, 1/4) \subseteq f(\mathbb{D})$ .

Figure 3: Koebe 1/4 – theorem

We have equality in i) or ii) iff f is a Koebe function, i.e.

$$f(z) = e^{-i\alpha} K(e^{i\alpha}), \qquad K(z) = \frac{z}{(z-1)^2},$$
  
 $K(z) = z + 2z^2 + 3z^3 + \cdots.$ 

#### Figure 4: Koebe function

**Remark.** A long-standing open problem was Bieberbach's conjecture: if  $f \in S$ , then  $|a_n| \leq n$  for  $n \geq 2$ , proved by de Brange (early 1980's).

*Proof.* If  $f \in S$ , then  $g(w) = 1/f(1/w) \in \Sigma$ .

$$g(w) = \frac{1}{1/w + a_2 2/w^2 + \dots} = w \cdot \frac{1}{1 + a_2/w + a_3/w^2 + \dots}$$
$$= w \left( 1 - \left(\frac{a_2}{w} + \frac{a_3}{w^2} + \dots\right) + \left(\frac{a_2}{w} + \frac{a_3}{w^2} + \dots\right)^2 - \dots \right)$$
$$= w \left( 1 - \frac{a_2}{w} + \frac{a_2^2 - a_3}{w^2} + \dots \right)$$
$$= w - a_2 + \frac{a_2^2 - a_3}{w} + \dots$$

Moreover, u = 0 is omitted by g!

i) By Corollary 1.3,  $|a_2| = |0 - (-a_2)| (= |u - b_0|) \le 2$ .

If equality, then the proof of Corollary 1.3 shows

$$g(w) = w + b_0 + \frac{1}{4} \frac{(b_0 - u)^2}{w^2} = w - a_2 + \frac{1}{4} \frac{a_2^2}{w} = w \left(1 - \frac{a_2}{2} \frac{1}{w}\right)^2.$$

 $\operatorname{So}$ 

$$f(z) = \frac{1}{g(1/z)} = \frac{z}{(1 - (a_2/2)z)^2},$$
 where  $|a_2| = 2.$ 

f is the rotated Koebe function.

ii) If v is omitted by f, then u = 1/v is omitted by g. So by Corollary 1.3,

$$2 \ge |u - b_0| = \Big|\frac{1}{v} + a_2\Big|.$$

 $\operatorname{So}$ 

$$\left|\frac{1}{v}\right| \le |-a_2| + \left|\frac{1}{v} + a_2\right| \le 4$$

equivalent to  $|v| \ge 1/4$ .

If |v| = 1/4, then |1/v| = 4 and  $|a_2| = 2$ . Again, f is a rotation of the Koebe function.

**Corollary 1.5.** If  $f \in S$  and  $\Omega = f(\mathbb{D})$ , then

$$\frac{1}{4} \le \operatorname{dist}(0, \partial \Omega) \le 1.$$

*Proof.* The first inequality follows from the 1/4 – Theorem. For the second inequality, let  $d = \operatorname{dist}(0, \partial \Omega) < \infty$ . Define  $g(w) = f^{-1}(dw), w \in \mathbb{D}$ . Then  $g(\mathbb{D}) \subseteq \mathbb{D}, g(0) = 0$ ; so by the Schwarz Lemma

$$1 \ge |g'(0)| = \frac{d}{|f'(0)|} = d.$$

Lemma 1.6. If  $f \in S$ , then

$$\left|(1-|z|^2)\frac{f''(z)}{f'(z)}-2\overline{z}\right| \le 4 \quad for \quad z \in \mathbb{D}.$$

*Proof.* Fix  $z_0 \in \mathbb{D}$ . Let  $\varphi \in Aut(\mathbb{D}), \varphi(0) = z_0$ . Then

$$\varphi(z) = \frac{z+z_0}{1+\overline{z}_0 z}, \quad \varphi'(z) = \frac{1-|z_0|^2}{(1+\overline{z}_0 z)^2}, \quad \varphi''(z) = -2\frac{(1-|z_0|)\overline{z_0}}{(1+\overline{z}_0 z)^3}.$$

Define  $g = f \circ \varphi$ . It is a conformal map on  $\mathbb{D}$ , but not normalized! Let

$$h = \frac{g - g(0)}{g'(0)}$$

Then  $h \in \mathcal{S}$  and  $|a_2(h)| \leq 2$ .

$$a_{2}(h) = \frac{1}{2}h''(0) = \frac{1}{2}\frac{g''(0)}{g'(0)}.$$
  

$$g' = (f' \circ \varphi) \cdot \varphi', \quad g'' = (f'' \circ \varphi) \cdot \varphi'^{2} + (f' \circ \varphi) \cdot \varphi''.$$
  

$$g(0) = z_{0}, \quad g'(0) = f'(z_{0})(1 - |z_{0}|^{2}),$$
  

$$g''(0) = f''(z_{0})(1 - |z_{0}|^{2})^{2} + f'(z_{0})(-2\overline{z_{0}}(1 - |z_{0}|^{2})).$$

So

$$2 \ge |a_2(h)| = \frac{1}{2} \frac{|g''(0)|}{|g'(0)|} = \frac{1}{2} \left| \frac{f''(z_0)}{f'(z_0)} (1 - |z_0|^2) - 2\overline{z_0} \right|.$$

**Theorem 1.7.** (Koebe's Distortion Theorem) Let  $f \in S$ . Then for  $z \in \mathbb{D}$ 

i) 
$$\frac{1-|z|}{(1+|z|)^3} \le |f'(z)| \le \frac{1+|z|}{(1-|z|)^3}$$

ii) 
$$\frac{|z|}{(1+|z|)^2} \le |f(z)| \le \frac{|z|}{(1-|z|)^2}.$$

Estimates are sharp and the Koebe function is the only extremal (up to a rotation).

*Proof.* By rotational invariance, wlog, setting  $z = x \in [0, 1)$ .

$$g(z) = \log f'(z) = \log(1 + 2a_2z + \cdots) = 2a_2z + \cdots$$

g(0)=0 and  $g^{\prime}=f^{\prime\prime}/f^{\prime}.$  By Lemma 1.6,

$$\left|\frac{f''(x)}{f'(x)} - \frac{2x}{1 - x^2}\right| \le \frac{4}{1 - x^2}$$

By integration,

$$\left| g(x) - \log \frac{1}{1 - x^2} \right| \le 2 \log \frac{1 + x}{1 - x}, \qquad x \in [0, 1).$$

So

$$\log \frac{1}{1-x^2} - 2\log \frac{1+x}{1-x} \le \log |f'(x)| \le \log \frac{1}{1-x^2} + 2\log \frac{1+x}{1-x},$$

i.e.

$$\log \frac{1-x}{(1+x)^3} \le \log |f'(x)| \le \log \frac{1+x}{(1-x)^3}$$

Exponentiating, the first inequality follows.

$$|f(x)| = \left| \int_0^x f'(t) dt \right| \le \int_0^x \frac{1+t}{(1-t)^3} dt = \frac{x}{(1-x)^2}.$$

The upper bound in ii) follows. For the lower bound, set  $r \in (0, 1)$ ,  $m = \min_{|z|=r} |f(z)| > 0$ . Wlog, we can assume  $f(re^{i\theta}) = m$  for some  $\theta$ . Let  $\gamma(t) = re^{it}, t \in [0, 2\pi]$ .  $f \circ \gamma$  does not meet B(0, m). For any  $w \in B(0, m)$ , by the Argument Principle,

# of zeros of 
$$f - w$$
 in  $B(0, r)$   
=  $\operatorname{ind}_{f \circ \gamma}(w) \equiv \operatorname{ind}_{f \circ \gamma}(0) = \#$  of zeros of  $f - 0 = f$  in  $B(0, r) = 1$ .

It follows

# Figure 5:

$$B(0,m) \subseteq f(B(0,r)), \quad \mathrm{and} \quad \overline{B}(0,m) \subseteq f(\overline{B}(0,r)) \subseteq \Omega := f(\mathbb{D})$$

and so  $[0,m] \subseteq \Omega$ . Let  $\alpha(t) = f^{-1}(t), t \in [0,m]$ . Then  $\alpha(t)$  is a path in  $\mathbb{D}$  from  $0 = f^{-1}(0)$  to  $re^{i\theta} = f^{-1}(m)$ .

$$f(\alpha(t)) \equiv t \implies f'(\alpha(t))\alpha'(t) \equiv 1.$$

So

$$m = \int_0^m dt = \int_0^m |f'(\alpha(t))| |\alpha'(t)| dt = \int_\alpha |f'(z)| |dz| = \int_0^L |f'(\tilde{\alpha}(s))| ds,$$

where  $\tilde{\alpha} : [0, L] \to \mathbb{C}$  is the arc-length reparametrization of  $\alpha$ ,  $L = \ell(\alpha) :=$  length of  $\alpha \ge r$ ,  $\tilde{\alpha}(\ell(\alpha([0, t]))) = \alpha(t)$ , and

$$\int_{\alpha} g(z)|dz| = \int_{0}^{L} g(\tilde{\alpha}(s))ds.$$

Since  $\tilde{\alpha}(0) = \alpha(0) = 0$ ,  $|\tilde{\alpha}(s)| \leq s$ . So

$$m = \int_0^L |f'(\tilde{\alpha}(s))| ds \ge \int_0^L \frac{1 - |\tilde{\alpha}(s)|}{(1 + |\tilde{\alpha}(s)|)^3} ds \ge \int_0^r \frac{1 - s}{(1 + s)^3} ds = \frac{r}{(1 + r)^2}.$$

**Corollary 1.8.** S is a normal family, i.e. every sequence  $\{f_n\}$  in S has a subsequence  $\{f_{n_k}\}$  that converges locally uniformly in  $\mathbb{D}$ . Moreover, every locally uniform limit of a sequence in S also lies in S. (So S is compact with respect to the topology of locally uniform convergence.)

Proof. By Koebe's Distortion Theorem, (up bound in ii)), S is locally uniform bounded. Hence, S is a normal family by Montel's Little Theorem. If  $\{f_n\}$  is a sequence in S and  $f_n \to f$  locally uniformly on  $\mathbb{D}$ . Then f is holomorphic (Weierstrass), and constant or injective (Hurwitz). Moreover,  $f_n(0) \to f(0)$  and  $f'_n(0) \to f'(0)$  which implies f(0) = 0 and f'(0) = 1. So f is non-constant, hence injective. So  $f \in S$ .

**Remark 1.9.** Koebe's Distortion Theorem often gives useful (non-sharp) quantitative information:

i) Let  $\Omega, \Omega' \subsetneq \mathbb{C}$  be two regions,  $f : \Omega \to \Omega'$  be conformal map,  $z_0 \in \Omega$ . Then

$$|f'(z_0)| \simeq \frac{\operatorname{dist}(f(z_0), \partial \Omega')}{\operatorname{dist}(z_0, \partial \Omega)}$$

with universal constant. Where  $A \simeq B$  means that there exists a constant C such that

$$\frac{1}{C}A \le B \le CA.$$

*Proof.* Let  $d' = \operatorname{dist}(f(z_0), \partial \Omega'), d = \operatorname{dist}(z_0, \partial \Omega)$ . Then  $B(z_0, d) \subseteq \Omega$ . By 1/4-Theorem (applied to  $u \mapsto \frac{f(z_0+ud)-f(z_0)}{f'(z_0)d}$ ), we have

$$B(f(z_0), \frac{1}{4}|f'(z_0)|d) \subseteq \Omega'.$$

So

$$d' \ge \frac{1}{4} |f'(z_0)|d$$
, and  $|f'(z_0)| \le 4 \frac{d'}{d}$ 

For lower bound, consider  $f^{-1}$ .

ii) Let  $\Omega, \Omega'$  be two regions,  $f: \Omega \to \Omega'$  be a conformal map,  $K \subseteq \Omega$  be a compact set. Then

$$|f'(z)| \simeq |f'(w)|$$

for any  $z, w \in K$  with implicit constant only depending on  $\Omega, K$  (and not on f!).

Idea of Proof. If  $\Omega = \mathbb{D}$ , then  $|f'(z)| \simeq |f'(0)| \simeq |f'(w)|$  by Koebe. Generalize to  $\Omega = \text{disk.}$ General case follows from Harnack chain argument.  $\Box$ 

# 2 Boundary extensions of conformal maps

Suppose  $\Omega \subseteq \mathbb{C}$  is a bounded region. Then the following are equivalent (TFAE):

i)  $\Omega$  is simply connected;

ii)  $\mathbb{C} \setminus \Omega$  is connected ( $\iff \mathbb{C} \setminus \Omega$  connected);

- iii)  $\partial \Omega$  is connected;
- iv)  $\Omega$  is conformally equivalent to  $\mathbb{D}$ , i.e., there exists a conformal map  $f: \mathbb{D} \leftrightarrow \Omega$ .

**Theorem 2.1.** Let  $f : \mathbb{D} \to \Omega$  be a conformal map onto a bounded (simply connected) region. TFAE

i) f has a continuous extension to  $\mathbb{D}$ ;

ii)  $\partial\Omega$  can be parameterized as a loop, i.e., there exists a continuous map  $\varphi : \partial \mathbb{D} \to \mathbb{C}$  such that  $\varphi(\partial D) = \partial\Omega$ ;

iii)  $\partial \Omega$  is locally connected;

iv)  $\mathbb{C} \setminus \Omega$  is locally connected.

We will prove this in the following:

#### 2.2. Locally connected sets

Let  $A \subseteq \mathbb{C}$  be a closed set. A is locally connected iff for all  $a \in A$  and  $\varepsilon > 0$ , there exists  $\delta > 0$  such that if  $b \in A$  is arbitrary and  $|a - b| < \delta$ , then there exists a continuum  $E \subseteq A$  with  $a, b \in E$  and diam $(E) < \varepsilon$ .

If  $A \subseteq \mathbb{C}$  is a compact set, then A is locally connected iff for all  $\varepsilon > 0$  there exists  $\delta > 0$  such that for all  $a, b \in A$  with  $|a - b| < \delta$ , then there exists a continuum  $E \subseteq A$  with  $a, b \in E$  and diam $(E) < \varepsilon$ .

*Proof.*  $\Leftarrow$  trivial.

 $\implies$  By contradiction. If not, there exist  $\varepsilon_0 > 0$  ("bad  $\varepsilon$ ") and sequences  $\{a_n\}, \{b_n\}$  in A such that  $|a_n - b_n| \to 0$  but no continuum E such that  $a_n, b_n \in E$  and diam  $E < \varepsilon_0$ . Wlog, assume  $a_n, b_n \to c$ .

Since A is locally connected, for sufficiently large n, there exist continuums  $E'_n$ ,  $E''_n$  such that  $a_n, c \in E'_n$ ,  $b_n, c \in E''_n$ ,  $\dim(E'_n) < \varepsilon_0/2$ ,  $\dim(E''_n) < \varepsilon_0/2$ . Then  $E_n = E'_n \cup E''_n$  is a continuum with  $a_n, b_n \in E_n$  and  $\dim(E_n) < 2 \cdot \varepsilon_0/2 = \varepsilon_0$ , a contradiction!

A compact set  $A \subseteq \mathbb{C}$  is locally connected, iff points that are close have a small connection, iff there exists  $\omega : (0, \infty) \to (0, \infty)$  with  $\lim_{\delta \to 0^+} \omega(\delta) = 0$  such that  $\forall a, b \in A$ ,  $\exists$  continuum  $E \subseteq A$  with  $a, b \in E$  and diam $(E) \leq \omega(|a - b|)$ .

Boundary of comb domain is connected but not locally connected.

### Figure 6: Comb domain

Let  $A \subseteq \mathbb{C}$  be compact and locally connected,  $\varphi : A \to \mathbb{C}$  continuous, and  $B := \varphi(A)$ . Then *B* is locally connected. (Continuous images of compact and locally connected sets are locally connected.)

*Proof.* By contradiction! If not, then there exist  $\varepsilon_0 > 0$  and sequences  $\{b_n\}, \{b'_n\}$  such that  $|b_n - b'_n| \to 0$  but there exist no continuum  $E \subseteq B$  with  $b_n, b'_n \in E$ , diam $(E) < \varepsilon_0$ . There exist

 $a_n, a'_n$  such that  $b_n = \varphi(a_n), b'_n = \varphi(a'_n)$ . Wlog,  $a_n \to x$  and  $a'_n \to y$ . Then  $b_n, b'_n \to z = \varphi(x) = \varphi(y)$ . We can find small connections  $E'_n$  and  $E''_n$  between  $x, a_n$  and  $y, a'_n$  (resp.) for n large. Then  $F_n = \varphi(E'_n) \cup \varphi(E''_n)$  is a small connection between  $b_n, b'_n$  for n large, by uniform continuity of  $\varphi$ . Contradiction!

In particular, if  $\varphi : \partial \mathbb{D} \to \mathbb{C}$  is conformal, then  $\varphi(\partial \mathbb{D})$  is locally connected. (Loops or pathes are locally connected.) So ii)  $\Longrightarrow$  iii) in Theorem 2.1!

**Lemma 2.3. (Wolff's Lemma)** Let  $U \subseteq \mathbb{C}$  be open,  $f : U \to V \subseteq B(0, R_0)$  be conformal,  $z_0 \in \overline{U}, C(r) := U \cap \{z \in \mathbb{C} : |z - z_0| = r\}$ . Then

$$\inf_{\rho < r < \sqrt{\rho}} \ell(f(C(r))) \le \frac{2\pi R_0}{\sqrt{\log(1/\rho)}}, \quad for \quad 0 < \rho < 1.$$

In particular, there exists a sequence  $r_n \rightarrow 0$  such that

$$\ell(f(C(r_n))) \to 0 \quad as \quad n \to \infty.$$

(If a "thick" family of curves is confined to a set of controlled area, then one of the curves has to be short.)

### Figure 7:

*Proof.* Let  $L(r) := \ell(f(C(r)))$  (lower semi-continuous). Then

$$\begin{split} L(r)^2 &= \left( \int_{C(r)} |f'(z)| |dz| \right)^2 \\ &\leq \left( \int_{C(r)} |dz| \right) \left( \int_{C(r)} |f'(z)|^2 |dz| \right) \quad \text{(Schwarz inequality)} \\ &\leq 2\pi r \int_{\{t \in [0,2\pi]: z_0 + re^{it} \in U\}} |f'(z_0 + re^{it})|^2 r dt \end{split}$$

 $\operatorname{So}$ 

$$\int_0^\infty \frac{L(r)^2}{r} dr \le 2\pi \int_U |f'(z)|^2 dA(z) = 2\pi \operatorname{Area}(V) \le 2\pi^2 R_0^2.$$

This gives

$$\frac{1}{2}\log\frac{1}{\rho}\inf_{\rho < r < \sqrt{\rho}}L(r)^2 \le \int_{\rho}^{\sqrt{\rho}}L(r)^2\frac{dr}{r} \le 2\pi^2 R_0^2.$$

The claim follows.

**Lemma 2.4.** Let  $\gamma : [0,1) \to \mathbb{C}$  be a path with the length

$$\ell(\gamma) = \sup_{0 \le t_0 < \dots < t_n < 1} \sum_{k=1}^n |\gamma(t_k) - \gamma(t_{k-1})| < \infty.$$

Then  $\lim_{t\to 1^-} \gamma(t)$  exists.

(If a path has finite length, then it ends some where!)

Proof. Denote  $L := \ell(\gamma) < \infty$ ,  $L(t) := \ell(\gamma | [0, t])$ . Then  $L(t) \nearrow L$  as  $t \to 1^-$ , and so  $\ell(\gamma | (t, 1)) = L - L(t) \to 0$  as  $t \to 1^-$ . So for  $s, s' \in (t, 1)$ 

$$|\gamma(s) - \gamma(s')| \le \ell(\gamma|(t,1)) \to 0 \text{ as } t \to 1^-.$$

This implies that for every sequence  $\{s_n\}$  in [0, 1) with  $s_n \to 1$ ,  $\{\gamma(s_n)\}$  is a Cauchy sequence. The claim follows.

Let  $A \subseteq \mathbb{C}$  be a closed set, and  $x, y \in \mathbb{C}$ . We say that A separates x and y if x, y do not lie in one component of  $\mathbb{C} \setminus A$  (true if  $x \in A$  or  $y \in A$ !). It is equivalent to that every path joining x, y meets A.

**Janiszewski's Theorem.** Suppose that  $K, L \subseteq \mathbb{C}$  are compact sets such that  $K \cap L$  connected. If  $K \cup L$  separates two points  $x, y \in \mathbb{C}$ , then they are separated by K or by L.

**Lemma 2.5.** Let  $K \in \mathbb{D}$  be compact,  $x_0 \in \mathbb{C}$  such that  $\operatorname{dist}(x_0, K) > \operatorname{diam}(K)$ ,  $u, v \in \mathbb{C}$ . If K separates  $x_0$  and u, and separates  $x_0$  and v, them  $|u - v| \leq \operatorname{diam}(K)$ .

Figure 8: Proof of the lemma,  $u \neq v$ .

*Proof.* Pick  $a \in K$  and let  $R = \operatorname{diam}(K)$ . Then  $K \subseteq \overline{B}(a, R)$  and  $|x_0 - a| > R$ . So  $x_0 \in \mathbb{C} \setminus \overline{B}(a, R) \subseteq \mathbb{C} \setminus K$ . This shows that  $x_0$  lies in the unbounded component of  $\mathbb{C} \setminus K$ .

So both u, v do not lie in the unbounded component of  $\mathbb{C}\setminus K$ . This implies if  $\ell \in \mathbb{C}$  is the line with  $u, v \in \ell$ , then there exist  $u', v' \in K$  such that  $[u, v] \subseteq [u', v']$ . Hence,  $|u - v| \leq |u' - v'| \leq \text{diam}(K)$ .

Proof of Theorem 2.1. i)  $\Longrightarrow$  ii).

Suppose f has a continuous extension  $f : \overline{\mathbb{D}} \to \mathbb{C}$ . By continuity,  $f(\overline{\mathbb{D}}) \subseteq \overline{f(\mathbb{D})} = \overline{\Omega}$ . By compactness of  $\mathbb{D}$ ,  $\overline{\Omega} = \overline{f(\mathbb{D})} \subseteq f(\overline{\mathbb{D}})$ . So  $\overline{\Omega} = f(\overline{\mathbb{D}})$ . Since  $\Omega = f(\mathbb{D})$  is open,  $\partial\Omega = \overline{\Omega} \setminus \Omega \subseteq f(\partial\mathbb{D})$ . Moreover, conformality implies  $f(\partial\mathbb{D}) \subset \overline{\Omega} \setminus \Omega = \partial\Omega$ . So  $f(\partial\mathbb{D}) = \partial\Omega$ , which implies that  $\partial\Omega$  has a parametrization as a loop.

ii)  $\implies$  iii).

Continuous images of compact, locally connected sets are locally connected (see 2.2). Since  $\partial \mathbb{D}$  is compact and locally connected,  $\partial \Omega = f(\partial \mathbb{D})$  also has these properties.

iii)  $\implies$  iv).

Let  $u, v \in \mathbb{C} \setminus \Omega$  be two arbitrary points. Run along [u, v]:

1) If  $[u, v] \cap \partial \Omega = \emptyset$ , then [u, v] is a continuum in  $\mathbb{C} \setminus \Omega$  joining u, v with diam(E) = |u - v|.

#### Figure 9:

By assumption, there exists a continuum  $E' \subseteq \partial \Omega$  with  $u', v' \in E'$  and 2) If  $[u, v] \cap \partial \Omega \neq \emptyset$ , then we can find  $u', v' \in \partial \Omega$  such that  $[u, u'] \subseteq \mathbb{C} \setminus \Omega$ ,  $[v', v] \subseteq \mathbb{C} \setminus \Omega$ . diam $(E') \leq \omega(|u' - v'|)$ where  $\omega(\delta) \to 0$  as  $\delta \to 0^+$ . Then  $E := [u, u'] \cup E' \cup [v', v]$  is a continuum with  $E \subseteq \mathbb{C} \setminus \Omega$ ,  $u, v \in E$ , and

$$\operatorname{diam}(E) \le |u - v| + \omega(|u' - v'|) \le |u - v| + \omega(|u - v|) = \tilde{\omega}(\delta),$$

where  $\tilde{\omega}(\delta) = \delta + \omega(\delta)$  and  $\delta = |u - v|$ . Since  $\tilde{\omega}(\delta) \to 0$  as  $\delta \to 0^+$ , the claim follows. iv)  $\Longrightarrow$  i).

It is sufficient to show that f is uniformly continuous on  $\mathbb{D}$ , i.e., there exists an  $\omega : (0, \infty) \to (0, \infty)$  with  $\omega(\delta) \to 0$  as  $\delta \to 0^+$  such that

$$|f(x) - f(y)| \le \omega(|x - y|), \quad \text{for all} \quad x, y \in \mathbb{D}.$$

(then the image of every Cauchy sequence is Cauchy, bla, bla, bla, ...) equivalently,

diam
$$(f(B(z_0, \delta) \cap \mathbb{D})) \le \omega(\delta), \quad \text{for} \quad z_0 \in D, \ \delta > 0.$$

Here, wlog,  $\delta > 0$  is small and  $z_0 \in \mathbb{D}$  is close to  $\partial \mathbb{D}$ . By translation and scaling of  $\Omega$ , wlog, we can assume  $f(0) = 0, z_0 \in \mathbb{D}, w_0 = f(z_0)$  satisfying  $|z_0|, |w_0| \ge 1/2$ .

#### Figure 10:

By Wolff's Lemma 2.3, there exists  $r \in (\delta, \sqrt{\delta})$  such that

$$\ell(f(C)) \le \omega_1(\delta),$$

where  $C = \mathbb{C} \cap \{z \in \mathbb{C} : |z - z_0| = r\}, \omega_1 = C_0/\sqrt{\log(1/\delta)} \to 0 \text{ as } \delta \to 0 \text{ (for some constant } C_0 > 0).$ 

Let us assume C is not the whole circle  $|z - z_0| = r$ , but an open subarc. Then Lemma 2.4 implies that f(C) has two end points  $u, v \in \partial\Omega$ . So  $A := \overline{f(C)} = f(C) \cup \{u, v\}$  (possibly u = v). Then  $|u - v| \leq \ell(f(C)) \leq \omega_1(\delta)$ . Since  $\mathbb{C} \setminus \Omega \supset \partial\Omega$  is locally connected, there exists a continuum  $B \subseteq \mathbb{C} \setminus \Omega$  such that  $u, v \in B$  and

$$\operatorname{diam}(B) \le \omega_2(|u-v|) \le \omega_3(\delta).$$

Let  $K = A \cup B$ . Then

$$\operatorname{diam}(K) \le \operatorname{diam}(A) + \operatorname{diam}(B) \le \omega_1(\delta) + \omega_3(\delta) = \omega_4(\delta),$$

and  $K \cap \partial \Omega \neq \emptyset$ . So dist(a, K) > diam(K) if  $\delta$  is small enough.

#### Figure 11:

Now let  $z \in B(z_0, \delta) \cap \mathbb{D}$  be arbitrary and w = f(z). Then C separates 0 and z in  $\mathbb{D}$ , i.e.,  $(\mathbb{C} \setminus \mathbb{D}) \cup C$  separates 0 and z. This implies  $(\mathbb{C} \setminus \Omega) \cup (f(C) \cup B)$  separates 0 = f(0) and w = f(z). Since  $(\mathbb{C} \setminus \Omega) \cap (f(C) \cup B) = B$  is connected, and  $\mathbb{C} \setminus \Omega$  does not separate 0 and w, we get  $K = f(C) \cup B$  separates 0 and w by Janiszewski's Theorem. If  $z' \in B(z_0, \delta) \cap \mathbb{D}$  is another point and w' = f(z'), then K separates 0 and w' by the same argument. Lemma 2.5 implies

$$|w - w'| \leq \operatorname{diam}(K) \leq \omega_4(\delta),$$

and so

$$\operatorname{diam}(f(B(z_0,\delta)\cap\mathbb{D})) \leq \omega_4(\delta),$$

as desired.

**Remark 2.6.** A similar argument shows that if  $f : \mathbb{D} \to \Omega \subseteq \hat{\mathbb{C}}$  is conformal, then f has a continuous extension  $f : \overline{\mathbb{D}} \to \overline{\Omega} \subseteq \hat{\mathbb{C}}$  if  $\partial\Omega$  (or  $\hat{\mathbb{C}} \setminus \Omega$ ) is locally connected. Here, we use spherical or chordal distance in the target! (Versions of Wolff's Lemma and Lemma 2.5 still true for spherical metric.)

Let K be a continuum. A point p is a cut point of K if  $K \setminus \{p\}$  is not connected.

**Proposition 2.7.** Let  $\Omega \subseteq \mathbb{D}$  be a bounded simply connected region,  $f : \mathbb{D} \to \Omega$  be a conformal map with continuous extension  $f : \overline{\mathbb{D}} \to \overline{\Omega}$ . Let  $p \in \partial \Omega$ . Then  $\#f^{-1}(p) \ge 2$  if and only if p is a cut point of  $\partial \Omega$ .

More precisely, let  $A := f^{-1}(p) \subseteq \partial \mathbb{D}$ , and  $\partial \mathbb{D} \setminus A = \bigcup_{k \in \Lambda} I_k$  be the decomposition into pairwise disjoint open arcs ( $\Lambda$  countable indexes set). Then the sets  $f(I_k)$ ,  $k \in \Lambda$ , form the pairwise disjoint connected components of  $\partial \Omega \setminus \{p\}$ . (Note that  $\#\Lambda = \#A$ , so  $\#\Lambda \geq 2$  iff  $\#A \geq 2$ .)

Proof. Note that  $\partial \Omega \setminus \{p\} = f(\partial \mathbb{D} \setminus A) = \bigcup_{k \in \Lambda} f(I_k)$ , and the sets  $f(I_k)$  are connected (conformal images of connected sets!). It suffices to show that  $f(I_k)$ ,  $k \in \Lambda$ , are pairwise disjoint. Let I, I' be two of these arcs, and C the circular arc in  $\mathbb{D}$  with the same end points as I. Then C divides  $\mathbb{D}$  into two parts D and D' such that  $I \subseteq \partial D, I' \subseteq \partial D'$  and  $\mathbb{D} = D \cup C \cup D'$  is a disjoint union.

#### Figure 12:

Let  $J = f(C) \cup \{p\}$ , U = f(D) and U' = f(D'). Then J is a Jordan curve, and U, U' are open connected set in  $\mathbb{C} \setminus J$ . So  $U \subseteq \text{In}(J)$  or  $U \subseteq \text{Out}(J)$ ; and  $U' \subseteq \text{In}(J)$  or  $U' \subseteq \text{Out}(J)$ . We say U, U' can not lie in the same component of  $\mathbb{C} \setminus J$ .

Suppose  $U, U' \subseteq \text{In}(J)$ . By the open mapping theorem,  $U \cup f(C) \cup U' = \Omega$  is an open neighborhood of each point on  $f(C) \subseteq J$ . On the other hand, Out(J) is disjoint from  $U \cup f(C) \cup U'$  by the assumption. But  $\partial \text{Out}(J) = J$  which implies that Out(J) contains points near J. A contradiction.

So U, U' lie in different components of  $\mathbb{C} \setminus J$ , say,  $U \subseteq \operatorname{In}(J)$ ,  $U' \subseteq \operatorname{Out}(J)$ . Then,  $f(I) \subseteq f(\overline{D}) \subseteq \overline{U} \subseteq J \cup \operatorname{In}(J)$ . On the other hand,  $f(I) \subseteq \partial\Omega \setminus \{p\}$ , and  $\partial\Omega \setminus \{p\} \cap J = \emptyset$ . So  $f(I) \subseteq \operatorname{In}(J)$ . Similarly,  $f(I') \subseteq \operatorname{Out}(J)$ . Hence,  $f(I) \cap f(I') \subseteq \operatorname{In}(J) \cap \operatorname{Out}(J) = \emptyset$ .

**Theorem 2.8. (Carathéodory)** Let  $f : \mathbb{D} \to \Omega$  be a conformal map onto a bounded simply connected region. TFAE

- i) f has a homeomorphic extension to  $\overline{\mathbb{D}}$  (i.e., continuous and injective).
- ii)  $\partial \Omega$  is a Jordan curve.
- iii)  $\partial \Omega$  is locally connected and has no cut points.
- *Proof.* i)  $\implies$  ii) Obvious, because  $\partial \Omega = f(\partial \mathbb{D})$ .
  - ii)  $\implies$  iii) Clear.

iii)  $\implies$  i)

By Theorem 2.1, f has a continuous extension  $f : \overline{\mathbb{C}} \to \overline{\Omega}$ . By Proposition 2.7,  $f | \partial \mathbb{D}$  is injective. Since  $\partial \Omega = f(\partial \mathbb{D})$  and  $\Omega = f(\mathbb{D})$  are disjoint, f is injective on  $\overline{\mathbb{D}}$ .

A region  $\Omega \subseteq \hat{\mathbb{C}}$  is called an (open) Jordan region or domain if  $\partial \Omega \subseteq \hat{\mathbb{C}}$  is a Jordan curve. If  $\partial \Omega \subseteq \mathbb{C}$  (i.e.,  $\infty \notin \partial \Omega$ ), then  $\Omega = \text{In}(\partial \Omega)$  or  $\Omega = \text{Out}(\partial \Omega) \cup \{\infty\}$ . A closed Jordan region is the closure  $\overline{\Omega}$  of an open Jordan region  $\Omega \subseteq \hat{\mathbb{C}}$ . An open Jordan region is simply connected, because  $\partial \Omega$  is connected. **Corollary 2.9.** Let  $\Omega, \Omega' \subseteq \hat{\mathbb{C}}$  be Jordan regions,  $f : \Omega \leftrightarrow \Omega'$  be a conformal map. Then f has a (unique) homeomorphic extension  $f : \overline{\Omega} \leftrightarrow \overline{\Omega'}$  (w.r.t. chordal metric on  $\hat{\mathbb{C}}$ ).

*Proof.* Wlog,  $\Omega, \Omega' \subseteq \mathbb{C}$  (use Möbius transform). There exists a conformal map  $g : \mathbb{D} \to \Omega$ . Then  $h := f \circ g : \mathbb{D} \to \Omega'$  is a conformal map. By Theorem 2.8, g and h have homeomorphic extensions  $\overline{g} : \overline{\mathbb{D}} \leftrightarrow \overline{\Omega}, \overline{h} : \overline{\mathbb{D}} \leftrightarrow \overline{\Omega'}$  respectively. Then  $\overline{f} := \overline{h} \circ \overline{g}^{-1} : \overline{\Omega} \leftrightarrow \overline{\Omega'}$  is a homeomorphic extension of f.

**Lemma 2.10.** Let  $\varphi : \partial \mathbb{D} \to \partial \mathbb{D}$  be a homeomorphism. Then  $\varphi$  can be extended to a homeomorphism  $\overline{\varphi} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ .

*Proof.* Use "radial" extension. Let  $\overline{\varphi}(r \cdot \xi) = r \cdot \varphi(\xi)$ , where  $0 \leq r < \infty, \xi \in \partial \mathbb{D}$ , and  $\overline{\varphi}(\infty) = \infty$ . This is a continuous bijection with continuous inverse (= radial extension of  $\varphi^{-1}$ ). Furthermore,  $\overline{\varphi}|\overline{\mathbb{D}}:\overline{\mathbb{D}}\leftrightarrow\overline{\mathbb{D}}$  is a homeomorphic extension of  $\varphi$ .

**Theorem 2.11.** Let  $f : \mathbb{D} \to \Omega$  be a conformal map onto a Jordan region  $\Omega \subseteq \hat{\mathbb{C}}$ . Then f has a homeomorphic extension  $\overline{f} : \hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$ .

*Proof.* Wlog, assume  $J := \partial \Omega \subseteq \mathbb{C}$ ,  $\Omega = \text{In}(J)$ . Then f has a homeomorphic extension  $f : \overline{\mathbb{D}} \leftrightarrow \overline{\Omega}$ . Note that  $\tilde{\mathbb{D}} = \hat{\mathbb{C}} \setminus \overline{\mathbb{D}}$  and  $\tilde{\Omega} = \hat{\mathbb{C}} \setminus \overline{\Omega}$  are two Jordan regions. So there exists a conformal map  $\tilde{f} : \tilde{\mathbb{D}} \to \tilde{\Omega}$  with homeomorphic extension  $\tilde{f} : \overline{\tilde{\mathbb{D}}} \leftrightarrow \overline{\tilde{\Omega}}$ . If  $f | \partial \mathbb{D} = \tilde{f} | \partial \mathbb{D}$ , then  $f, \tilde{f}$  would post together to homeomorphic extension of f. However, it is not true in general!

Let  $\varphi := \tilde{f}^{-1} \circ f | \partial \mathbb{D}$  ("conformal welding map induced by J"). Then  $\varphi$  is a homeomorphism on  $\partial \mathbb{D}$ . By Lemma 2.10, it has a homeomorphic extension  $\overline{\varphi} : \hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$ . Define

$$\overline{f} = \begin{cases} f(z) & z \in \overline{\mathbb{D}}, \\ \tilde{f}(\overline{\varphi}(z)) & z \in \widehat{\mathbb{C}} \setminus \mathbb{D}. \end{cases}$$

This is well-defined, and a homeomorphism  $\hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$ , which extends f.

**Theorem 2.12. (Schönflies)** Every homeomorphism  $\varphi : J \leftrightarrow J'$  between Jordan curves can be extended to a homeomorphism  $\overline{\varphi} : \hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$ . In particular, every Jordan curve  $J \subseteq \hat{\mathbb{C}}$  is the image of  $\partial \mathbb{D}$  under a homeomorphism  $\overline{\varphi} : \hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$ .

Proof. Wlog, assume  $J = \partial \mathbb{D}$  and  $J' \subseteq \mathbb{C}$ . Let  $\Omega = \operatorname{In}(J')$ . There exists a conformal map  $f: \mathbb{D} \leftrightarrow \Omega$  with homeomorphic extension  $\overline{f}: \hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$  (Theorem 2.11). Let  $\psi = (f|\partial \mathbb{D})^{-1} \circ \varphi$ . This is a homeomorphism  $\psi: \partial \mathbb{D} \leftrightarrow \partial \mathbb{D}$ , and so has a homeomorphic extension  $\overline{\psi}: \hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$ . Then  $f \circ \overline{\psi}$  is a homeomorphism  $\hat{\mathbb{C}} \leftrightarrow \hat{\mathbb{C}}$  with  $f \circ \overline{\psi} | \partial \mathbb{D} = f \circ \psi = f \circ (f|\partial \mathbb{D})^{-1} \circ \varphi = \varphi$ .  $\Box$ 

### 2.13. Orientation

Let  $z_1, z_2, z_3 \in \partial \mathbb{D}$  be three distinct points. This triple is in *positive cyclic order* if in the standard parametrization  $\gamma : \mathbb{R} \to \partial \mathbb{D}$ ,  $\gamma(t) = e^{it}$ , whenever  $\gamma(t_1) = z_1$  and  $t_2, t_3 \in (t_1, t_1 + 2\pi)$  with  $\gamma(t_2) = z_2$ ,  $\gamma(t_3) = z_3$ , we have  $t_2 < t_3$ .

Note that every  $\varphi \in \operatorname{Aut}(\mathbb{D})$  preserves the positive cyclic order of points on  $\partial \mathbb{D}$ .

The triple  $z_1, z_2, z_3 \in \partial \mathbb{D}$  is positive oriented iff  $\text{Im}(u, z_1, z_2, z_3) < 0$  for  $u \in \mathbb{D}$  ( $\mathbb{D}$  lies to the left of  $\partial \mathbb{D}$ ).

### Positive cyclic order on boundary of Jordan region:

Let  $\Omega \subseteq \mathbb{C}$  be a Jordan region,  $w_1, w_2, w_3 \in \partial\Omega$  are distinct points.  $w_1, w_2, w_3$  are in *positive* cyclic order if the following is true: If f is a conformal map  $f : \mathbb{D} \leftrightarrow \Omega$  with homeomorphic extension  $f : \overline{\mathbb{D}} \leftrightarrow \overline{\Omega}$ . Let  $z_k = f^{-1}(w_k), k = 1, 2, 3$ . The requirement is that  $z_1, z_2, z_3$  are in positive cyclic order on  $\partial\mathbb{D}$ .

The definition is independent of the choice of f. Let  $g: \mathbb{D} \leftrightarrow \Omega$  be another conformal map with homeomorphic extension  $g: \overline{\mathbb{D}} \leftrightarrow \overline{\Omega}$ . Let  $z'_k = g^{-1}(w_k), k = 1, 2, 3$ . Since  $\varphi = f^{-1} \circ g \in$ Aut( $\mathbb{D}$ ), we get  $z_1, z_2, z_3$  in positive cyclic order iff  $z'_1, z'_2, z'_3$  in positive cyclic order.

**Theorem 2.14.** Let  $\Omega, \Omega' \subseteq \hat{\mathbb{C}}$  be two Jordan regions,  $z_1, z_2, z_3$  in positive cyclic order on  $\partial\Omega$ ,  $w_1, w_2, w_3$  in positive cyclic order on  $\partial\Omega'$ . Then there exists a unique conformal map  $f: \Omega \leftrightarrow \Omega'$  whose homeomorphic extension  $f: \overline{\Omega} \leftrightarrow \overline{\Omega'}$  satisfies  $w_k = f(z_k), \ k = 1, 2, 3$ .

*Proof.* Pull back by auxiliary conformal maps, we can assume that  $\Omega = \mathbb{D}$ ,  $\Omega' = \mathbb{D}$  (see figure) Then the existence and the uniqueness follow from the fact that there exists a unique Möbius transform  $\varphi \in \operatorname{Aut}(\mathbb{D})$  with  $w'_k = \varphi(z'_k)$ .

### Figure 13: pull back

**Example 2.15.** Let  $f : \mathbb{D} \to \Omega$  be a conformal map onto the "slit disk"  $\Omega = \mathbb{D} \setminus [0, 1)$ .  $\partial \Omega$  is locally connected. So there exists continuous extension  $f : \overline{\mathbb{D}} \to \overline{\Omega}$ . Since  $\partial \Omega \setminus \{1\}$  has two components, so by Proposition 2.7,  $\#f^{-1}(1) = 2$ . Let  $f^{-1} = \{a, b\}$ .  $\partial \mathbb{D} \setminus \{a, b\} = I_1 \cup I_2$  such that  $f(I_1) = \partial \mathbb{D} \setminus \{1\}$  and  $f(I_2) = [0, 1)$ . Since  $\partial \mathbb{D} \setminus \{1\}$  has not cut points,  $\#f^{-1}(p) = 1$  for  $p \in \partial \mathbb{D} \setminus \{1\}$ . So  $f : I_1 \to \partial \mathbb{D} \setminus \{1\}$  is a homeomorphism. Since  $\#f^{-1}(0) = 1$ , so there exists unique  $c \in I_2$  such that f(c) = 0.

#### Figure 14: example

**Lemma 2.16.** Let  $\Omega \subseteq \mathbb{C}$  be a simply connected region,  $z_0 \in \Omega$  be a base point,  $D \subseteq \mathbb{C}$  be a disk with  $C = \partial D$  such that  $z_0 \notin D$ .  $C \cap \Omega = \bigcup_{k \in \{1,2,3,\ldots\}} C_k$ , the pairwise disjoint union of circle arcs. If  $z \in \Omega \cap D$ , then one of the arcs  $C_k$  separates  $z_0$  and z in  $\Omega$  (i.e., every path in  $\Omega$  joining  $z_0$  and z meets  $C_k$ ).

Proof. Suppose it is not. Then none of compact sets  $A_k := \hat{\mathbb{C}} \setminus \Omega \cup C_k$ ,  $k = 1, 2, \ldots$ , separates  $z_0$  and z. There exists a path  $\gamma$  in  $\Omega$  joining  $z_0$  and z. It has positive distance to  $\partial\Omega$ , so it can only meet finitely many arcs  $C_k$  ( $\overline{C}_k \cap \partial\Omega \neq \emptyset$ , and diam  $C_k \to 0$  as  $k \to \infty$  if there are infinitely many). So there exists  $N \in \mathbb{N}$  such that  $B := A_N \cup A_{N+1} \cup \cdots$  does not meet  $\gamma$ , so B does not separate  $z_0$  and z. Since  $A_1 \cap B = \hat{\mathbb{C}} \setminus \Omega$  is connected, and neither  $A_1$  nor B separate  $z_0$  and z,  $A_1 \cup B$  does not separate  $z_0$  and z, etc.. So  $A_1 \cup \cdots \cup A_{N-1} \cup B = \bigcup_{k \in \{1,2,\ldots\}} A_k \cup \hat{\mathbb{C}} \setminus \Omega = C \cup \hat{\mathbb{C}} \setminus \Omega$  does not separate  $z_0$  and z. But C separates  $z_0, z$ . Contradiction!

# Figure 15:

**Theorem 2.17.** (Fundamental distortion estimate for conformal maps into  $\mathbb{D}$ ) There exists a function (universal distortion function)  $\omega : (0, \infty) \to (0, \infty), \ \omega(\delta) \to 0$  as  $\delta \to 0^+$  with the following property: Let  $\Omega \subseteq \mathbb{C}$  be a simply connected region,  $g : \Omega \to \mathbb{D}$  a conformal map, and  $K \subset \Omega$  be a continuum. Then

$$\operatorname{diam}(g(K)) \le \omega \left(\frac{\operatorname{diam}(K)}{|f'(0)|}\right),\tag{5}$$

where  $f = g^{-1} : \mathbb{D} \to \Omega$ . One can take  $\omega(\delta) = c_0 / \sqrt{\log(1/\delta)}$ .

*Proof.* Without lose of generality, we assume g(0) = 0 = f(0), g'(0) = 1 = f'(0). The proof is similar to the proof of Theorem 2.1 using Wollf's Lemma applied to g'. Wlog, assume diam(K) very small.

Note that  $f(\overline{B}(0,1/2)) \supseteq \overline{B}(0,2/9)$  (follows from lower bounded in Theorem 1.7 and its proof). So  $g(\overline{B}(0,2/9) \subseteq \overline{B}(0,1/2)$ . By Koebe's Distortion Theorem, it follows that  $|g'| \leq c_0$  on  $\overline{B}(0,2/9)$  with  $c_0$  independent of g. So g is uniformly Lipschitz on  $\overline{B}(0,2/9)$ . (5) follows if K close to 0. Pick  $z_0 \in K$ . Let  $\delta := \operatorname{diam}(K)$ . Then  $K \subseteq \overline{B}(z_0, \delta)$ . By Wolff's Lemma, there exists  $r \in (\delta, \sqrt{\delta})$  such that for  $C_0 = \{|z - z_0| = r\}$  we have

$$\ell(g(C_0 \cap \Omega)) \le \omega(\delta).$$

We may assume that 0 lies outside  $C_0$ . By Lemma 2.16, there exists a circular arc  $C \subseteq C_0 \cap \Omega$ such that C separates 0 and  $z_0$  in  $\Omega$ . Then C actually separates 0 and every point on K in  $\Omega$ since K is connected. Then

$$\ell(g(C)) \le \ell(g(C_0 \cap \Omega)) \le \omega(\delta) \ll 1,$$

and g(C) separates 0 and g(K) in  $\mathbb{D}$ . Hence

$$\operatorname{diam} g(K) \le 2\operatorname{diam} g(C) \le 2\omega(\delta).$$

(Note: if  $d = \operatorname{diam}(K), w_0 \in g(K)$ , and d is small, then  $g(K) \subseteq \overline{B}(w_0, d)$ .)

**Definition 2.18.** Let  $\Omega \subseteq \mathbb{C}$  be a region,  $a, b \in \Omega$ . We define

$$\lambda_{\Omega}(a,b) = \inf_{\gamma} \ell(\gamma),$$

where inf is taken over all pathes in  $\Omega$  joining a, b, and

$$\rho_{\Omega}(a,b) = \inf_{K} \operatorname{diam}(K),$$

where inf is taken over all continuum  $K \subseteq \Omega$  with  $a, b \in K$ . Both  $\lambda_{\Omega}$  and  $\rho_{\Omega}$  are metrics on  $\Omega$ , called the *inner length metric* on  $\Omega$  and the *diameter metric* on  $\Omega$ , resp.

Note that  $\rho_{\Omega} \leq \lambda_{\Omega}$ , and  $\rho_{\Omega}, \lambda_{\Omega}$  induce the Euclidean topology on  $\Omega$ . If  $a \in \Omega$  and b is close to a, then  $\rho_{\Omega}(a, b) = \lambda_{\Omega}(a, b) = |a - b|$ . If  $\Omega$  is a convex region, both  $\rho_{\Omega}$  and  $\lambda_{\Omega}$  agree with the Euclidean metric.

**Corollary 2.19.** Let  $\Omega \subseteq \mathbb{C}$  be a simply connected region and  $g : \Omega \to \mathbb{D}$  be a conformal map. Then  $g : (\Omega, \rho_{\Omega}) \to \mathbb{D}$  and  $g : (\Omega, \lambda_{\Omega}) \to \mathbb{D}$  are uniformly continuous, where  $\mathbb{D}$  equipped with Euclidean metric. *Proof.* Let  $w_1, w_2 \in \Omega$  be arbitrary,  $K \subseteq \Omega$  be compact with  $w_1, w_2 \in K$  with diam(K) close to  $\rho_{\Omega}(w_1, w_2)$ . Let  $z_1 = g(w_1), z_2 = g(w_2)$ . By Theorem 2.17,

$$|z_2 - z_1| \leq \operatorname{diam} g(K) \leq \tilde{\omega}(\operatorname{diam}(K)) \to \tilde{\omega}(\rho_{\Omega}(w_1, w_2))$$

as diam $(K) \rightarrow \rho_{\Omega}(w_1, w_2)$ . So

$$|z_2 - z_1| \le \tilde{\omega}(\rho_{\Omega}(w_1, w_2)) \le \tilde{\omega}(\lambda_{\Omega}(w_1, w_2))$$

(if  $\tilde{\omega}$  is increasing as we may assume).

**Corollary 2.20.** Let  $\Omega \subseteq \mathbb{C}$  be a simply connected region and  $g : \Omega \to \mathbb{D}$  be a conformal map. Suppose  $\gamma : [0,1) \to \Omega$  is a path with  $\lim_{t\to 1^-} \gamma(t) = w_0 \in \partial\Omega$ . Then  $\lim_{t\to 1^-} g(\gamma(t)) = z_0 \in \partial\mathbb{D}$  exists.

Proof. Our hypothesis implies that diam  $\gamma([t,1)) \to 0$  as  $t \to 1^-$ . By Theorem 2.17, diam  $g \circ \gamma([t,1)) \to 0$  as  $t \to 1^-$ . Hence,  $\lim_{t\to 1^-} g \circ \gamma(t) = z_0 \in \overline{\mathbb{D}}$  exists. Then  $z_0 \in \partial \mathbb{D}$ , because otherwise  $z_0 \in \mathbb{D}$ , and  $\gamma(t) = g^{-1}(g(\gamma(t))) \to g^{-1}(z_0) = w_0 \in \Omega$ . Contradiction!

**Remark 2.21.** For every simply connected region  $\Omega \subseteq \hat{\mathbb{C}}$ , one can introduce a suitable compactification  $\hat{\Omega}$  (*prime end compactification*) such that every conformal map  $f : \Omega_1 \leftrightarrow \Omega_2$  between simply connected regions extends to a homeomorphism  $\hat{f} : \hat{\Omega}_1 \leftrightarrow \hat{\Omega}_2$ . (Carathéodory 1913)

# 3 Kernel convergence

Let  $f_n : \mathbb{D} \to \Omega_n, n \in \mathbb{N}$  be conformal maps with suitable normalization. Can one characterize when  $\{f_n\}$  converges locally uniformly on  $\mathbb{D}$  in term of the regions  $\Omega_n$ ? Yes! Answer related to kernel convergence of the sequence  $\{\Omega_n\}$ .

**Definition 3.1.** Let  $\{\Omega_n\}$  be a sequence of regions in  $\mathbb{C}$  and  $w_0 \in \Omega_n$  for all  $n \in \mathbb{N}$  ( $w_0$  the base point). The kernel Kern<sub>w0</sub> w.r.t.  $w_0$  of  $\{\Omega_n\}$  consists of

i) the point  $w_0$ ,

ii) every point  $w \in \mathbb{C}$  with the following property: there exists a region U with  $w_0, w \in U$  such that  $U \subseteq \Omega_n$  for all sufficiently large n.

So one always has  $w_0 \in \operatorname{Kern}_{w_0}$ , and  $\operatorname{Kern}_{w_0} = \{w_0\}$  is possible. If  $\operatorname{Kern}_{w_0} \neq \{w_0\}$ , then  $\operatorname{Kern}_{w_0}$  is a region ( = the union of sets U in ii)).

Let  $\Omega = \{w_0\}$  or  $\Omega \subseteq \mathbb{C}$  be a region with  $w_0 \in \Omega$ . We say that  $\{\Omega_n\}$  converges to  $\Omega$  in the sense of kernel convergence (w.r.t. the base point  $w_0$ ), written by

$$\Omega_n \to \Omega$$
, (w.r.t.  $w_0$ ),

if every subsequence of  $\{\Omega_n\}$  has kernel  $\Omega$ .

**Example 3.2.** Let  $\Omega_n = \mathbb{C} \setminus ((-\infty, -1/n] \cup [1/n, +\infty)), \mathbb{H}_+ = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ , and  $\mathbb{H}_- = \{z \in \mathbb{C} : \operatorname{Im} z < 0\}$ . Then  $\bigcap \Omega_n = \mathbb{H}_+ \cup \{0\} \cup \mathbb{H}_-$ . Suppose  $w_0 \in \mathbb{H}_+ \cup \{0\} \cup \mathbb{H}_-$  is the base point, then

$$\operatorname{Kern}_{w_0} = \begin{cases} \mathbb{H}_+ & w_0 \in \mathbb{H}_+, \\ \{0\} & \text{for} & w_0 = 0, \\ \mathbb{H}_- & w_0 \in \mathbb{H}_-. \end{cases}$$

Moreover,

$$\Omega_n \to \begin{cases} \mathbb{H}_+ & w_0 \in \mathbb{H}_+, \\ \{0\} & \text{w.r.t.} & w_0 = 0, \\ \mathbb{H}_- & w_0 \in \mathbb{H}_-. \end{cases}$$

**Lemma 3.3.** Let  $w_0 \in \mathbb{C}$ ,  $\{\Omega_n\}$  be a sequence of regions in  $\mathbb{C}$  with  $w_0 \in \Omega_n$  for all  $n \in \mathbb{N}$ .

a) If  $\{\Omega_n\}$  is increasing, i.e.,  $\Omega_n \subseteq \Omega_{n+1}$  for all  $n \in \mathbb{N}$ , then  $\operatorname{Kern}_{w_0} = \Omega_{\infty} := \bigcup_{n \in \mathbb{N}} \Omega_n$ , and  $\Omega_n \to \Omega_{\infty}$  w.r.t.  $w_0$ .

b) If  $\{\Omega_n\}$  is decreasing, i.e.,  $\Omega_n \supseteq \Omega_{n+1}$  for all  $n \in \mathbb{N}$ , let  $\Omega_\infty$  be the connected component of the interior of  $\bigcap_{n\in\mathbb{N}}\Omega_n$  containing  $w_0$  if  $w_0 \in \operatorname{int}\bigcap_{n\in\mathbb{N}}\Omega_n$  and  $\Omega_\infty = \{w_0\}$  if not. Then  $\operatorname{Kern}_{w_0} = \Omega_\infty$  and  $\Omega_n \to \Omega_\infty$  w.r.t.  $w_0$ .

*Proof.* a) Kern<sub> $w_0</sub> \subseteq \Omega_{\infty}$ : clear.</sub>

 $\Omega_{\infty} \subseteq \operatorname{Kern}_{w_0}$ : if  $w_0 \in \Omega_{\infty}$ , then  $w_0 \in \Omega_n$  for some  $n \in \mathbb{N}$ . Take  $U = \Omega_n$  in Definition 3.1, so  $w_0 \in \operatorname{Kern}_{w_0}$ .

 $\Omega_n \to \Omega_\infty$  because kernel (= union) does not change by passing to subsequences.

b) Kern<sub> $w_0</sub> \subseteq \bigcap_{n \in \mathbb{N}} \Omega_n$  is  $\{w_0\}$  or a region containing  $w_0$ , so Kern<sub> $w_0</sub> \subseteq \Omega_\infty$ .</sub></sub>

 $\Omega_{\infty} \subseteq \operatorname{Kern}_{w_0}$ : clear if  $\Omega_{w_0} = \{w_0\}$ . Otherwise, take  $U = \Omega_{\infty}$  in Definition 3.1, so  $\Omega_{\infty} = U \subseteq \operatorname{Kern}_{w_0}$ .

 $\Omega_n \to \Omega_\infty$  is clear because  $\bigcap_{n \in \mathbb{N}} \Omega_n$  does not change by passing to subsequences.

**Proposition 3.4.** Let  $f_n : \mathbb{D} \leftrightarrow \Omega_n$  be conformal maps such that  $f_n(0) = w_0$  and  $f'_n(0) > 0$ . Suppose that  $f_n \to f$  locally uniformly on  $\mathbb{D}$ . Then, for the kernel of  $\{\Omega_n\}$  w.r.t.  $w_0$ , we have  $\operatorname{Kern}_{w_0} = f(\mathbb{D})$ .

*Proof.* Note that f is a constant  $(\equiv w_0)$  or a conformal map onto  $\Omega = f(\mathbb{D})$  (Hurwitz),  $f(0) = w_0$ .

I.  $f(\mathbb{D}) \subseteq \operatorname{Kern}_{w_0}$ : Obvious if f is a constant. Assume f is not a constant. Let  $w \in f(\mathbb{D})$  be arbitrary. There exists  $r \in (0, 1)$  such that  $w \in U := f(B(0, r))$ . U is a region such that  $w_0, w \in U$  (and so  $w \in \operatorname{Kern}_{w_0}$ ).

**Claim.**  $U \subseteq f_n(\mathbb{D}) = \Omega_n$  for large n.

Otherwise, there exists a sequence  $\{n_k\}$  in  $\mathbb{N}$  with  $n_k \to \infty$  and points  $w_k \in U$  such that  $w_k \notin f_{n_k}(\mathbb{D})$ . Since  $\overline{U} \subseteq f(\overline{B}(0,r))$  is compact, so wlog we can assume that  $w_k \to v \in \overline{U} \subseteq f(\overline{\mathbb{D}})$ . Then  $h_k := f_{n_k} - w_k$  is zero-free on  $\mathbb{D}$ , and  $h_k \to f - v$  locally uniformly on  $\mathbb{D}$ . However  $v \in \overline{U} \subseteq f(\mathbb{D})$ , so f - v is not zero-free. So  $f - v \equiv 0$ , equivalently  $f \equiv v$  by Hurwitz. Contradiction!

II. Kern<sub>w0</sub>  $\subseteq f(\mathbb{D})$ :  $w_0 \in f(\mathbb{D})$ . Let  $w \in \text{Kern}_{w_0}$ ,  $w \neq w_0$  be arbitrary. Then there exists a region U such that  $w_0, w \in U$  and  $U \subseteq \Omega_n$  for all large n, wlog for all n. Then  $g_n := f_n^{-1}|_U : U \to \mathbb{D}$  be holomorphic. By Montel's theorem, there exists a subsequence that converges locally uniformly to a holomorphic function  $g: U \to \mathbb{D}$ . Note that  $g_n(w_0) = 0$  which implies  $g(w_0) = 0$ , and  $g(U) \subseteq \overline{\mathbb{D}}$ . So  $g(U) \subseteq \mathbb{D}$  by Maximum principle.

Let  $z := g(w) \in \mathbb{D}$ . Then  $f_n \to f$  locally uniformly near z, and so

$$w = \lim_{n \to \infty} f_n(g_n(w)) = f(z) \in f(\mathbb{D})$$

A combination of I and II gives the proposition.

**Theorem 3.5.** (Main theorem about kernel convergence) Let  $f_n : \mathbb{D} \leftrightarrow \Omega_n$  be conformal maps such that  $f_n(0) = w_0$ ,  $f'_n(0) > 0$  for  $n \in \mathbb{N}$ . Then

i)  $\Omega_n \to \{w_0\}$  (w.r.t.  $w_0$ ) iff  $f_n \to const. = w_0$  locally uniformly on  $\mathbb{D}$  iff  $f'_n(0) \to 0$ .

ii)  $\Omega_n \to \Omega$ , where  $\Omega \subseteq \mathbb{C}$  is a region in  $\mathbb{C}$  with  $w_0 \in \Omega$  and  $\Omega \neq \mathbb{C}$  iff  $f_n \to f \not\equiv const.$ locally uniformly on  $\mathbb{D}$ .

iii)  $\Omega_n \to \mathbb{C}$  iff  $f_n \to \infty$  locally uniformly on  $\mathbb{D} \setminus \{0\}$  iff  $f'_n(0) \to \infty$ .

In particular,  $\Omega_n \to \Omega \neq \mathbb{C}$  iff  $\{f_n\}$  converges locally uniformly on  $\mathbb{D}$ .

*Proof.* By Koebe's distortion theorem

$$|f_n'(0)| \frac{|z|}{(1+|z|)^2} \le |f_n(z) - w_0| \le |f_n'(0)| \frac{|z|}{(1-|z|)^2},\tag{6}$$

and

$$B\left(w_0, \frac{1}{4} |f'_n(0)|\right) \subseteq \Omega_n = f_n(\mathbb{D}).$$
(7)

iii) First,  $\Omega_n \to \mathbb{C} \Longrightarrow f'_n(0) \to \infty$ . If not, then  $\{f'_n(0)\}$  has a bounded subsequence, wlog,  $\{f'_n(0)\}$  itself is bounded. By (6),  $\{f_n\}$  is locally uniformly bounded on  $\mathbb{D}$ . By Montel's theorem, a subsequence of  $\{f_n\}$  converges locally uniformly on  $\mathbb{D}$ , wlog,  $f_n \to f$  locally uniformly. By Proposition 3.4,  $\Omega_n = f_n(\mathbb{D}) \to f(\mathbb{D})$  w.r.t.  $w_0$ , but  $f(\mathbb{D}) \neq \mathbb{C}$  (by Liouville). Contradiction!

Now,  $f'_n(0) \to \infty \iff f_n \to \infty$  locally uniformly on  $\mathbb{D}$  by (6); and  $f'_n(0) \to \infty \Longrightarrow \Omega_n \to \mathbb{C}$  by (7).

i) + ii) Suppose  $\Omega_n \to \Omega \neq \mathbb{C}$  (possibly  $\Omega = \{w_0\}$ ). Then by iii),  $\{f'_n(0)\}$  has no subsequence  $\{n_k\}$  with  $f'_{n_k}(0) \to \infty$ , and so  $\{f'_n(0)\}$  is bounded. By (6),  $\{f_n\}$  is locally uniformly bounded, and so a normal family by Montel. To show that  $\{f_n\}$  converges locally uniformly on  $\mathbb{D}$  it suffices that any two subsequential limits g, h of  $\{f_n\}$  agree. By Proposition 3.4,

$$g(\mathbb{D}) = \operatorname{Kern}_{w_0} = \Omega = h(\mathbb{D}).$$

So if  $\Omega = \{w_0\}$ , then  $g = h \equiv w_0$ , and  $f_n \to w_0$  locally uniformly. This shows that  $\Omega_n \to \{w_0\} \Longrightarrow f_n \to w_0$  locally uniformly.

If  $\Omega \neq \{w_0\}$ , then g, h are conformal maps onto  $\Omega$  by Hurwitz. We have  $g(0) = h(0) = w_0$ , and g', h' are the subsequential limits of  $\{f'_n\}$  by Weierstrass. So g'(0), h'(0) > 0. By uniqueness part of the Riemann mapping theorem,  $g \equiv h$ . This shows that  $\Omega_n \to \Omega \neq \{w_0\}, \mathbb{C} \Longrightarrow f_n \to f$ locally uniformly, where f is the unique conformal map with  $\Omega = f(\mathbb{D}), f(0) = w_0, f'(0) > 0$ .

Conversely,

i)  $f_n \to w_0$  locally uniformly  $\iff f'_n(0) \to 0$  by  $(6) \Longrightarrow \Omega_n \to \{w_0\}$  by Proposition 3.4. ii)  $f_n \to f \not\equiv \text{const.} \Longrightarrow \Omega_n \to \Omega = f(\mathbb{D})$  by Proposition 3.4, so f is a conformal map onto

1)  $f_n \to f \not\equiv \text{const.} \implies \Omega_n \to \Omega = f(\mathbb{D})$  by Proposition 3.4, so f is a conformal map onto  $f(\mathbb{D}) = \Omega \neq \mathbb{C}$ .

# 4 Loewner chains and the Loewner-Kufarev equation

### 4.1. Loewner chains (whole plane version)

Let  $I = [a, \infty]$ ,  $w_0$  be a base point,  $\Omega_t$  be simply connected regions with  $w_0 \in \Omega_t$  for  $t \in I$  such that

i)  $\Omega_{\infty} = \mathbb{C} (\Omega_a = \{w_0\} \text{ is allowed as degenerate case}),$ 

ii)  $\Omega_s \subsetneq \Omega_t$  for  $s, t \in I, s < t$ .

We say that the family  $\{\Omega_t\}$  is a *(geometric) Loewner chain* if  $\Omega_t$  is continuous in t in the sense of kernel convergence w.r.t.  $w_0$ , i.e.,  $\Omega_{t_n} \to \Omega_t$  whenever  $t_n \in I \to t \in I$ .

For  $t \in I$ , let  $f_t : \mathbb{D} \leftrightarrow \Omega_t$  be the unique conformal map with  $f_t(0) = w_0$ ,  $f'_t(0) > 0$  ( $f_\infty$  is left undefined and  $f_a = w_0$  if  $\Omega_a = \{w_0\}$ ). Then  $\{f_t\}$  is called an *(analytic) Loewner chain* if  $f_t$  is continuous in t w.r.t. locally uniform convergence on  $\mathbb{D}$ , i.e.,  $f_{t_n} \to f_t$  locally uniformly on  $\mathbb{D}$  whenever  $t_n \to t$ . (It is understood that this means  $f'_{t_n}(0) \to \infty$  if  $t_n \to \infty$ . No problem if  $\Omega_a = \{w_0\}$  and  $f_a = w_0!$ )

The Loewner chain is normalized if  $f'_t(0) = e^t$  for  $t \in I$ .

**Remark 4.2.** a)  $\{\Omega_t\}$  continuous in t if and only if  $\{f_t\}$  continuous in t (by Theorem 3.5).

b) For continuity of  $\{f_t\}$ , it is enough to check *left* and *right* continuity, i.e., that  $f_{t_n} \to f_t$  locally uniformly on  $\mathbb{D}$  whenever  $t_n$  is a monotone sequence in I (decreasing or increasing) with  $t_n \to t$  (because every sequence has a monotone subsequence).

c) By a) and b), for continuity of  $\{\Omega_t\}$ , one only has to check that  $\Omega_{t_n} \to \Omega_t$  whenever  $t_n$  is a monotone sequence in I with  $t_n \to t$ . By Lemma 3.3, this is equivalent to the following two conditions:

(i)  $\Omega_t = \bigcup_{s < t} \Omega_s$  for  $t \in I$ , and

(ii)  $\Omega_t = \{w_0\} \cup$  the connected component of interior of  $\bigcap_{t < r} \Omega_r$  that contains  $w_0$  for  $t \in I$ . Note that if

(ii')  $\Omega_t$  = interior of  $\bigcap_{t < r} \Omega_r$ , then (ii) is true.

d) Continuity of  $\{\Omega_t\}$  is independent of  $w_0 \in \bigcap \Omega_t = \Omega_a$ . Indeed, (i) in a) is independent of  $w_0$ . Let  $w_0, w_1 \in \bigcap \Omega_t$ . Then  $w_0, w_1 \in \Omega_t \subseteq$  interior of  $\bigcap_{t < r} \Omega_r =: \tilde{\Omega}_t$ . So  $w_0, w_1$  lie in the same connected component of  $\tilde{\Omega}_t$ . This shows that (ii) true for  $w_0$  iff true for  $w_1$ .

**Example 4.3.** (Loewner chain generated by slits)

Let  $\gamma : [a, \infty] \to \hat{\mathbb{C}}$  be a simple path ending at  $\infty$  (called it "slit"), i.e.,  $\gamma : [a, \infty] \to \hat{\mathbb{C}}$  be a continuous injective map with  $\gamma(\infty) = \infty$ . Let  $\Omega_t = \mathbb{C} \setminus \gamma([t, \infty])$  for  $t \in [a, \infty], w_0 \in \mathbb{C} \setminus \gamma([a, \infty])$  (or  $w_0 = \gamma(a)$ , in this case  $\Omega_a = \{w_0\}$ ). Then  $\Omega_t$  is a simply connected region (the complement of an arc in  $\hat{\mathbb{C}}$  has only one component!).  $\Omega_s \subsetneq \Omega_t$  if s < t, because  $\gamma([s, \infty]) \supseteq \gamma([t, \infty])$ .

For continuity,

(i)  $\bigcup_{s < t} \mathbb{C} \setminus \gamma([s, \infty]) = \mathbb{C} \setminus \bigcap_{s < t} \gamma([s, \infty]) = \mathbb{C} \setminus \gamma(\bigcap_{s < t} [s, \infty])$  (by continuity of  $\gamma$ ) =  $\mathbb{C} \setminus \gamma([t, \infty]) = \Omega_t$ .

(ii')  $\bigcap_{t < r} \mathbb{C} \setminus \gamma([r, \infty]) = \mathbb{C} \setminus \bigcup_{t < r} \gamma([r, \infty]) = \mathbb{C} \setminus \gamma(\bigcup_{t < r} [r, \infty]) = \mathbb{C} \setminus \gamma((t, \infty]) = \Omega_t \cup \gamma(t)$ . So  $\operatorname{int}(\bigcap_{t < r} \mathbb{C} \setminus \gamma([r, \infty])) = \Omega_t$ . (If  $t = a, w_0 = \gamma(a), \Omega_a = \{w_0\}$ , then  $\tilde{\Omega} := \operatorname{int}(\bigcap_{t < r} \mathbb{C} \setminus \gamma([r, \infty])) = \mathbb{C} \setminus \gamma([a, \infty])$ ). So the component of  $\tilde{\Omega}$  containing  $w_0 = \emptyset$ , and (ii) true for t = a.)

**Example 4.4.** Let  $\Omega$  be a bounded Jordan region. Then there exists a Loewner chain  $\{\Omega_t\}_{t\in[1,\infty]}$  such that  $\Omega_1 = \Omega$  ( $w_0 \in \Omega$ ).

*Proof.* Let  $\hat{\Omega}$  be the exterior of the Jordan curve  $\partial \Omega$  in  $\hat{\mathbb{C}}$ . Then there exists a conformal map  $f: \tilde{\mathbb{D}} \to \tilde{\Omega}$  with  $f(\infty) = \infty$ . It has a homeomorphic extension  $f: \overline{\tilde{\mathbb{D}}} \to \overline{\tilde{\Omega}}$ .

For  $t \in [1, \infty)$ , let  $\Omega_t$  be the inside of the Jordan curve  $f(\{z \in \mathbb{C} : |z| = t\})$  and  $\Omega_{\infty} = \mathbb{C}$ . Then  $\{\Omega_t\}_{t \in [1,\infty]}$  is a Loewner chain with  $\Omega_1 = \Omega$ .

 $\Omega_1 = \Omega$  is clear.  $\Omega_t$  is strictly increasing. Indeed,

$$\Omega_t = \widehat{\mathbb{C}} \setminus f(\mathbb{D}) \cup f(\{z \in \mathbb{C} : 1 < |z| < t\}), \quad \text{for } 1 < t < \infty.$$

(shown as in the proof of Area Theorem.)

Continuity:

For  $1 \le t < \infty$ , (i)  $\bigcup_{s < t} \Omega_s = \hat{\mathbb{C}} \setminus f(\tilde{\mathbb{D}}) \cup f(\{z \in \mathbb{C} : 1 < |z| < t\}) = \Omega_t$ .

(ii')  $\bigcap_{s \leq t} \Omega_s = \hat{\mathbb{C}} \setminus f(\tilde{\mathbb{D}}) \cup f(\{z \in \mathbb{C} : 1 < |z| \leq t\}) = \Omega_t \cup \partial \Omega_t = \overline{\Omega}_t$ . Since  $\Omega_t$  is a Jordan region,  $\operatorname{int}(\overline{\Omega}) = \Omega_t$ .

For 
$$t = \infty$$
,  $\bigcup_{s < \infty} \Omega_s = \hat{\mathbb{C}} \setminus f(\tilde{\mathbb{D}}) \cup f(\{z \in \mathbb{C} : 1 < |z| < \infty\}) = \overline{\Omega}_t \cup \tilde{\Omega}_t \setminus \{\infty\} = \mathbb{C}$ .

### 4.5. The associated semi-group

Let  $f, g: \mathbb{D} \to \mathbb{C}$  be two holomorphic maps. f is subordinate to g, written by  $f \prec g$ , if there exists a holomorphic map  $\varphi: \mathbb{D} \to \mathbb{D}$  with  $\varphi(0) = 0$  such that  $f = g \circ \varphi$  (then f(0) = g(0), and  $|f'(0)| \leq |g'(0)|$ , because  $|\varphi'(0)| \leq 1$  by Schwarz's Lemma).

Let  $\{f_t\}_{t\in[a,\infty]}$  be a Loewner chain. For  $a \leq s \leq t < \infty$ ,  $\Omega_s \subseteq \Omega_t$ , so  $f_t^{-1}$  is defined on  $\Omega_s$ . Let  $\varphi_{s,t} := f_t^{-1} \circ f_s : \mathbb{D} \to \mathbb{D}$ . Then  $\varphi_{s,t}$  is a conformal map onto its image.  $\varphi_{s,t}(\mathbb{D}) \subseteq \mathbb{D}$  and  $\varphi_{s,t}(0) = 0$ . We have

$$f_{s} = f_{t} \circ \varphi_{s,t}, \qquad a \le s \le t < \infty,$$

$$\varphi_{t,u} \circ \varphi_{s,t} = \varphi_{s,u}, \quad a \le s \le t \le u < \infty, \quad \text{(semi-group property)}$$

$$\varphi_{t,t} = \mathrm{id}_{\mathbb{D}}, \qquad a \le t < \infty.$$
(8)

(8) shows that  $f_s$  is subordinate to  $f_t$  for s < t, so

$$f'_s(0) \le f'_t(0), \qquad s < t.$$

Actually, we have strict inequality

$$f'_s(0) < f'_t(0).$$
  $s < t.$ 

Otherwise,  $f'_t(0) = f'_s(0) = f'_t(0) \cdot \varphi'_{s,t}(0)$ , so  $\varphi'_{s,t}(0) = 1$ . By Schwarz's Lemma,  $\varphi_{s,t} = \mathrm{id}_{\mathbb{D}}$ , and  $f_t = f_s$ ,  $\Omega_t = f_t(\mathbb{D}) = f_s(\mathbb{D}) = \Omega_s$ . A contradiction.

#### 4.6. Heuristics for the Loewner equation

A family of maps  $\varphi_{s,t}$  with the semi-group property is generated by a time-dependant vector field.

Assume  $\varphi_{s,t}(z)$  is smooth in s, t, holomorphic in z. Define

$$V(z,s) = \frac{\partial \varphi_{s,t}}{\partial t}(z)\Big|_{t=s} = \lim_{\delta \to 0^+} \frac{\varphi_{s,s+\delta}(z) - z}{\delta}.$$

V(z,s) forms a time-dependent vector field. Note that  $\varphi_{s,s} = \mathrm{id}_{\mathbb{D}}, \varphi_{s,s+\delta}(z) \sim z + \delta V(z,s)$ . We have

$$\frac{\partial \varphi_{s,t}}{\partial t}(z) = \lim_{\delta \to 0^+} \frac{\varphi_{s,t+\delta}(z) - \varphi_{s,t}(z)}{\delta} = \lim_{\delta \to 0^+} \frac{\varphi_{t,t+\delta}(\varphi_{s,t}(z)) - \varphi_{s,t}(z)}{\delta} = V(\varphi_{s,t}(z), t).$$

So the semi-group  $\varphi_{s,t}$  satisfies the following equations

$$\begin{aligned} \frac{\partial \varphi_{s,t}}{\partial t}(z) &= V(\varphi_{s,t}(z),t), \qquad t > s, \\ \frac{\partial \varphi_{s,t}}{\partial t}(z)\Big|_{t=s} &= V(z,s). \end{aligned}$$

Let  $\gamma: [s, u] \to \mathbb{C}$  be a  $C^1$ -smooth curve satisfying

$$\gamma(s) = z, \quad \dot{\gamma}(t) = V(\gamma(t), t), \quad t \in [s, u].$$

Then  $\gamma$  is an integral curve of the vector field V. So  $t \to \varphi_{s,t}(z)$  is an integral curve of V. In fact, z at time  $s \mapsto \gamma(t)$  at time t is a map  $\varphi_{s,t}(z)$  (map from time s to t).

What can we say about V(z,s) if  $\varphi_{s,t}$  comes from Loewner chain?

By Schwarz's Lemma,  $\varphi_{t,t+\delta}(z) \in \overline{B}(0,|z|)$ . So  $\operatorname{Re}((\varphi_{t,t+\delta}(z)-z)/z) \leq 0$ , and

$$\operatorname{Re} \frac{V(z,t)}{z} = \operatorname{Re} \lim_{\delta \to 0^+} \frac{\varphi_{t,t+\delta}(z) - z}{\delta z} \le 0.$$

So V(z,t) can be written as

$$V(z,t) = -zp(z,t),$$

where p(z,t) is holomorphic in z and  $\operatorname{Re} p(z,t) \geq 0$  for  $z \in \mathbb{D}$ .

Let  $\{f_t\}$  be a Loewner chain and  $f(z,t) := f_t(z)$ . Assume that f(z,t) is smooth in t. Denote

$$f'_t(z) = \frac{\partial f}{\partial z}(z,t), \qquad \dot{f}_t(z) = \frac{\partial f}{\partial t}(z,t).$$

For  $\varepsilon > 0$ ,

$$f_t(z) = f_{t+\varepsilon} \circ \varphi_{t,t+\varepsilon}(z) = f(\varphi_{t,t+\varepsilon}(z), t+\varepsilon).$$

So

$$0 = \frac{\partial f_t(z)}{\partial \varepsilon} \Big|_{\varepsilon=0} = \frac{\partial}{\partial \varepsilon} f(\varphi_{t,t+\varepsilon}(z), t+\varepsilon) \Big|_{\varepsilon=0}$$
$$= f'_t(z) \frac{\partial \varphi_{t,t+\varepsilon}(z)}{\partial \varepsilon} (z) \Big|_{\varepsilon=0} + \dot{f}_t(z)$$
$$= f'_t(z) V(z,t) + \dot{f}_t(z)$$
$$= -zp(z,t) f'_t(z) + \dot{f}_t(z).$$

The equation

$$\dot{f}_t(z) = zp(z,t)f'_t(z),\tag{9}$$

i.e.

$$\frac{\partial f}{\partial t}(z,t) = zp(z,t)\frac{\partial f}{\partial z}(z,t)$$

is called the Loewner-Kufarev equation.

Have we accomplished anything?

Wlog, assume  $f(0,t) = w_0 \equiv 0, f_0 \in S$  (i.e. $a_1(0) = 1$ ). Let

$$f(z,t) = a_1(t)z + a_2(t)z^2 + \cdots$$
  

$$\dot{f}(z,t) = \dot{a}_1(t)z + \dot{a}_2(t)z^2 + \cdots$$
  

$$f'(z,t) = a_1(t) + 2a_2(t)z + \cdots$$
  

$$p(z,t) = c_0(t) + c_1(t)z + \cdots$$

Then

$$(\dot{a}_1(t)z + \dot{a}_2(t)z^2 + \dots) = z(c_0(t) + c_1(t)z + \dots)(a_1(t) + 2a_2(t)z + \dots)$$
$$= c_0a_1z + (c_1a_1 + 2c_0a_2)z^2 + \dots$$

Comparing coefficients, we get

$$\dot{a}_1 = c_0 a_1, \qquad \dot{a}_2 = c_1 a_1 + 2c_0 a_2.$$

Making a change of time parametrization, we can assume  $\dot{a}_1 = a_1$ , so

$$c_0 = 1$$
 and  $a_1(t) = e^t$ .

Now

$$\dot{a}_2 - 2a_2 = c_1 e^t$$
.

 $\operatorname{So}$ 

$$a_2(t) = C(t)e^{2t}$$
, where  $C(t) = \int_0^t c_1(s)e^{-s}ds$ 

Since  $e^{-t}f_t \in \mathcal{S}$ , we have  $|a_2(t)e^{-t}|$  is bounded. So

$$C(\infty) = \lim_{t \to \infty} C(t) = \lim_{t \to \infty} a_2(t)e^{-2t} = 0,$$
  
$$-C(t) = C(\infty) - C(t) = \int_t^\infty c_1(s)e^{-s}ds.$$

So

$$a_2(t) = -e^{2t} \int_t^\infty c_1(s) e^{-s} ds$$
, and  $a_2(0) = -\int_0^\infty c_1(t) e^{-t} dt$ 

Note that if  $f(z) = 1 + c_1 z + c_2 z^2 + \cdots$  holomorphic in  $\mathbb{D}$ , and  $\operatorname{Re} f(z) \ge 0$ , then  $|c_2| \le 2$  by Schwarz's Lemma. So  $|c_1(0)| \leq 2$  and

$$|a_2(0)| \le 2 \int_0^\infty e^{-t} dt \le 2.$$

**Lemma 4.7.** Let  $\{f_t\}_{t\in I}$ ,  $I = [a, \infty]$ , be an analytic Loewner chain. Then there exist  $\tilde{a} \in$  $[-\infty, +\infty)$ , a strictly increasing homeomorphism  $\alpha : \tilde{I} := [\tilde{a}, \infty] \to I$ , and a Loewner chain  $\{\tilde{f}_t\}_{t\in\tilde{I}} \text{ such that} \\ \text{i) } \tilde{f}'_t(0) = e^t \text{ for } t\in\tilde{I}\setminus\{-\infty,\infty\},$ 

ii)  $\tilde{f}_t = f_{\alpha(t)}$ .

(So by a homeomorphic change of time parametrization, one can normalize an analytic Loewner chain.)

Proof. Define

$$\beta(t) = \begin{cases} f'_t(t) & \text{for} \quad t \in I \setminus \{\infty\} \\ \infty & t = \infty \end{cases}$$

Then

i)  $\beta$  is strictly increasing (see 4.5).

ii)  $\beta$  is continuous:

Let  $\{t_n\}$  be a sequence in I such that  $t_n \to t_\infty \in I$ . Then if  $t_\infty = \infty$ ,  $\beta(t_n) = f'_{t_n}(0) \to \infty = \beta(\infty)$  by the definition of Loewner chain; if  $t_\infty \neq \infty$ ,  $f_{t_n} \to f_{t_\infty}$  locally uniformly on  $\mathbb{D}$ ; so  $\beta(t_n) = f'_{t_n}(0) \to f'_{t_\infty}(0) = \beta(t_\infty)$  by Weierstrass theorem.

By i) + ii),  $\beta$  is a homeomorphism onto its image  $\tilde{I} := \beta(I) = [b, \infty] \subseteq [0, \infty]$ . Let  $\tilde{a} := \log b \in [-\infty, \infty)$ , and  $\alpha(t) := \beta^{-1}(e^t)$ ,  $t \in [\tilde{a}, \infty]$   $(e^{-\infty} = 0, e^{\infty} = \infty)$ . Then  $\alpha$  is a strictly increasing homeomorphism from  $\tilde{I} := [\tilde{a}, \infty]$  onto  $I = [a, \infty]$ .

$$\tilde{I} \stackrel{\exp}{\longleftrightarrow} [b,\infty] \stackrel{\beta^{-1}}{\longleftrightarrow} [a,\infty]$$

Define  $\tilde{f}_t := f_{\alpha(t)}$ . Then  $\{\tilde{f}_t\}_{t \in \tilde{I}}$  is a Loewner chain (obvious), and

$$\tilde{f}'_t(0) = f'_{\alpha(t)}(0) = \beta(\alpha(t)) = e^t, \quad \text{for } t \in \tilde{I}.$$

From now on, all analytic Loewner chain  $\{t_t\}_{t \in I}$  are normalized, i.e.,  $f'_t(0) = e^t$  for  $t \in I$ .

**Theorem 4.8.** (Vitali's theorem on induced convergence) Let  $\Omega \subseteq \mathbb{C}$  be a region,  $\mathcal{F}$  be a normal family of holomorphic functions on  $\Omega$ , and  $\{f_n\}$  be a sequence in  $\mathcal{F}$ . Suppose there exists a sequence  $\{z_k\}$  of points in  $\Omega$  such that

i)  $\{f_n(z_k)\}$  converges for all  $k \in N$ ,

ii)  $\{z_k\}$  has a limit point in  $\Omega$ .

Then  $\{f_n\}$  converges locally uniformly on  $\Omega$  (to a holomorphic limit function f).

*Proof.* There exists a subsequential limit  $f \in H(\Omega)$  of  $\{f_n\}$  (w.r.t. locally uniform convergence on  $\Omega$ ).

**Claim.**  $f_n \to f$  locally uniformly on  $\Omega$ .

We prove it by contradiction. If not, then there exist  $\varepsilon_0 > 0$  ("bad  $\varepsilon$ "), a compact set  $K \subseteq \Omega$ , a sequence  $n_l \in \mathbb{N}$  with  $n_l \to \infty$ , and points  $u_l \in K$  such that

$$|f_{n_l}(u_l) - f(u_l)| \ge \varepsilon_0.$$

Let  $g_l$  denote  $f_{n_l}$ . Then  $\{g_l\}$  is a sequence in  $\mathcal{F}$ , so it has a convergent subsequence, wlog,  $g_l \to g_l$ locally uniformly on  $\Omega$ . Also, wlog,  $u_l \to u_\infty \in K$ . Since  $\{f_n(z_k)\}$  converges for each  $k \in \mathbb{N}$ , we have  $g(z_k) = f(z_k)$ . Since  $\{z_k\}$  has a limit point in  $\Omega$ ,  $g \equiv f$  by the Uniqueness Theorem. So

$$0 < \varepsilon_0 \le \lim_{l \to \infty} |g_l(u_l) - f(u_l)| = |g(u_\infty) - f(u_\infty)| = 0$$

Contradiction!

**Theorem 4.9.** (Holomorphic functions with positive real part) Let  $\mathcal{P} = \{p \in H(\mathbb{D}) : p(0) = 1, \text{Re } p \ge 0 \text{ on } \mathbb{D}\}$ . Then the following statements are true.

i) 
$$|p(z)| \leq \frac{1+|z|}{1-|z|}$$
 for all  $p \in \mathcal{P}$  and  $z \in \mathbb{D}$ .

ii)  $\mathcal{P}$  is a normal family, and it is closed w.r.t. locally uniform convergence, i.e., if  $\{p_n\}$  is a sequence in  $\mathcal{P}$  and  $p_n \to p$  locally uniformly on  $\mathbb{D}$ , then  $p \in \mathcal{P}$ .

iii) If  $p \in \mathcal{P}$ , then there exists a unique Borel probability measure  $\mu$  on  $\partial \mathbb{D}$  such that

$$p(z) = \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta) \quad for \quad z \in \mathbb{D}.$$

(Herglotz representation). Conversely, every function of this type belongs to  $\mathcal{P}$ . If  $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$  is the Taylor expansion of p, then

$$c_n = 2 \int_{\partial \mathbb{D}} \zeta^{-n} d\mu(\zeta) = 2 \int_0^{2\pi} e^{-in\theta} d\mu(e^{i\theta}) \quad for \quad n \in \mathbb{N}.$$

iv) Let  $p(z) = 1 + c_1 z + c_2 z^2 + \dots \in \mathcal{P}$ . Then  $|c_n| \le 2$  and  $(\operatorname{Re} c_1)^2 \le 2 + \operatorname{Re} c_2$ .

*Proof.* Note that  $\operatorname{Re} p > 0$  for  $p \in \mathcal{P}$  by the minimal principle for holomorphic functions.

i) It can be easily obtained by Schwarz's Lemma (details filled later).

ii) By i),  $\mathcal{P}$  is locally uniformly bounded. The remains obtained by the Montel theorem and the Weierstrass theorem.

iii) Let  $p \in \mathcal{P}$ . For fixed  $r \in (0,1)$ , define  $p_r(z) = p(rz)$ . The  $p_r \in H(\mathbb{D})$  and  $p_r$  has a continuous extension to  $\overline{\mathbb{D}}$ . Hence, by the Schwarz formula

$$p_r(z) = \operatorname{Im} p_r(0) + \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \operatorname{Re} p_r(e^{it}) dt = \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu_r(\zeta),$$

where

$$d\mu_r(\zeta) = d\mu_r(e^{it}) = \frac{1}{2\pi} \operatorname{Re} p_r(e^{it}) dt = \frac{1}{2\pi} \operatorname{Re} p(r\zeta) dt.$$

 $\mu_r$  is a positive Borel measure on  $\partial \mathbb{D}$ , and

$$\mu_r(\partial \mathbb{D}) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} p(re^{it}) dt = \operatorname{Re} p(0) = 1.$$

So  $\mu_r$  is a positive Borel probability measure on  $\partial \mathbb{D}$ .

By Banach-Alaoglu theorem, there exists a sequence  $r_n \in (0,1)$  with  $r_n \to 1$  such that  $\mu_n := \mu_{r_n} \to \mu$  w.r.t. the weak-\* topology on  $C(\partial \mathbb{D})^* = \{\nu : \text{complex Borel measure on } \partial \mathbb{D}\},$  i.e.,

$$\int_{\partial \mathbb{D}} u d\mu_n \to \int_{\partial \mathbb{D}} u d\mu \quad \text{for all} \quad u \in C(\partial \mathbb{D}).$$

 $\mu$  is also a probability measure. For fixed  $z \in \mathbb{D}$ , we have

$$p(z) = \lim_{n \to \infty} p(r_n z) = \lim_{n \to \infty} p_{r_n}(z)$$
$$= \lim_{n \to \infty} \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu_n(\zeta) = \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta).$$

This shows the existence of the Herglotz representation.

Uniqueness and converse will be the homework assignments!

For fixed  $z \in \mathbb{D}$  and  $\zeta \in \partial \mathbb{D}$ , we have

$$\frac{\zeta + z}{\zeta - z} = \frac{1 + z/\zeta}{1 - z/\zeta} = 1 + 2\sum_{n=1}^{\infty} z^n \zeta^{-n},$$

converges uniformly in  $\zeta$ . So we can integral term-by-term and conclude

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n = \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta)$$
  
= 
$$\int_{\partial \mathbb{D}} \left( 1 + 2 \sum_{n=1}^{\infty} z^n \zeta^{-n} \right) d\mu(\zeta)$$
  
= 
$$1 + 2 \sum_{n=1}^{\infty} \left( \int_{\partial \mathbb{D}} \zeta^{-n} d\mu(\zeta) \right) z^n, \quad \text{for all} \quad z \in \mathbb{D}.$$

Comparing coefficients, we can obtain

$$c_n = 2 \int_{\partial \mathbb{D}} \zeta^{-n} d\mu(\zeta) \quad \text{for} \quad n \in \mathbb{N}.$$

iv) In particular,

$$|c_n| = 2 \Big| \int_{\partial \mathbb{D}} \zeta^{-n} d\mu(\zeta) \Big| \le 2 \int_{\partial \mathbb{D}} |\zeta^{-n}| d\mu(\zeta) = 2.$$

Here we have used  $\zeta = e^{it}$ . So

$$\operatorname{Re} c_1 = 2 \int_{\partial \mathbb{D}} \operatorname{Re}(e^{-it}) d\mu(\zeta) = 2 \int_{\partial \mathbb{D}} (\cos t) d\mu(\zeta), \quad \text{and} \quad \operatorname{Re} c_2 = 2 \int_{\partial \mathbb{D}} (\cos 2t) d\mu(\zeta).$$

So

$$(\operatorname{Re} c_1)^2 = 4 \left( \int_{\partial \mathbb{D}} (\cos t) d\mu(\zeta) \right)^2 \leq 4 \int_{\partial \mathbb{D}} (\cos^2 t) d\mu(\zeta) \qquad (\operatorname{Cauchy-Schwarz})$$
$$= 4 \int_{\partial \mathbb{D}} \frac{1 + \cos 2t}{2} d\mu(\zeta) = 2 + 2 \operatorname{Re} c_2.$$

**Lemma 4.10.** Let  $\{f_t\}_{t\in[a,\infty]}$  be a normalized Loewner chain,  $\varphi_{s,t} = f_t^{-1} \circ f_s$  for  $s \leq t$  on  $I = [a, \infty]$ . Then for fixed  $z \in \mathbb{D}$ ,

$$\begin{aligned} &\text{i)} \quad |\varphi_{s,t}(z) - z| \le |t - s| \frac{2|z|}{1 - |z|}, \quad a \le s \le t < \infty, \\ &\text{ii)} \quad |f_t(z) - f_s(z)| \le e^t |t - s| \frac{4|z|}{(1 - |z|)^4}, \quad a \le s \le t < \infty, \\ &\text{iii)} \quad |\varphi_{s,u}(z) - \varphi_{t,u}(z)| \le |t - s| \frac{2|z|}{(1 - |z|)^2}, \quad a \le s \le t \le u < \infty, \\ &\text{iv)} \quad |\varphi_{s,t}(z) - \varphi_{s,u}(z)| \le |u - t| \frac{2|z|}{1 - |z|}, \quad a \le s \le t \le u < \infty. \end{aligned}$$

So the following functions are Lipschitz:

 $t \to f_t(z)$  on  $[a, \infty), z \in \mathbb{D}$  fixed;

 $t \to \varphi_{s,t}(z)$  on  $[s,\infty)$ ,  $z \in \mathbb{D}$ ,  $s \in [a,\infty)$  fixed;

 $t \to \varphi_{t,u}(z)$  on  $[a, u], z \in \mathbb{D}, u \in [a, \infty)$  fixed.

Moreover, the Lipschitz constants are uniform if the arguments and parameters are restricted to suitable subdomains. For example, for each  $n \in \mathbb{N}$ , there exists L = L(n) such that  $t \to f_t(z)$  is L-Lipschitz on [a, n] for each  $z \in \overline{B}(0, 1 - \frac{1}{n})$ .

*Proof.* Some estimates:

- 1.  $|h(z_1) h(z_2)| \le \max_{|u| \le r} |h'(u)| |z_1 z_2|$  for  $h \in H(\mathbb{D}), z_1, z_2 \in \overline{B}(0, r), 0 < r < 1$ . 2.  $|e^u - e^v| \le |u - v|, u, v \in \mathbb{C}$ , Reu, Re $v \le 0$ .
- 2.  $|e| e| \leq |a b|, a, b \in \mathbb{C}$ , ite a, ite  $b \leq 2$
- 3.  $\varphi \in \operatorname{Aut}(\mathbb{D})$ . Then

$$|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2} \leq \frac{1}{1 - |z|^2}, \quad z \in \mathbb{D}.$$
 (Schwarz-Pick)

i) From  $s \leq t$ ,  $f_t \circ \varphi_{s,t} = f_s$ , we have

$$f'_t(\varphi_{s,t}(0)) \cdot \varphi'_{s,t}(0) = f'_s(0).$$

By  $\varphi_{s,t}(0) = 0, f'_t(0) = e^t, e^t \cdot \varphi'_{s,t}(0) = e^s$ , so  $\varphi'_{s,t}(0) = e^{s-t} \le 1$ . Define

$$\Phi_{s,t}(z) = \log\left(\frac{z}{\varphi_{s,t}(z)}\right) = \log\frac{z}{e^{s-t}z + \cdots} = \log(e^{t-s} + \cdots) = (t-s) + \cdots .$$
(10)

Then  $\Phi_{s,t}$  is holomorphic in  $\mathbb{D}$  and  $\Phi_{s,t}(0) = t - s$ . Since  $|z/\varphi(z)| \ge 1$ , so  $\operatorname{Re} \Phi_{s,t}(z) \ge 0$ , and  $\frac{1}{t-s}\Phi_{s,t} \in \mathcal{P}$ . Hence, by Theorem 4.9,

$$|\Phi_{s,t}(z)| \le |t-s| \frac{1+|z|}{1-|z|} \le |t-s| \frac{2}{1-|z|}.$$

From  $\varphi_{s,t}(z) = z \cdot e^{-\Phi_{s,t}(z)}$ ,  $\operatorname{Re} \Phi_{s,t}(z) \ge 0$ , we have

$$|\varphi_{s,t}(z) - z| = |z||e^{-\Phi_{s,t}(z)} - e^0| \le |z||\Phi_{s,t}(z)| \le |t - s|\frac{2|z|}{1 - |z|}.$$

ii)  $|f_t(z) - f_s(z)| = |f_t(z) - f_t(\varphi_{s,t}(z))| \le \max_{|u| \le |z|} |f'_t(u)||z - \varphi_{s,t}(z)|$ , here we have used  $|\varphi_{s,t}(z)| \le |z|$ . By Koebe's and i),

$$|f_t(z) - f_s(z)| \le e^t \frac{1 + |z|}{(1 - |z|)^3} \cdot |t - s| \frac{2|z|}{1 - |z|} \le e^t |t - s| \frac{4|z|}{(1 - |z|)^4}.$$

iii) By Schwarz lemma and i),

$$\begin{aligned} |\varphi_{s,u}(z) - \varphi_{t,u}(z)| &= |\varphi_{t,u}(\varphi_{s,t}(z)) - \varphi_{t,u}(z)| \le \max_{|a| \le |z|} |\varphi_{t,u}'(a)| \cdot |\varphi_{s,t}(z) - z| \\ &\le \frac{1}{1 - |z|^2} \cdot |t - s| \frac{2|z|}{1 - |z|} \le |t - s| \frac{2|z|}{(1 - |z|)^2}. \end{aligned}$$

iv) By i) and  $|\varphi_{s,t}(z)| \leq |z|$ ,

$$\begin{aligned} |\varphi_{s,t}(z) - \varphi_{s,u}(z)| &= |\varphi_{s,t}(z) - \varphi_{t,u}(\varphi_{s,t}(z))| \\ &\leq |u - t| \frac{2|w|}{1 - |w|} \leq |u - t| \frac{2|z|}{1 - |z|}, \qquad \text{where } w = \varphi_{s,t}(z). \end{aligned}$$

**Definition 4.11.** Let  $\Omega \subseteq \mathbb{C}$  be a region,  $I \subseteq \mathbb{R}$  be an interval.  $HL(\Omega \times I)$  is the set of all function  $f : \Omega \times I \to \mathbb{C}$  satisfying

i)  $f(\cdot, t)$  is holomorphic on  $\Omega$  for all  $t \in I$ ,

ii)  $f(z, \cdot)$  is uniformly Lipschitz on compact set, i.e., whenever,  $K \subseteq \Omega$  compact,  $J \subseteq I$  compact interval, then there exists L > 0 such that  $|f(z, s) - f(z, t)| \leq L|s - t|$  for all  $z \in K$  and all  $s, t \in J$ .

Lemma 4.10 shows that if  $\{f_t\}$  is a normalized Loewner chain on  $[a, \infty]$ , then  $(z,t) \to f_t(z) \in HL(\mathbb{D}, [a, \infty));$   $(z,t) \to \varphi_{s,t}(z) \in HL(\mathbb{D}, [s, \infty));$  $(z,s) \to \varphi_{s,t}(z) \in HL(\mathbb{D}, [a,t]),$  where  $\varphi_{s,t} = f_t^{-1} \circ f_s.$ 

**Proposition 4.12.** Let  $\Omega \subseteq \mathbb{C}$  be a region,  $I \subseteq \mathbb{R}$  be an interval,  $f \in HL(\Omega \times I)$ . Then i) f is continuous on  $\Omega \times I$ .

There exists a set  $E \subseteq I$  with |E| = 0 (the 1-dim Lebesgue measure) such that

ii)  $\frac{\partial f}{\partial t}(z,t)$  exists for all  $z \in \Omega$ ,  $t \in I \setminus E$ . Moreover,  $\frac{\partial f}{\partial t}(z,t)$  is holomorphic on  $\Omega$  for all  $t \in I \setminus E$ ,  $\frac{\partial f}{\partial t}$  is measurable and uniformly bounded on compact subsets, i.e., whenever  $K \subseteq \Omega$ 

compact,  $J \subseteq I$  compact interval, then there exists  $M \ge 0$  such that  $\left|\frac{\partial f}{\partial t}(z,t)\right| \le M$  for all  $z \in K, t \in J \setminus E$ .

iii) f is differentiable at each point  $(z,t) \in \Omega \times I \setminus E$ , more precisely,

$$f(z',t') = f(z,t) + \frac{\partial f}{\partial z}(z,t)(z'-z) + \frac{\partial f}{\partial t}(z,t)(t'-t) + o(|z'-z| + |t'-t|)$$

as  $(z',t') \to (z,t)$ . iv)  $\frac{\partial^n f}{\partial z^n} \in HL(\Omega \times I)$  for all  $n \in \mathbb{N}$ . Moreover,  $\frac{\partial}{\partial t} (\partial^n f)(z,t) = \frac{\partial^n}{\partial t} (\partial f)(z,t) = f = H$ 

$$\frac{\partial}{\partial t} \left( \frac{\partial^n f}{\partial z^n} \right) (z,t) = \frac{\partial^n}{\partial z^n} \left( \frac{\partial f}{\partial t} \right) (z,t) \quad \text{for all} \quad (z,t) \in \Omega \times I \setminus E.$$
(11)

v) Let  $z_0 \in \Omega$ , and

$$f(z,t) = \sum_{n=0}^{\infty} a_n(t)(z-z_0)^n$$

be the Taylor expansion of  $f(\cdot,t)$  at  $z_0$ . Then for each  $n \in \mathbb{N}$ ,  $a_n(t)$  is uniformly Lipschitz on compact interval  $J \subseteq I$ . Moreover,  $\dot{a}_n(t) := \frac{da_n}{dt}(t)$  exists for all  $t \in I \setminus E$ , and for  $t \in I \setminus E$ , the function  $\frac{\partial f}{\partial t}(\cdot,t)$  has the Taylor expansion

$$\frac{\partial f}{\partial t}(z,t) = \sum_{n=0}^{\infty} \dot{a}_n(t)(z-z_0)^n.$$
(12)

*Proof.* i)  $|f(z',t') - f(z,t)| \le |f(z',t') - f(z',t)| + |f(z',t) - f(z,t)|$  is small if |z'-z| + |t'-t| small, since |f(z',t') - f(z',t)| is uniformly small and |f(z',t) - f(z,t)| is small.

ii) Pick a sequence  $\{a_k\}$  in  $\Omega$  of distinct points such that  $\{a_k\}$  has a limit point in  $\Omega$  (e.g.  $a_k = a_0 + \delta/k, a_0 \in \Omega, \delta > 0$  small. Each function  $t \mapsto f(a_k, t)$  is locally Lipschitz on I, and so differentiable a.e. on I. So there exists a set  $E_k \subseteq I$  with  $|E_k| = 0$  such that  $\frac{\partial f}{\partial t}(a_k, t)$  exists for each  $t \in I \setminus E_k$ . Let  $E = \bigcup_{k \in \mathbb{N}} E_k \cup \{\text{end points of } I\} \subseteq I$ . Then |E| = 0. **Claim.**  $\frac{\partial f}{\partial t}(z, t)$  exists for all  $(z, t) \in \Omega \times I \setminus E$ . It suffices to show that if  $\{\delta_n\}$  is a sequence in  $\mathbb{R}$  with  $\delta_n \neq 0$  and  $\delta_n \to 0$ , then

1

$$\lim_{n \to \infty} \frac{f(z, t + \delta_n) - f(z, t)}{\delta_n}$$
(13)

exists (then the limit is independent of  $\{\delta_n\}$ ).

Define

$$F_n(z') := \frac{f(z', t + \delta_n) - f(z', t)}{\delta_n} \quad \text{for } z' \in \Omega.$$

Then  $\{F_n\}$  is a sequence of holomorphic functions on  $\Omega$  that are locally uniformly bounded on  $\Omega$ , and so form a normal family.

$$F_n(a_k) \to \frac{\partial f}{\partial t}(a_k, t) \qquad \text{as } n \to \infty$$

for each  $k \in \mathbb{N}$ . By Vitali's Theorem 4.8,  $\{F_n(z')\}$  converges for each  $z' \in \Omega$ , and so also for z' = z; so the limit (13) exists. So  $\frac{\partial f}{\partial t}(z,t)$  exists for all  $(z,t) \in \Omega \times I \setminus E$ . Actually, by Vitali,

 $F_n \to \frac{\partial f}{\partial t}(\cdot, t)$  locally uniformly on  $\Omega$   $(t \in I \setminus E \text{ fixed}).$ 

So  $\frac{\partial f}{\partial t}(\cdot, t)$  is holomorphic on  $\Omega$  (Weierstrass).  $\frac{\partial f}{\partial t}$  is measurable as a pointwise limit of continuous functions, and the boundedness property follows from the uniform Lipschitz property of f.

iii) Let  $(z,t) \in \Omega \times I \setminus E$  be arbitrary,  $(z_n, t_n) \in \Omega \times I \to (z,t)$  as  $n \to \infty$ . We have

$$\frac{f(\cdot, t_n) - f(\cdot, t)}{t_n - t} \to \frac{\partial f}{\partial t}(\cdot, t),$$

locally uniformly on  $\Omega$ , and so

$$\frac{f(z_n,t_n) - f(z_n,t)}{t_n - t} - \frac{\partial f}{\partial t}(z_n,t) = o(1), \qquad (t_n - t \neq 0).$$

So

$$f(z_n, t_n) - f(z, t) = f(z_n, t_n) - f(z_n, t) + f(z_n, t) - f(z, t)$$
  
=  $\frac{\partial f}{\partial t}(z_n, t)(t_n - t) + o(|t_n - t|) + \frac{\partial f}{\partial z}(z, t)(z_n - z) + o(|z_n - z|)$   
=  $\frac{\partial f}{\partial t}(z, t)(t_n - t) + \frac{\partial f}{\partial z}(z_n - z) + o(|t_n - t| + |z_n - z|).$ 

iv) For any  $n \in \mathbb{N}$ ,  $\frac{\partial^n f}{\partial z^n}(\cdot, t)$  is holomorphic on  $\Omega$  for  $t \in I$ . Suppose  $\overline{B}(a, R) \subseteq \Omega$ ,  $\gamma(t) = a + Re^{it}$ . Then

$$\frac{\partial^n f}{\partial z^n}(z,t) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta,t)}{(\zeta-z)^{n+1}} d\zeta$$

for  $z \in B(a, R)$ ,  $t \in I$ . By the Residue Theorem, if  $z \in \overline{B}(a, R/2)$ ,  $s, t \in J \subseteq I$  compact, then by the uniform Lipschitz property of f,

$$\left|\frac{\partial^n f}{\partial z^n}(z,s) - \frac{\partial^n f}{\partial z^n}(z,t)\right| \le \frac{n!}{2\pi} \cdot 2\pi R \sup_{\zeta \in \partial B(a,R)} |f(\zeta,s) - f(\zeta,t)| \cdot \frac{1}{(R/2)^{n+1}} \le C|s-t|,$$

so  $t \to \frac{\partial^n f}{\partial z^n}(z,t)$  is uniform Lipschitz on  $\overline{B}(a,R/2) \times J$ . The uniform Lipschitz property of  $\frac{\partial^n f}{\partial z^n}(z,t) \text{ follows from a covering argument.}$ Let  $t \in I \setminus E$ ,  $\{\delta_k\}$  be a sequence in  $\mathbb{R}$  with  $\delta_k \neq 0$ ,  $\delta_k \to 0$ . Then

$$\frac{f(\cdot,t+\delta_k)-f(\cdot,t)}{\delta_k} \to \frac{\partial f}{\partial t}(\cdot,t)$$

locally uniformly on  $\Omega$ ; hence for  $z \in B(a, R)$ .

$$\frac{1}{\delta_k} \left[ \frac{\partial^n f}{\partial z^n}(z, t+\delta_k) - \frac{\partial^n f}{\partial z^n}(z, t) \right] = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta, t+\delta_k) - f(\zeta, t)}{\delta_k} \frac{d\zeta}{(\zeta-z)^{n+1}} \\ \rightarrow \frac{n!}{2\pi i} \int_{\gamma} \frac{\partial f(\zeta, t)}{\partial t} \frac{d\zeta}{(\zeta-z)^{n+1}} = \frac{\partial^n}{\partial z^n} \left( \frac{\partial f}{\partial t} \right)(z, t).$$

This shows that  $\frac{\partial}{\partial t} \left( \frac{\partial^n f}{\partial z^n} \right)(z,t)$  exists, and (11) holds.

v) 
$$a_n(t) = \frac{1}{n!} \frac{\partial^n f}{\partial z^n}(0, t)$$
 for  $t \in I$ ;

so  $a_n$  is uniform Lipschitz on compact  $J \subseteq I$  for each  $n \in \mathbb{N}$  by iv). Moreover,

$$\dot{a}_n(t) = \frac{1}{n!} \frac{\partial}{\partial t} \left( \frac{\partial^n f}{\partial z^n} \right) (0, t) = \frac{1}{n!} \frac{\partial^n}{\partial z^n} \left( \frac{\partial f}{\partial t} \right) (0, t) \quad \text{for } t \in I \setminus E.$$

So for  $t \in I \setminus E$ , the *n*-th Taylor coefficient of the holomorphic function of z,  $\frac{\partial f}{\partial t}(\cdot, t)$  is given by  $\dot{a}_n(t)$ . (12) follows. 

**Theorem 4.13. (Main Theorem of Loewner Theory)** Let  $\{f_t\}_{t\in I}$ ,  $I = [a, \infty)$  be a nor-malized Loewner chain,  $\varphi_{s,t} = f_t^{-1} \circ f_s$ ,  $f(z,t) := f_t(z)$ . Then there exists  $E \subseteq I$ , |E| = 0, such that

a) 
$$V(z,t) := \lim_{\varepsilon \to 0^+} \frac{\varphi_{t,t+\varepsilon}(z) - z}{\varepsilon}$$
 exists for all  $z \in \mathbb{D}$ ,  $t \in I \setminus E$ .  
b)  $\frac{\partial f}{\partial t}(z,t)$  exists for all  $z \in \mathbb{D}$ ,  $t \in I \setminus E$ , and  
 $\frac{\partial f}{\partial t}(z,t) = -V(z,t)\frac{\partial f}{\partial z}(z,t)$ . (Loewner-Kufarev equation)

Moreover, V(z,t) has the following properties:

i)  $V(\cdot, t)$  is holomorphic on  $\mathbb{D}$  for each  $t \in I \setminus E$ ,

ii) V is measurable on  $\Omega \times I$ , and has the uniform bounded property: whenever  $K \subseteq \mathbb{D}$ ,  $J \subseteq I$ are compact, then there exists  $M \ge 0$  such that  $|V(z,t)| \le M$  for  $(z,t) \in K \times J \setminus E$ .

iii) V can be written in the form

$$V(z,t) = -zp(z,t),$$

where  $p(\cdot,t) \in \mathcal{P}$  for  $t \in I \setminus E$ , i.e.,  $p(\cdot,t)$  is holomorphic in  $\mathbb{D}$ ,  $\operatorname{Re} p(\cdot,t) \geq 0$  and p(0,t) = 1.

Proof. Since  $f \in HL(\mathbb{D} \times I)$ , there exists  $E \subseteq I$ , |E| = 0, such that  $\frac{\partial f}{\partial t}(z,t)$  exists for  $(z,t) \in \mathbb{D} \times I \setminus E$ .  $\mathbb{D} \times I \setminus E$ . Pick  $(z,t) \in \mathbb{D} \times I \setminus E$  and  $\varepsilon > 0$ . Then  $f_{t+\varepsilon}(\varphi_{t,t+\varepsilon}(z)) = f_t(z)$ . Equivalently,  $f(\varphi_{t,t+\varepsilon}(z), t+\varepsilon) = f(z,t)$ . Differentiating with respect to  $\varepsilon > 0$  and setting  $\varepsilon = 0$ , we obtain by the chain rule

$$0 = \frac{d}{d\varepsilon} f(\varphi_{t,t+\varepsilon}(z),t+\varepsilon) \bigg|_{\varepsilon=0} = \frac{\partial f}{\partial z}(z,t) \cdot \frac{\varphi_{t,t+\varepsilon}}{\partial \varepsilon}(z) \bigg|_{\varepsilon=0} + \frac{\partial f}{\partial t}(z,t).$$

Actually, this is true for any sublimit of

$$\frac{\partial \varphi_{t,t+\varepsilon}(z)}{\partial \varepsilon} \bigg|_{\varepsilon=0} = \lim_{\varepsilon \to 0} \frac{\varphi_{t,t+\varepsilon}(z) - z}{\varepsilon}.$$

Since  $\frac{\partial f}{\partial z}(z,t) \neq 0$  ( $f_t$  is conformal!), such a sublimit is unique. Since  $\varepsilon \mapsto \varphi_{t,t+\varepsilon}$  is Lipschitz, the existence of

$$V(z,t) = \lim_{\varepsilon \to 0} \frac{\varphi_{t,t+\varepsilon}(z) - z}{\varepsilon}, \qquad (z \in \mathbb{D}, t \in I \setminus E),$$

follows, and

$$\frac{\partial f}{\partial z}(z,t)V(z,t) + \frac{\partial f}{\partial t}(z,t) = 0,$$

which is equivalent to the Loewner-Kufarev equation.

by Vitali,

$$\frac{\varphi_{t,t+\varepsilon_n}(z)-z}{\varepsilon_n} \to V(z,t)$$

locally uniformly for  $z \in \mathbb{D}$ , whenever  $t \in I \setminus E$  fixed. So  $V(\cdot, t)$  is holomorphic on  $\mathbb{D}$ ; V is measurable (pointwise limit of continuous functions), and has the uniform bounded property as follows form the uniform Lipschitz property of  $(z, t) \mapsto \varphi_{s,t}(z)$ .

f(z,t) has the Taylor expansion

$$f(z,t) = a_0(t) + a_1(t)z + a_2(t)z^2 + \cdots, \qquad a_0(0t) \equiv w_0, \quad a_1(t) = e^t.$$

Let for fixed  $t \in I \setminus E$ , V(z, t) has the Taylor expansion

$$V(z,t) = c_0(t) + c_1(t)z + c_2(t)z^2 + \cdots$$

Then

$$\frac{\partial f}{\partial z}(z,t) = a_1(t) + 2a_2(t)z + \cdots,$$

and by Proposition 4.12 iv),

$$\frac{\partial f}{\partial t}(z,t) = \dot{a}_1(t)z + \dot{a}_2(t)z^2 + \cdots$$

So

$$\dot{a}_1 z + \dot{a}_2 z^2 + \dots = -(c_0 + c_1 z + \dots)(a_1 + 2a_2 z + \dots).$$

So  $0 = -c_0 a_1 = -c_0 e^t$  equivalent to  $c_0 = 0$ ,  $\dot{a}_1 = -c_1 a_1$  equivalent to  $e^t = c_1(t) \cdot e^t$  equivalent to  $c_1(t) = -1$ , i.e.,

$$V(z,t) = -zp(z,t),$$

where  $p(\cdot, t)$  holomorphic and p(0, t) = 1. By Schwarz's Lemma,  $|\varphi_{t,t+\varepsilon}(z)| \leq |z|$ ; so for  $z \neq 0$ ,

$$\operatorname{Re}\left(\frac{\varphi_{t,t+\varepsilon}(z)-z}{z}\right) \leq 0,$$

and for  $z \neq 0$ ,

$$\operatorname{Re} p(z,t) = -\operatorname{Re} \left( \frac{V(z,t)}{z} \right) = -\lim_{\varepsilon \to 0^+} \operatorname{Re} \left( \frac{\varphi_{t,t+\varepsilon}(z) - z}{\varepsilon z} \right) \ge 0.$$

This inequality is also true for z = 0 since  $\operatorname{Re} p(0, t) = 1$ .

**Corollary 4.14.** Let  $\{f_t\}$  be a normalized Loewner chain on  $I = [a, \infty)$ ,  $\varphi_{s,t} = f_t^{-1} \circ f_s$ ,  $E \subseteq I$ , |E| = 0, V(z,t) as in Theorem 4.13. Then

i) 
$$V(z,t) := \lim_{\varepsilon \to 0^+} \frac{\varphi_{t,t+\varepsilon}(z) - z}{\varepsilon} = \lim_{\varepsilon \to 0^+} \frac{\varphi_{t-\varepsilon,t}(z) - z}{\varepsilon} \text{ for } z \in \mathbb{D}, \ t \in I \setminus E.$$
  
ii)  $\frac{\partial \varphi_{s,t}(z)}{\partial t} = V(\varphi_{s,t}(z),t) \text{ for } z \in \mathbb{D}, \ t \in [s,\infty) \setminus E, \ s \in I \text{ (left-hand derivative for } t = s).$   
iii)  $\frac{\partial \varphi_{s,t}(z)}{\partial s} = -\varphi'_{s,t}(z)V(z,s) \text{ for } z \in \mathbb{D}, \ s \in [0,t] \setminus E, \ t \in I \text{ (right-hand derivative for } s = t).$ 

The existence of limits post of the statement!

*Proof.* i) For  $t \in I \setminus E$ ,  $\varepsilon > 0$ ,  $f_t \circ \varphi_{t-\varepsilon,t}(z) = f_{t-\varepsilon}(z)$ . Differentiating with respect to  $\varepsilon$  and setting  $\varepsilon = 0$ :

$$f'_t(z) \cdot \frac{d}{d\varepsilon} \varphi_{t-\varepsilon,t}(z) \Big|_{\varepsilon=0} = -\dot{f}_t(z) = V(z,t) \cdot f'_t(z).$$

Hence  $\lim_{\varepsilon \to 0^+} \frac{\varphi_{t-\varepsilon,t}(z) - z}{\varepsilon}$  exists and is equal to V(z,t). ii) For  $s \in I$ ,  $t \in [s, \infty) \setminus E$ ,  $f_t \circ \varphi_{s,t} = f_s$ , i.e,  $f(\varphi_{s,t}(z), t) = f(z,s)$ . Differentiating with respect to t gives

$$f'_t(\varphi_{s,t}(z)) \cdot \frac{\partial \varphi_{s,t}}{\partial t}(z) + \dot{f}_t(\varphi_{s,t}(z)) = 0,$$

equivalent to

$$\frac{\partial \varphi_{s,t}(z)}{\partial t} = -\frac{\dot{f}_t \circ \varphi_{s,t}}{f'_t \circ \varphi_{s,t}} = V(\varphi_{s,t}(z), t).$$

iii) For  $t \in I$ ,  $s \in [a,t] \setminus E$ ,  $f_t \circ \varphi_{s,t} = f_s$ , i.e.,  $f(\varphi_{s,t}(z),t) = f(z,s)$ . Differentiating with respect to s gives

$$f'_t(\varphi_{s,t}(z)) \cdot \frac{\partial \varphi_{s,t}}{\partial s}(z) = \dot{f}_s(z) = -V(z,s) \cdot f'_s(z) = -V(z,s)\varphi'_{s,t}(z)f'_t(\varphi_{s,t}(z)).$$

 $\operatorname{So}$ 

$$\frac{\varphi_{s,t}}{\partial s}(z) = -\varphi'_{s,t}(z) \cdot V(z,s).$$

In all cases, existence of limits follows from the uniqueness of sublimits.

# 4.15. Geometric interpretation

Figure 16: Geometric interpretation

$$\dot{f}_t(z) = -V(z,t)f'_t(z) = zp(z,t)f'_t(z).$$

Since Re p(z,r) > 0, zp(z,t) is a vector which points out of the disk  $\overline{B}(0,|z|)$ . Hence,  $f_t(z) = zp(z,t)f'_t(z)$  is a vector which points out of  $f_t(\overline{B}(0,|z|))$ 

$$\frac{\partial \varphi_{s,t}}{\partial t}(z) = V(\varphi_{s,t}(z), t).$$

So  $t \mapsto \varphi_{s,t}(z)$  is an integral curve of the vector field V(z,t).  $z \mapsto \varphi_{s,t}(z)$  is a map which shrinks  $\mathbb{D}$  for large t, with  $\varphi'_{s,t}(0) = e^{s-t}$ .

Figure 17: Shrink

$$\frac{\partial \varphi_{s,t}}{\partial s}(z) = -\varphi_{s,t}(z)V(z,s).$$

So

$$\varphi_{s-\varepsilon,s}(z) \simeq z + \varepsilon V(z,s).$$

We have

$$\varphi_{s-\varepsilon,t}(z) \simeq \varphi_{s,t}(z) + \varepsilon \varphi'_{s,t}(z) V(z,s).$$



# 5 Existence results for Loewner chains and applications

**Proposition 5.1.** Let  $\{f_t^n\}$  be a sequence of normalized Loewner chains on  $I = [a, \infty)$ ,  $f_t^n(0) = w_0 \in \mathbb{C}$ ,  $(f_t^n)'(0) = e^t$ ,  $t \in I$ . Then  $\{f_t^n\}$  subconverges to a Loewner Chain as  $n \to \infty$ ; more precisely, there exists a sequence  $\{n_k\}$  with  $n_k \to \infty$  as  $k \to \infty$  and a normalized Loewner chain  $\{f_t\}_{t \in I}$  such that  $f_t^{n_k} \to f_t$  locally uniformly on  $\mathbb{D}$  as  $k \to \infty$ , for all  $t \in I$ .

Proof. Wlog,  $w_0 = 0$ . Let  $z_l = 1/l$ ,  $l \ge 2$ . Then  $z_l \to 0 \in \mathbb{D}$  as  $l \to \infty$ . For fixed  $l \in \mathbb{N}$ , the maps  $t \in [0, \infty) \mapsto f_t^n(z)$ ,  $n \in \mathbb{N}$ , are uniform Lipschitz (cf. Lemma 4.10) and uniformly bounded (Koebe) on compact set  $J \subseteq I$ . In particular, the family  $\{t \mapsto f_t^n(z_l)\}_{n \in \mathbb{N}}$  is equicontinous and uniformly bounded at each  $t_0 \in I$ . Hence, by the Arzela-Ascoli Theorem, there exists a subsequence that converges locally uniformly on I and in particular pointwisely on I.

Applying this successively for each l = 2, 3, ..., and passing to a diagonal subsequence, we find a sequence  $\{n_k\}$  in  $\mathbb{N}$  with  $n_k \to \infty$  as  $k \to \infty$  such that  $\{f_t^{n_k}(z_l)\}$  converges as  $k \to \infty$  for all  $t \in I, l \geq 2$ .

Fix  $t \in I$ . Then  $e^{-t}f_t^{n_k} \in S$ , and so these functions form a normal family. Since we have pointwise convergence at each  $z_l \in \mathbb{D}$ ,  $l \geq 2$ , by Vitali's Theorem,  $\{f_t^{n_k}\}$  converges locally uniformly on  $\mathbb{D}$  to some limit function  $f_t \in H(\mathbb{D})$ . So  $f_t^{n_k} \to f_t$  locally uniformly on  $\mathbb{D}$  as  $k \to \infty$  for each  $t \in I$ .

It is suffices to show that  $\{f_t\}_{t \in I}$  is a normalized Loewner chain.

$$f_t(0) = \lim_{k \to \infty} f_t^{n_k}(0) = 0$$

and

$$f'_t(0) = \lim_{k \to \infty} (f_t^{n_k})'(0) = e^t \neq 0 \quad \text{for } t \in I.$$
(14)

By Hurwitz,  $f_t$  is a conformal map  $f_t : \mathbb{D} \leftrightarrow \Omega_t = f_t(\mathbb{D})$ . If  $s, t \in I$  and  $s \leq t$ , then

$$\Omega_s^{n_k} := f_s^{n_k}(\mathbb{D}) \to \Omega_s, \quad \Omega_t^{n_k} := f_t^{n_k}(\mathbb{D}) \to \Omega_t, \quad \text{w.r.t. } w_0,$$

and  $\Omega_s^{n_k} \subseteq \Omega_t^{n_k}$ . So

$$\Omega_s \subseteq \Omega_t. \tag{15}$$

A combination of (14) and (15) implies the Lipschitz estimates for  $t \mapsto f_t(z)$  as in Lemma 4.10 ii)  $(\varphi_{s,t} = f_t^{-1} \circ f_s \text{ is defined, etc.})$ . Hence  $f_{t_n} \to f_t$  locally uniformly on  $\mathbb{D}$  whenever  $t_n \in I \to t \in I$ . So  $\{f_t\}$  is a Loewner chain.

**Corollary 5.2.** Let  $f \in S$ . Then there exists a Loewner chain  $\{f_t\}_{t \in [0,\infty)}$  with  $w_0 = 0$  such that  $f_0 = f$ .

*Proof.* For  $n \in \mathbb{N}$ ,  $n \ge 2$ , let  $r_n = (1 - 1/n) \in (0, 1)$ , and

$$f^n(z) = \frac{1}{r_n} f(r_n z), \qquad z \in \mathbb{D}.$$

Then  $f^n(0) = 0$ ,  $(f^n)'(0) = 1$ , and so  $f^n \in S$ .  $f^n$  is a conformal map from  $\mathbb{D}$  onto the Jordan region  $\Omega^n = f^n(\mathbb{D}) = f(B(0, r_n))$ . So  $\Omega^n$  can be embedded in a Loewner chain; equivalently, there exists a normalized Loewner chain  $\{f^n_t\}_{t\in[0,\infty)}$  with  $f^n_t(0) = 0$ ,  $(f^n_t)'(0) = e^t$  for  $t \in I = [0,\infty)$ , and  $f^n_0 = f^n$ . By Proposition 5.1, the sequence  $\{f^n_t\}$  of Loewner chains subconverges to a normalized Loewner chain  $\{f^n_t\}$ ; i.e., for some sequence  $\{n_k\}$  with  $n_k \to \infty$ , we have  $f^{n_k}_t \to f_t$  locally uniformly on  $\mathbb{D}$  for each  $t \in I$ . In particular,  $f^{n_k}_0 = f^{n_k} \to f_0$  locally uniformly on  $\mathbb{D}$ . On the other hand,

$$f^{n_k}(z) = \frac{1}{r_n} f(r_n z) \to f(z)$$

locally uniformly for  $z \in \mathbb{D}$ . So  $f_0 = f$ , the claim follows.

### 5.3. Loewner chains and Taylor coefficients

Let  $f \in S$  be arbitrary.  $f : \mathbb{D} \to \Omega = f(\mathbb{D})$  conformal, f(0) = 0, f'(0) = 1. By Corollary 5.2, there exists a normalized Loewner chian  $\{f_t\}_{t \in [0,\infty)}\}$  such that  $f_0 = f$ ,  $f_t(0) = 0$ ,  $f'_t(0) = e^t$ .

$$f_t(z) = \sum_{n=1}^{\infty} a_n(t) z^n, \qquad t \in [0, \infty), \qquad \text{with } a_1(t) = e^t.$$

Let  $f(z,t) = f_t(z)$ ,  $I = [0,\infty)$ . There exists  $E \subseteq [0,\infty)$  with |E| = 0 such that

$$\frac{\partial f}{\partial t}(z,t) = zp(z,t)\frac{\partial f}{\partial z}(z,t), \qquad z \in \mathbb{D}, t \in I \setminus E,$$

where  $f \in HL(\mathbb{D} \times I), \, p(\cdot,t) \in \mathcal{P}$  for  $t \in I \setminus E$ , i.e.,  $p(\cdot,t) \in H(\mathbb{D}), \, p(0,t) = 1$ , and  $\operatorname{Re} p(\cdot,t) \ge 0$ ,

$$p(z,t) = 1 + \sum_{n=1}^{\infty} c_n(t) z^n, \qquad z \in \mathbb{D}, t \in I \setminus E.$$

From Proposition 4.12,

$$\frac{\partial f}{\partial t}(z,t) = \sum_{n=1}^{\infty} \dot{a}_n(t) z^n, \qquad z \in \mathbb{D}, t \in I \setminus E.$$

Fix  $t \in I \setminus E$ . Then

$$\sum_{n=1}^{\infty} \dot{a}_n(t) z^n = z \left( 1 + \sum_{n=1}^{\infty} c_n(t) z^n \right) \left( \sum_{n=1}^{\infty} n a_n(t) z^{n-1} \right)$$
$$= \sum_{n=1}^{\infty} \left( n a_n(t) + \sum_{k=1}^{n-1} k a_k(t) c_{n-k}(t) \right) z^n.$$

Comparing coefficients, we get

$$\dot{a}_n(t) = na_n(t) + \sum_{k=1}^{n-1} ka_k(t)c_{n-k}(t), \qquad t \in I \setminus E, n \in \mathbb{N}.$$

Each  $a_n$  is locally Lipschitz (cf. Proposition 4.12),  $c_n$  is measurable (homework!). Moreover,  $|c_n(t)| \leq 2$  for  $n \in \mathbb{N}, t \in I \setminus E$  (Theorem 4.9 (iv)). Noting that  $h_t := e^{-t} f_t \in S$  and S is a normal family, there exists  $C_n \geq 0$  such that

$$\left| e^{-t} a_n(t) \right| = \left| \frac{h_t^{(n)}(0)}{n!} \right| \le C_n, \text{ for } t \in I,$$

hence  $e^{-nt}a_n(t) \to 0$  as  $t \to \infty$  for  $n \ge 2$ .

$$\frac{d}{dt} \left( e^{-nt} a_n(t) \right) = e^{-nt} \dot{a}_n(t) - e^{-nt} n a_n(t) = \sum_{k=1}^{n-1} e^{-nt} k a_k(t) c_{n-k}(t), \quad \text{for } t \in I \setminus E.$$

For  $s \ge 0, n \ge 2$ ,

$$-e^{-ns}a_n(s) = \lim_{u \to \infty} \int_s^u \frac{d}{dt} \left( e^{-nt}a_n(t) \right) dt = \sum_{k=1}^\infty k \int_s^\infty e^{-nt}a_k(t)c_{n-k}(t) dt.$$

 $\operatorname{So}$ 

$$a_n(s) = -e^{ns} \sum_{k=1}^{n-1} k \int_s^\infty e^{-nt} a_k(t) c_{n-k}(t) dt, \qquad s \ge 0, n \ge 2.$$

Taking s = 0, n = 2,

$$a_2 = a_2(0) = -\int_0^\infty e^{-2t} a_1(t) c_1(t) dt = -\int_0^\infty e^{-t} c_1(t) dt.$$

Taking s = 0, n = 3,

$$\begin{aligned} a_3 &= a_3(0) = -\sum_{k=1}^2 k \int_0^\infty e^{-3t} a_k(t) c_{3-k}(t) dt \\ &= -\int_0^\infty e^{-2t} c_2(t) dt - 2 \int_0^\infty e^{-3t} a_2(t) c_1(t) dt \\ &= -\int_0^\infty e^{-2t} c_2(t) dt + 2 \int_0^\infty e^{-3t} e^{2t} \left( \int_t^\infty e^{-u} c_1(u) du \right) c_1(t) dt \\ &= -\int_0^\infty e^{-2t} c_2(t) dt + 2 \int_0^\infty e^{-t} \left( \int_t^\infty e^{-u} c_1(u) du \right) c_1(t) dt \\ &= -\int_0^\infty e^{-2t} c_2(t) dt + \int_0^\infty \int_0^\infty e^{-t} c_1(t) e^{-u} e_1(u) dt du \\ &= -\int_0^\infty e^{-2t} c_2(t) dt + \left( \int_0^\infty e^{-t} c_1(t) dt \right)^2. \end{aligned}$$

Corollary 5.4. Let  $f \in S$ ,  $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$ . Then  $|a_2| \le 2$ ,  $|a_3| \le 3$ .

*Proof.* Using notations from 5.3, we have

$$a_2 = -\int_0^\infty e^{-t} e_1(t) dt.$$

Now,  $|c_1(t)| \leq 2$  (cf. Theorem 4.9 iv)), and

$$|a_2| \le \int_0^\infty e^{-t} |c_1(t)| dt \le 2 \int_0^\infty e^{-t} dt = 2.$$

(case of equality can be analyzed!)

By rotation invariance  $(f \in \mathcal{S} \leftrightarrow e^{i\theta} f(ze^{-i\theta}) \in \mathcal{S})$ , wlog, we assume  $a_3 \ge 0$ . Then, using Theorem 4.9 iv),

$$a_{3} = \operatorname{Re} a_{3} \leq -\int_{0}^{\infty} e^{-2t} \operatorname{Re} c_{2}(t) dt + \left(\int_{0}^{\infty} e^{-t} \operatorname{Re} c_{1}(t) dt\right)^{2}$$

$$\leq -\int_{0}^{\infty} e^{-2t} \operatorname{Re} c_{2}(t) dt + \int_{0}^{\infty} e^{-t} (\operatorname{Re} c_{1}(t))^{2} dt \quad (\operatorname{Cauchy-Schwarz})$$

$$\leq 2\int_{0}^{\infty} e^{-t} dt + \int_{0}^{\infty} (\operatorname{Re} c_{2}(t))(e^{-t} - e^{-2t}) dt \quad ((\operatorname{Re} c_{1})^{2} \leq 2 + \operatorname{Re} c_{2})$$

$$\leq 2 + 2\int_{0}^{\infty} (e^{-t} - e^{-2t}) dt \quad (|c_{2}| \leq 2 \text{ and } e^{-t} - e^{-2t} \geq 0)$$

$$= 2 + 2 + 2\left[\frac{1}{2}e^{-2t}\right]_{0}^{\infty} = 3.$$

**Lemma 5.5.** Let  $p \in \mathcal{P}$ . Then

(i) 
$$|p'(z)| \le \frac{2}{(1-|z|)^2}, \quad z \in \mathbb{D},$$
  
(ii)  $|p(u) - p(v)| \le \frac{2|u-v|}{(1-r)^2}, \quad u, v \in \overline{B}(0,r), r \in (0,1).$ 

*Proof.* Let  $z_0 \in \mathbb{D}$ ,  $r \in (0, 1)$  and  $r > |z_0|, \gamma(t) = re^{it}, t \in [0, 2\pi]$ . Then

$$p'(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{p(\zeta)}{(\zeta - z_0)^2} d\zeta.$$

On the other hand, there exists a probability measure  $\mu$  on  $\partial \mathbb{D}$  such that

$$p(\zeta) = \int_{\partial \mathbb{D}} \frac{\eta + \zeta}{\eta - \zeta} d\mu(\eta), \quad \text{for } \zeta \in \mathbb{D}.$$

Let  $K_{\eta}(\zeta)$  denote  $(\eta + \zeta)/(\eta - \zeta)$ . By Fubini,

$$p'(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{p(\zeta)}{(\zeta - z_0)^2} d\zeta = \frac{1}{2\pi i} \int_{\gamma} \int_{\partial \mathbb{D}} \frac{K_{\eta}(\zeta)}{(\zeta - z_0)^2} d\mu(\eta) d\zeta$$
$$= \int_{\partial \mathbb{D}} \left[ \frac{1}{2\pi i} \int_{\gamma} \frac{K_{\eta}(\zeta)}{(\zeta - z_0)^2} d\zeta \right] d\mu(\eta) = \int_{\partial \mathbb{D}} K'_{\eta}(z_0) d\mu(\eta),$$

(so we can differentiate under the integral sign in the Herglotz formula)

here

$$K'_{\eta}(z_0) = \frac{d}{dz} \left( \frac{\eta + z}{\eta - z} \right) \Big|_{z=z_0} = \frac{2}{(\eta - z_0)^2}, \quad |K'_{\eta}(z_0)| \le \frac{2}{(1 - |z_0|)^2},$$
$$|p'(z_0)| \le \int \frac{2}{(\eta - z_0)^2} d\mu(\eta) = \frac{2}{(\eta - z_0)^2}.$$

and

$$|p'(z_0)| \le \int_{\partial \mathbb{D}} \frac{2}{(1-|z_0|)^2} d\mu(\eta) = \frac{2}{(1-|z_0|)^2}$$

(ii) follows from (i).

**Lemma 5.6.** Let  $I = [a, \infty)$ ,  $p : \mathbb{D} \times I \to \mathbb{C}$  be a.e. defined, p be measureable,  $p(\cdot, t) \in \mathcal{P}$  for  $a.e.t \in I$ . Let  $J = [a, b] \subseteq I$ , and suppose  $u, v : J \to \mathbb{D}$  are absolute continuous and solutions of the ODE

$$\dot{w}(t) = -w(t)p(w(t), t) \qquad for \ a.e. \ t. \tag{16}$$

If  $u(t_0) = v(t_0)$  for some  $t_0 \in J$ , then u = v.

*Proof.* 1) For a solution  $w: J \to \mathbb{D}, t \mapsto |w(t)|$  is decreasing:

$$\frac{d}{dt}|w(t)|^2 = \frac{d}{dt}w(t)\overline{w(t)} = \dot{w}(t)\overline{w(t)} + w(t)\overline{\dot{w}(t)}$$
$$= -|w(t)|^2 p(w(t), t) - |w(t)|^2 \overline{p(w(t), t)}$$
$$= -|w(t)|^2 \operatorname{Re} p(w(t), t) \le 0 \quad \text{for a.e. } t.$$

So  $|u(t)|, |v(t)| \le r := \max\{|u(a)|, |v(a)|\} < 1.$ 

2)  

$$|u(t)p(u(t),t) - v(t)p(v(t),t)| \leq |u(t)||p(u(t),t) - p(v(t),t)| + |u(t) - v(t)||p(v(t),t)| \leq 1 \cdot \frac{2}{(1-r)^2}|u(t) - v(t)| + \frac{2}{1-r}|u(t) - v(t)| \leq K|u(t) - v(t)|,$$
for a.e. t, where K is independent of t. Let  $D(t) := (u(t) - v(t))^2$ ,  $t \in J$ . Then D is absolute continuous, and

$$\begin{aligned} \left| \frac{d}{dt} D(t) \right| &\leq 2 |\dot{u}(t) - \dot{v}(t)| |u(t) - v(t)| \\ &= 2 |u(t) p(u(t), t) - v(t) p(v(t), t)| |u(t) - v(t)| \\ &\leq 2K |u(t) - v(t)|^2 = K' D(t). \end{aligned}$$

Hence

 $D(t) \le e^{K'|t-t_0|} D(t_0)$  for  $t \in J$ . (special case of Gronwell's inquality)

Since  $D(t_0) = 0$ , we conclude  $D(t) \equiv 0$  and so  $u \equiv v$ .

**Theorem 5.7.** Let  $I = [a,b) \subseteq \mathbb{R}$ ,  $V : \mathbb{D} \times I \to \mathbb{C}$  be a.e. defined measurable function such that a)  $V(z, \cdot)$  is a.e defined and measurable for each  $z \in \mathbb{D}$ ,

b)  $V(\cdot, t)$  is holomorphic on  $\mathbb{D}$  for a.e.  $t \in I$  and

$$V(z,t) = -zp(z,t)$$
 for  $z \in \mathbb{D}$ ,

where  $p(\cdot,t) \in \mathcal{P}$ . Then for each  $z \in \mathbb{D}$ ,  $s \in I$ , there exists a unique map  $w : [s, \infty) \to \mathbb{D}$  such that

- i) w is Lipschitz on  $[s, \infty)$ ,
- ii) w(s) = z (initial condition),
- iii)  $\dot{w}(t) = V(w(t), t)$  for a.e.  $t \in I$ .

*Proof.* Need a technical lemma that will be formulated afterward!

Idea of proof: Picard-Lindelöf iteration scheme!

Le  $z \in \mathbb{D}$ ,  $s \in I$  fixed. Define  $w_0(t) \equiv 0$  and

$$w_{n+1}(t) = z \cdot \exp\left(-\int_s^t p(w_n(u), u) du\right), \quad \text{for } n \in \mathbb{N}_0, t \ge s.$$

 $(\text{so } w_1(t) = ze^{s-t}.)$ 

i)  $|w_n(t)| \le r := |z|, t \ge s, n \in \mathbb{N}$  (note  $\operatorname{Re} p \ge 0$ ).

ii)  $w_n$  is L-Lipschitz on  $[s, \infty)$  with L = 2r/(1-r):

$$|w_{n+1}(t_2) - w_{n+1}(t_1)| = |z| \left| \exp\left(-\int_s^{t_2} \cdots\right) - \exp\left(-\int_s^{t_1} \cdots\right) \right|$$
  
$$\leq |z| \left| \int_s^{t_2} \cdots - \int_s^{t_1} \cdots \right| = |z| \left| \int_{t_1}^{t_2} p(w_n(u), u) du \right|$$
  
$$\leq \frac{2r}{1-r} |t_2 - t_1|, \qquad t_1 \geq t_1 \geq s,$$

here we have used the fact  $|e^{-a} - e^{-b}| \le |a - b|$  for  $\operatorname{Re} a, \operatorname{Re} b \ge 0$ , and

$$p(w_n(u), u) \le \frac{2}{1 - |w_n(u)|} \le \frac{2}{1 - r}.$$

iii)  $|w_{n+1}(t) - w_n(t)| \le \frac{2^n (t-s)^n}{(1-r)^{2n} n!}$ , for  $n \in \mathbb{N}_0, t \ge s$ :

By induction: for n = 0,

$$|w_1(t) - w_0(t)| = e^{s-t}|z| \le 1,$$
 OK.

 $n \rightarrow n+1$ ,

$$\begin{aligned} |w_{n+1}(t) - w_n(t)| &= |z| \left| \exp\left(-\int_s^t p(w_n(u), u) du\right) - \exp\left(-\int_s^t p(w_{n-1}(u), u) du\right) \right| \\ &\leq |z| \left| \int_s^t |p(w_n(u), u) - p(w_{n-1}(u), u)| du \right| \\ &\leq |z| \frac{2}{(1-r)^2} \int_s^t |w_n(u) - w_{n-1}(u)| du \\ &\leq |z| \frac{2}{(1-r)^2} \int_s^t \frac{2^n (u-s)^n}{(1-r)^{2n} n!} du = \frac{2^{n+1}}{(1-r)^{2(n+1)}} \cdot \frac{(t-s)^{n+1}}{(n+1)!}. \end{aligned}$$

 $\operatorname{So}$ 

$$w(t) := \lim_{n \to \infty} w_n(t) = w_0(t) + \sum_{n=1}^{\infty} (w_n(t) - w_{n+1}(t))$$

exists for each  $t \in I$ , convergence uniformly on compact subsets  $J \subseteq I$ , i.e.,  $w_n \to w$  locally uniformly on I.

Thus, w is L-Lipschitz on I,  $|w(t)| \le r < 1$  for  $t \in I$ ,  $p(w_n(u), u) \to p(w(u), u)$  for a.e.  $u \in I$ . Since  $|p(w_n(u), u)| \le 2/(1-r)$ , so

$$\int_{s}^{t} p(w_{n}(u), u) du \to \int_{s}^{t} p(w(u), u) du \quad \text{for each } t \in [s, \infty)$$

by the Lebesgue dominated convergence theorem.

For each  $t \in I$ ,

$$w(t) = \lim_{n \to \infty} w_{n+1}(t) = \lim_{n \to \infty} z \exp\left(-\int_s^t p(w_n(u), u) du\right)$$
$$= z \exp\left(-\int_s^t p(w(u), u) du\right) \quad \text{for } t \in [s, \infty).$$

So w(s) = z,  $\dot{w}(t)$  exists for a.e.  $t \in [s, \infty)$ , and

$$\dot{w}(t) = -z \exp\left(-\int_{s}^{t} p(w(u), u) du\right) \cdot p(w(t), t) = -w(t)p(w(t), t) = V(w(t), t).$$

Existence of w follows.

Uniqueness is clear by 5.6

**Corollary 5.8.** For fixed  $z \in \mathbb{D}$ ,  $s, t \in I$  with  $s \leq t$ , let  $\varphi_{s,t}(z) = w(t)$ , where w is as in Theorem 5.7. Then

i)  $\varphi_{s,t}(\cdot)$  is holomorphic and injective on  $\mathbb{D}$ ,  $\varphi_{s,t}(\mathbb{D}) \subseteq \mathbb{D}$ . ii)  $\varphi_{s,t}(0) = 0$ ,  $\varphi'_{s,t}(0) = e^{s-t}$ . iii)  $\varphi_{s,u} = \varphi_{t,u} \circ \varphi_{s,t}$ ,  $0 \le s \le t \le u < \infty$ .

iv)  $f_s(z) := \lim_{t\to\infty} e^t \varphi_{s,t}(z)$  exists for  $z \in \mathbb{D}$ ,  $s \in I$ . Moreover,  $e^t \varphi_{s,t} \to f_s$  locally uniformly on  $\mathbb{D}$ .

v)  $\{f_s\}_{s\in I}$  is a Loewner chain with

 $\dot{f}_s(z) = V(z,s)f'_s(z)$  for  $z \in \mathbb{D}$  and a.e.  $s \in I$ .

*Proof.* As in the proof of Theorem 5.7, define for  $z \in \mathbb{D}$ ,  $t \geq s$ ,

$$w_0(z,t) \equiv 0,$$
  
$$w_{n+1}(z,t) := z \exp\left(-\int_s^t p(w_n(z,u),u)du\right).$$

Using induction and Morera, one shows that  $w_n(z,t)$  is holomorphic on  $\mathbb{D}$  for each  $t \in [s,\infty)$ .

Since  $|w_n(z,t)| \leq |z|$ , we have  $\{w_n(\cdot,t)\}_{n\in\mathbb{N}}$  is a normal family for each  $t \in [s,\infty)$ . Then  $w_n(z,t) \to w(z,t) = \varphi_{s,t}(z)$  pointwise on  $\mathbb{D}$  for each  $t \in [s,\infty)$ , convergence is locally uniformly on  $\mathbb{D}$  by Vitali.

i) Hence  $w(\cdot, t) = \varphi_{s,t}$  is holomorphic on  $\mathbb{D}$  for  $s, t \in I$ ,  $s \leq t$ . Let  $s, t_0 \in I$ ,  $s \leq t_0$ ,  $z_1, z_2 \in \mathbb{D}$ , and suppose  $\varphi_{s,t_0}(z_1) = \varphi_{s,t_0}(z_2)$ , equivalently  $w(z_1, t_0) = w(z_2, t_0)$ . Then by Lemma 5.6,  $w(z_1, t) = w(z_2, t)$  for all  $t \geq s$ ; hence  $z_1 = w(z_1, s) = w(z_2, s) = z_2$ . So  $\varphi_{s,t_0}$  is injective on  $\mathbb{D}$ .

ii)  $w(0,t) \equiv 0$  solves ODE; so  $\varphi_{s,t}(0) = 0$ .

$$\varphi_{s,t}(z) = z \exp\left(-\int_s^t p(\varphi_{s,u}(z), u) du\right).$$

So

$$\varphi'_{s,t}(0) = \exp\left(-\int_{s}^{t} p(\varphi_{s,u}(0), u) du\right) = \exp(-(t-s)) = e^{s-t}.$$
(17)

iii) Let  $v(u) := \varphi_{s,u}(z)$ ,  $\tilde{v}(u) := \varphi_{t,u}(\varphi_{s,t}(z))$ , where  $z \in \mathbb{D}$ ,  $s \leq t \leq u$  fixed. Then  $v(t) = \varphi_{s,t}(z)$ ,  $\tilde{v}(t) = \varphi_{t,t}(\varphi_{s,t}(z)) = \varphi_{s,t}(z)$ , since  $\varphi_{t,t}(z) = z$ . So  $v, \tilde{v}$  have the same initial values at time u = t. They satisfy equations

$$\dot{v}(u) = V(v(u), u), \quad \dot{\tilde{v}}(u) = V(\tilde{v}(u), u)$$
 for a.e.  $u$ 

So  $v(u) \equiv \tilde{v}(u)$  for  $u \ge t$  by Lemma 5.6, i.e.,

$$\varphi_{s,u}(z) = \varphi_{t,u}(\varphi_{s,t}(z)) \quad \text{for } z \in \mathbb{D}, s \le t \le u.$$

iv) By (17),

$$e^{t-s}\varphi_{s,t}(z) = z \exp\left(\int_s^t [1 - p(\varphi_{s,u}(z), u)] du\right) \in \mathcal{S},$$

so by Koebe,

$$|\varphi_{s,t}(z)| \le \frac{e^{s-t}|z|}{(1-|z|)^2}, \qquad z \in \mathbb{D}.$$

 $\operatorname{So}$ 

$$\begin{aligned} |1 - p(\varphi_{s,u}(z), u)| &= |p(0, u) - p(\varphi_{s,u}(z), u)| \\ &\leq |\varphi_{s,u}(z)| \frac{2}{(1 - |z|)^2} \qquad \text{(Lemma 5.5)} \\ &\leq e^{s-u} \frac{2|z|}{(1 - |z|)^4} \leq Ce^{-u}, \qquad \text{for fixed } s, z. \end{aligned}$$

So

$$\int_{s}^{\infty} |1 - p(\varphi_{s,u}(z), u)| du < \infty$$

with uniform convergence in z on compact subsets of  $\mathbb{D}$ . Hence

$$f_s(z) := \lim_{t \to \infty} e^t \varphi_{s,t}(z) = \lim_{t \to \infty} e^s e^{t-s} \varphi_{s,t}(z)$$
$$= e^s \cdot z \exp\left(\int_s^\infty [1 - p(\varphi_{s,u}(z), u)] du\right)$$

exists with locally uniform convergence in  $z \in \mathbb{D}$ . So  $f_s \in H(\mathbb{D})$ ,

$$f_s(0) = \lim_{t \to \infty} e^t \varphi_{s,t}(0) = 0,$$
  
$$f'_s(0) = \lim_{t \to \infty} e^t \varphi'_{s,t}(0) = e^s.$$

Since  $e^t \varphi_{s,t}$  is injective on  $\mathbb{D}$ ,  $f_s$  is injective on  $\mathbb{D}$  by Hurwitz.

For  $z \in \mathbb{D}$ ,  $s \leq t$ ,

$$f_t(\varphi_{s,t}(z)) = \lim_{u \to \infty} e^u \varphi_{s,u}(\varphi_{s,t}(z)) = \lim_{u \to \infty} e^u \varphi_{s,u}(z) = f_s(z).$$

So  $f_t \circ \varphi_{s,t} = f_s$  for  $s \leq t$ . Hence  $\Omega_t = f_t(\mathbb{D}) \supseteq f_t(\varphi_{s,t}(\mathbb{D})) = \Omega_s$ . (Strict inclusion for s < t comes from  $\varphi'_{s,t}(0) = e^{s-t} < 1$  and  $\varphi_{st}$  is a conformal map.) As in Proposition 5.1, we conclude that  $\{f_s\}_{s \in I}$  is a Loewner chain.

Since  $\{f_s\}_{s\in I}$  is a Loewner chain,  $(z,t) \mapsto f(z,t) \in HL(\mathbb{D} \times I)$ . Since  $f(\varphi_{a,t}(z),t) = f_a(z)$ , there exists  $E \subseteq I - [a,\infty)$ , |E| = 0, such that

$$0 = \frac{d}{dt} f_a(z) = \frac{d}{dt} f(\varphi_{a,t}(z), t)$$
$$= f'_t(\varphi_{a,t}(z)) \cdot \frac{d}{dt} \varphi_{a,t}(z) + \dot{f}_t(\varphi_{a,t}(z))$$

Since  $\frac{d}{dt}\varphi_{a,t}(z) = V(\varphi_{a,t}(z), t),$ 

$$\dot{f}_t(w) = -V(w,t) \cdot f'_t(w), \quad \text{for } t \in I \setminus E, w \in \varphi_{a,t}(\mathbb{D}) \subseteq \mathbb{D}.$$

We may assume that  $\dot{f}_t(\cdot)$  and  $V(\cdot, t)$  are holomorphic for  $t \in I \setminus E$ . Then by the uniqueness Theorem,

$$\dot{f}_t(z) = -V(z,t) \cdot f'_t(z), \quad \text{for } z \in \mathbb{D}, t \in I \setminus E.$$

Continuity of  $w_n(z,t)$  in z for t fixed:

$$w_0(z,t) \equiv 0;$$
  

$$w_{n+1}(z,t) = z \exp\left(-\int_s^t p(w_n(z,u),u)du\right).$$

By induction on n.  $n \to n + 1$ :

 $z_k \in \mathbb{D} \to z_0 \in \mathbb{D}, |z_k| \leq r < 1, w_n(z_k, u) \to w_n(z_0, u)$  as  $n \to \infty$  for each  $u \in [s, t]$ . Moreover,  $|w_n(z_k, u)| \leq r$  and so

$$p(w_n(z_k, u), u) \le \frac{1+r}{1-r}$$

 $\operatorname{So}$ 

$$\int_s^t p(w_n(z_k, u), u) du \to \int_s^t p(w_n(z_0, u), u) du$$

by the Lebesgue dominated convergence theorem.

In the proof of Theorem 5.7, the following fact was used.

**Lemma 5.9.** Let  $U \subseteq \mathbb{R}^d$  be open,  $M \subseteq \mathbb{R}^d$  be measurable,  $g: U \times M \to \mathbb{C}$  be a.e. defined such that

i)  $g(\cdot, t)$  is continuous on U for a.e.  $t \in M$ ,

ii)  $g(z, \cdot)$  is a.e. defined on M and measurable.

Let  $\phi: M \to U$  be measurable. Then  $h: M \to \mathbb{C}$  a.e. defined by  $h(t) := g(\phi(t), t)$  for  $t \in M$  is measurable.

Outline of Proof. I. For each  $n \in \mathbb{N}$ , pick a countable open covers  $\mathcal{U}_n = \{U_{n,k} : k \in \mathbb{N}\}$  of U such that  $U_{n,k} \subseteq U$  and

$$\operatorname{mesh}(\mathcal{U}_n) = \sup\{\operatorname{diam}(U_{n,k}) : k \in \mathbb{N}\} \to 0 \quad \text{as} \quad n \to \infty.$$

Pick  $z_{n,k} \in U_{n,k}$  and let  $\{\varphi_{n,k} : k \in \mathbb{N}\}$  be a partition of unity subordinate to  $\mathcal{U}_n$ . For  $f \in C(U)$ , define

$$T_n f := \sum_{k \in \mathbb{N}} f(z_{n,k}) \varphi_{n,k} \in C(U).$$

Then  $T_n f \to f$  locally uniformly on U for all  $f \in C(U)$ .

For  $z \in U$ ,

$$|h(z) - T_n h(z)| \le \sum_{k \in \mathbb{N}} |h(z) - h(z_{n,k})| \varphi_{n,k}(z)$$
$$\le \sup\{|h(u) - h(u')| : |u - u'| \le \operatorname{mesh}(\mathcal{U}_n)\}.$$

II. There exists  $E \subseteq M$ , |E| = 0 such that  $g(\cdot, t) \in C(U)$  for  $t \in M \setminus E$ . Then

$$T_n g(z,t) = \sum_{k \in \mathbb{N}} g(z_{n,k},t) \varphi_{n,k}(z) \to g(z,t) \quad \text{as} \quad n \to \infty$$

for  $z \in U, t \in M \setminus E$ . So for a.e.  $t \in M$ ,

$$\sum_{k\in\mathbb{N}}g(z_{n,k},t)\varphi_{n,k}(\psi(t))\to g(\psi(t),t)=h(t)\qquad\text{as}\quad n\to\infty.$$

So h is measurable.

Lemma 5.10. Let  $f \in S$ . Then

$$|f(z) - z| \le C \frac{|z|^2}{(1 - |z|)^2} \quad for \quad z \in \mathbb{D},$$

where C is an absolute constant independent of f.

Proof. Define

$$g(z) = \frac{1}{z^2}(f(z) - z), \qquad z \in \mathbb{D}.$$

Then  $g \in H(\mathbb{D})$  (0 is a removable singularity). Pick 0 < r < 1. Then by Koebe and Maximum principle,

$$|g(z)| \le \frac{1}{r^2} \left[ \frac{r}{(1-r)^2} + r \right] \le \frac{2}{r(1-r)^2} \quad \text{for}|z| \le r.$$

When  $|z| \le 1/2, r = 1/2,$ 

$$|g(z)| \le 16 \le \frac{16}{(1-|z|)^2}.$$

When  $1/2 \le |z| < 1, r = |z|,$ 

$$|g(z)| \le \frac{4}{(1-|z|)^2}$$

So C = 16 works.

**Proposition 5.11.** Let  $\{f_t\}$  be normalized Loewner chain on  $I = [a, \infty)$ ,  $f_t(0) = 0$ ,  $f'_t(0) > 0$ ,  $t \in I$ . Let  $\varphi_{s,t} := f_t^{-1} \circ f_s$  for  $a \leq s \leq t$ . Then

 $e^t \varphi_{s,t} \to f_s$  locally uniformly on  $\mathbb{D}$ 

as  $t \to \infty$  (i.e., along any sequence  $t_n \to \infty$ ).

Proof. Suppose  $a \leq s \leq t$ ,  $\varphi_{s,t}(0) = 0$ ,  $\varphi_{s,t}(\mathbb{D}) \subseteq \mathbb{D}$ . So (1)  $|\varphi_{s,t}(z)| \leq |z|$  for  $z \in \mathbb{D}$  by Schwarz.

Since  $\varphi_{s,t}$  is injective on  $\mathbb{D}$ ,  $\varphi'_{s,t}(0) = e^{s-t}$ , so

(2)  $|\varphi_{s,t}(z)| \le e^{s-t} \frac{|z|}{(1-|z|)^2}$  for  $z \in \mathbb{D}$  by Koebe.

Since  $f_t \circ \varphi_{s,t} = f_s$ ,  $e^{-t} f_t \in S$ , so by Lemma 5.10,

$$|f_t(w) - e^t w| \le C \frac{e^t |w|^2}{(1 - |w|)^2}.$$

Using this for  $w = \varphi_{s,t}(z) \in \mathbb{D}$  and (1) + (2), we obtain

$$\begin{aligned} |f_s(z) - e^t \varphi_{s,t}(z)| &= |f_t(\varphi_{s,t}(z)) - e^t \varphi_{s,t}(z)| \\ &\leq C \frac{e^t |\varphi_{s,t}(z)|^2}{(1 - |z|)^2} \quad (|\varphi_{s,t}(z)| \leq |z|) \\ &\leq C \frac{e^t e^{2s - 2t} |z|^2}{(1 - |z|)^4} = e^{-t} \frac{C e^{2s} |z|^2}{(1 - |z|)^4} \to 0 \end{aligned}$$

locally uniformly on  $\mathbb{D}$  as  $t \to \infty$ .

$$\{f_t\}: \text{Loewner chain} \qquad \begin{array}{c} \varphi_{s,t} = f_t^{-1} \circ f_s \\ \rightleftharpoons \\ f_s = \lim_{t \to \infty} e^t \varphi_{s,t} \end{array} \qquad \varphi_{s,t}: \text{Semi-group}$$

# Theorem 5.12. (Existence and uniqueness for solutions of Loewner-Kufarev equa-

tions) Let  $I = [a, \infty) \subseteq \mathbb{R}$ ,  $V : \mathbb{D} \times I \to \mathbb{C}$  be a.e. defined measurable function such that

i)  $V(z, \cdot)$  is a.e. defined and measurable for each  $z \in \mathbb{D}$ ,

ii)  $V(\cdot, t)$  is holomorphic for a.e.  $t \in I$ ,

iii) V(z,t) = -zp(z,t) for  $z \in \mathbb{D}$ ,  $t \in I$ , where  $p(\cdot,t) \in \mathcal{P}$ .

Then there exists a unique normalized Loewner chain  $\{f_t\}_{t\in I}$  with  $f_t(0) \equiv w_0 \equiv 0$  such that the Loewner-Kufarev equation hold:

$$\dot{f}_t(z) = -V(z,t)f'_t(z) \qquad for \quad z \in \mathbb{D}, \ a.e. \ t \in I.$$
(18)

Suppose  $g: \mathbb{D} \times I \to \mathbb{C}$  is a function such that

i)  $g(\cdot, t) \in H(\mathbb{D}), \ g(0, t) = 0, \ g'(0, t) = e^t \ for \ t \in I,$ 

ii)  $g(z, \cdot)$  is uniform Lipschitz on compact subsets of  $\mathbb{D} \times I$ ,

iii) g solves (18), i.e.,

$$\frac{\partial g}{\partial t}(z,t) = -V(z,t)\frac{\partial g}{\partial z}(z,t)$$

for each  $z \in \mathbb{D}$  and a.e.  $t \in I$ .

Then there exists an entire function  $h : \mathbb{C} \to \mathbb{C}$  with h(0) = 0, h'(0) = 1, such that  $g_t = h \circ f_t$ for  $t \in I$ .

Suppose g satisfies the following additional assumption:

iv) there exist  $r_0 \in (0,1)$  and  $C \ge 0$  such that  $|g_t(z)| \le Ce^t$  for  $t \in I$ ,  $z \in \overline{B}(0,r_0)$ . Then  $h = \mathrm{id}_{\mathbb{C}}$  and so  $g_t = f_t$  for all  $t \in I$ .

Proof. We know that there exists a normalized Loewner chain  $\{f_t\}$  solving (18). (See Corollary 5.8. Find unique  $\varphi_{s,t}(z)$  such that  $\varphi_{s,s}(z) = z, z \in \mathbb{D}, \ \partial \varphi_{s,t}/\partial t = V(\varphi_{s,t}(z),t)$  for a.e.  $t \ge s$ . Let  $f_s := \lim_{t\to\infty} e^t \varphi_{s,t}$ . Then  $\varphi_{s,t} = f_t^{-1} \circ f_s$ .  $\{f_t\}_{t\in I}$  is a Loewner chain solving (18).)

Let g be a function as in hypotheses,  $g_t := g(\cdot, t)$ .

**Claim.**  $g_t \circ \varphi_{s,t} = g_s$  for  $a \le s \le t$ .

Fix s. Then for  $z \in \mathbb{D}$  and a.e.  $t \ge s$ . By Proposition 4.12 (iii), g is differentiable for a.e.  $t \in I$ .

$$\frac{d}{dt}g_t \circ \varphi_{s,t}(z) = \frac{d}{dt}g(\varphi_{s,t}(z),t)$$

$$= \frac{\partial g}{\partial z}(\varphi_{s,t}(z),t) \cdot \frac{\partial \varphi_{s,t}(z)}{\partial t} + \frac{\partial g}{\partial t}(\varphi_{s,t}(z),t)$$

$$= g'_t \circ \varphi_{s,t}(z) \cdot V(\varphi_{s,t}(z),t) + \dot{g}_t \circ \varphi_{s,t}(z)$$

$$= g'_t(w) \cdot V(w,t) + \dot{g}_t(w) = 0.$$

Since  $t \mapsto g(\varphi_{s,t}(z), t)$  is local Lipschitz, we have

$$g_t \circ \varphi_{s,t}(z) \equiv \text{const.}$$
 in  $t \ge s$ , and for fixed  $s \in I, z \in \mathbb{D}$ 

For t = s,

$$g_s \circ \varphi_{s,s}(z) = g_s(z).$$

The Claim follows. By Claim,

$$g_t \circ \varphi_{s,t} = g_s, \quad \Longleftrightarrow \quad g_t \circ f_t^{-1} = g_s \circ f_s^{-1}$$

on  $\Omega_s := f_s(\mathbb{D})$  for  $t \ge s$ . Note  $\bigcup_{t \ge a} \Omega_t = \mathbb{C}$ , because  $\Omega_t \supseteq B(0, \frac{1}{4}e^t)$  by Koebe. Define

$$h(z) = (g_t \circ f_t^{-1})(z)$$
 if  $z \in \Omega_t$ .

Then h is well-defined and holomorphic on  $\mathbb{C} = \bigcup_{t \in I} \Omega_t$ ; hence entire.

By definition,  $g_t = h \circ f_t$  for  $t \in I$ .

$$h(0) = h(f_t(0)) = g_t(0) = 0,$$

and

$$h'(0) \circ f'_t(0) = g'_t(0) \implies h'(0)e^t = e^t \implies h'(0) = 1$$

Suppose that g satisfies (iv) in addition, then

$$|g_t(z)| = |h(f_t(z))| \le Ce^t$$
 for  $z \in \overline{B}(0, r_0)$ .

By Koebe,  $f_t(B(0, r_0)) \supseteq B(0, \frac{1}{4}e^t r_0)$ , and so

$$|h(w)| \le Ce^t$$
, for  $w \in B(0, \frac{1}{4}e^t r_0)$ ,  $t \in I$ .

So there exists  $C' \ge 0$  such that

$$|h(w)| \le C'(1+|w|), \qquad w \in \mathbb{C}.$$

By Cauchy estimate,  $h(w) \equiv aw + b$ ,  $a, b \in \mathbb{C}$ . Since h(0) = 0, h'(0) = 1, we have b = 0, a = 1, and so  $h(w) \equiv w$ , i.e.,  $h = id_{\mathbb{C}}$ .

Suppose  $\{\tilde{f}_t\}$  is another normalized Loewner chain with  $f_t(0) = 0, t \in I$ , solving (18). Then

$$|\tilde{f}_t(z)| \le e^t \frac{|z|}{(1-|z|)^2}, \qquad z \in \mathbb{D}, t \in I,$$

by Koebe, and so

$$|\tilde{f}_t(z)| \le 2e^t, \qquad |z| \le \frac{1}{2}, t \in I,$$

i.e., (iv) is true. Moreover, (i)–(iii) are lass true and so  $\tilde{f}_t = f_t$  for all  $t \in I$ , i.e., there exists a unique normalized Loewner chain solving (18).

**Remark 5.13.** It is likely that the second part of Theorem 5.12 can be proved under weaker regularity assumptions, e.g., namely that  $g(\cdot, t) \in H(\mathbb{D})$  for each  $t \in I$ , and  $g(z, \cdot)$  is absolutely continuous on compact  $J \subseteq I$  for each  $z \in \mathbb{D}$ . It is not clear that under those hypotheses g is differentiable for a.e.  $(z, t) \in \mathbb{D} \times I$ , not even local boundedness is clear!

## Figure 19: The Loewner triangle

Recent papers by Bracci, Contreras, Diaz-Madrigal, et.al.

**Theorem 5.14.** Let  $f \in H(\mathbb{D})$ ,  $f'(z) \neq 0$  for  $z \in \mathbb{D}$ , and

$$(1-|z|^2)\left|z\frac{f''(z)}{f'(z)}\right| \le 1 \qquad for \quad z \in \mathbb{D}.$$
(19)

Then f is univalent on  $\mathbb{D}$  (injective and holomorphic).

Conversely, if f is univalent on  $\mathbb{D}$ , then  $f'(z) \neq 0$  for  $z \in \mathbb{D}$ , and

$$(1-|z|^2)\left|z\frac{f''(z)}{f'(z)}\right| < 6 \qquad for \quad z \in \mathbb{D}.$$

*Proof.* I. Suppose first that f is univalent on  $\mathbb{D}$ . Wlog f(0) = 0, f'(0) = 1, so  $f \in \mathcal{S}$ . Then  $f'(z) \neq 0$  for  $z \in \mathbb{D}$ , and by Lemma 1.6,

$$\left| (1-|z|^2) \frac{f''(z)}{f'(z)} - 2\overline{z} \right| \le 4 \quad \text{for} \quad z \in \mathbb{D}.$$

Hence,

$$(1-|z|^2)\left|z\frac{f''(z)}{f'(z)}\right| \le 4|z|+2|z|^2 < 6 \quad \text{for} \quad z \in \mathbb{D}.$$

II. Suppose now that f satisfies the hypotheses of the first part. Wlog f(0) = 0, f'(0) = 1. Define

$$f(z,t) := f(e^{-t}z) + (e^t - e^{-t})zf'(e^{-t}z), \qquad z \in t, t \in I := [0,\infty),$$
  
$$f_t(z) := f(z,t).$$

Then  $f(\cdot,t) \in H(\mathbb{D}), t \in I$ , and  $f(z, \cdot) \in C^1[0, \infty), z \in \mathbb{D}$ .

$$\begin{split} \frac{\partial f}{\partial t}(z,t) &= -e^{-t}zf'(e^{-t}z) + (e^t + e^{-t})zf'(e^{-t}z) - (e^t - e^{-t})z^2e^{-t}f''(e^{-t}z) \\ &= e^tzf'(e^{-t}z) - (e^t - e^{-t})z^2e^{-t}f''(e^{-t}z) \\ &= e^tzf'(e^{-t}z) \left[1 - (1 - e^{-2t})\frac{e^{-t}zf''(e^{-t}z)}{f'(e^{-t}z)}\right]. \end{split}$$

 $\operatorname{So}$ 

$$\left|\frac{\partial f}{\partial t}(z,t)\right| \le M(r,T) \quad \text{for} \quad |z| \le r < 1, \ 0 \le t \le T.$$

Hence  $f \in HL(\mathbb{D} \times I)$ .

$$\begin{split} \frac{\partial f}{\partial z}(z,t) &= e^{-t}f'(e^{-t}z) + (e^t - e^{-t}) \Big[ f'(e^{-t}z) + z e^{-t}f''(e^{-t}z) \Big] \\ &= e^t f'(e^{-t}z) + (e^t - e^{-t}) z e^{-t}f''(e^{-t}z) \\ &= e^t f'(e^{-t}z) \Big[ 1 + (1 - e^{-2t}) \frac{e^{-t}z f''(e^{-t}z)}{f'(e^{-t}z)} \Big]. \end{split}$$

Denote  $w = e^{-t}z$ . Then  $|w| < e^{-t} \le 1$ .

$$\left| (1 - e^{-2t}) \frac{e^{-t} z f''(e^{-t} z)}{f'(e^{-t} z)} \right| < (1 - |w|^2) \left| \frac{w f''(w)}{f'(w)} \right| \le 1$$

So  $\partial f(z,t)/\partial z \neq 0$ . Define

$$V(z,t) := -\frac{\dot{f}(z,t)}{f'(z,t)} = -zp(z,t),$$

where

$$p(z,t) = \frac{1 - B(z,t)}{1 + B(z,t)}, \qquad B(z,t) = (1 - e^{-2t}) \frac{e^{-t} z f''(e^{-t}z)}{f'(e^{-t}z)}.$$

For each  $t \in I$ ,  $B(\cdot, t) \in H(\mathbb{D})$ ,  $B \in C(\mathbb{D} \times I)$ , |B(z,t)| < 1 for  $(z,t) \in \mathbb{D} \times I$ , and  $B(0,t) \equiv 0$  for all  $t \in I$ . Then  $p(0,t) \equiv 1$  and  $\operatorname{Re} p(\cdot,t) \geq 0$  for all  $t \in I$ , i.e.,  $p(\cdot,t) \in \mathcal{P}$ , or V is a "Herglotz vector field".

$$\dot{f}(z,t) = -V(z,t)f'(z,t)$$

So  $f_t = f(\cdot, t)$  solved the Loewner-Kufarev equation.

There exist  $M \ge 0$  such that  $|f(z)| \le M$ ,  $|f'(z)| \le M$  for  $|z| \le 1/2$ . Then

$$|f_t(z)| \le |f(e^{-t}z)| + e^t |z| |f'(e^{-t}z)| \le M(1+e^t) \le 2Me^t$$
, for  $t \ge 0$ .

By Theorem 5.12,  $\{f_t\}_{t \in [0,\infty)}$  is a Loewner chain, so  $f_t$  is univalent for  $t \ge 0$ . In particular,  $f_0 = f$  is univalent.

# 6 Variants and special cases of the Loewner-Kufarev equations

## 6.1. Slit domains

Let  $\gamma : [a, \infty] \to \hat{\mathbb{C}}$  be simple path ending at  $\infty$  such that  $0 \notin \gamma[a, \infty], \gamma(\infty) = \infty$ . Let  $\Omega_t = \mathbb{C} \setminus \gamma([t, \infty))$  be simply connected domains. Then  $\{\Omega_t\}$  is a geometric Loewner chain. Let  $f_t : \mathbb{D} \to \Omega_t$  be the unique conformal map such that  $f_t(0) = 0, f'_t(0) > 0$ . Then  $\{f_t\}$  is a Loewner chain. By a homeomorphic reparametrization of time we may wlog assume that  $\{f_t\}$  is a normalized Loewner chain, i.e.,  $f'_t(0) = e^t, t \in I$  (cf. Lemma 4.7).

Figure 20: Slit Loewner chain

For 
$$a \leq s < t < \infty$$
,  $\gamma([s,t)) \subseteq \Omega_t$ ,  $\lim_{s' \to t^-} \gamma(s') = \gamma(t) \in \partial \Omega_t$ . Hence, by Corollary 2.20,  
 $\lambda(t) := \lim_{s' \to t^-} f_t^{-1}(\gamma(s')) \in \partial \mathbb{D}$  exists.

Denote

$$J_{s,t} = f_t^{-1}([s,t)) \subseteq \mathbb{D}, \qquad \bar{J}_{s,t} = J_{s,t} \cup \{\lambda(t)\}$$

Since  $\hat{\mathbb{C}} \setminus \Omega_t = \gamma([a, \infty])$  is locally connected (w.r.t. chordal metric),  $f_t$  has a continuous extension  $f : \rightarrow \hat{\mathbb{C}}$  (cf. Theorem 2.1 and Remark 2.6). Then

$$f_t(\lambda(t)) = \lim_{s' \to t^-} f_t(f_t^{-1}(\gamma(s'))) = \lim_{s' \to t^-} \gamma(s') = \gamma(t).$$

So  $f_t(\lambda(t)) = \gamma(t)$ .  $\lambda(t)$  is uniquely determined by this equation (cf. Proposition 2.7).

Let  $\varphi_{s,t} = f_t^{-1} \circ f_s$ .  $\varphi_{s,t}$  is a conformal map of  $\mathbb{D}$  onto the slit domain  $\mathbb{D} \setminus J_{s,t} =: U_{s,t}$ .  $\partial U_{s,t} = \overline{J}_{s,t} \cup \partial \mathbb{D}$  is locally connected, so by Theorem 2.1,  $\varphi_{s,t}$  has a continuous extension  $\varphi_{s,t} : \overline{\mathbb{D}} \to \overline{U}_{s,t}$ . As in Example 2.15, one shows that there exists an open arc  $I_{s,t} \subseteq \partial \mathbb{D}$  such that

$$\varphi_{s,t}^{-1}(J_{s,t}) = I_{s,t}.$$
 (cf. Proposition 2.7)  
Then  $\lambda(s) \in I_{s,t}, \varphi_{s,t}(\lambda(s)) \in J_{s,t}.$ 

## Figure 21:

**Lemma 6.2.** Fix  $T \in [a, \infty)$ . Then there exists a distortion function  $\omega : (0, \infty) \to (0, \infty)$ ,  $\omega(\delta) \to 0$  as  $\delta \to 0^+$  such that

- i) diam $(J_{s,t}) \leq \omega(|s-t|),$
- ii) diam $(I_{s,t}) \le \omega(|s-t|)$ , for  $a \le s \le t \le T$ .

*Proof.* By uniform continuous of  $\gamma$  on [a, T] it follows that

$$\operatorname{diam}(\gamma[s,t)) \le \omega_1(|s-t|), \qquad a \le s < t \le T,$$

for some distortion function  $\omega_1$  (here and in what follows, we assume the distortion function  $\omega(\delta)$  is monotonically increasing as  $\delta$  increasing).

Set  $g_t = f_t^{-1}$ . By Theorem 2.17,

$$\operatorname{diam}(J_{s,t}) = \operatorname{diam}(g_t(\gamma[s,t)))$$
  
$$\leq \omega_2\left(\frac{\operatorname{diam}(\gamma[s,t))}{f'_t(0)}\right) \leq \omega_2(e^{-a}\operatorname{diam}(\gamma[s,t))) \leq \omega_3(|s-t|).$$

So diam $(J_{s,t})$  is uniformly small if s < t are close in [a, T]. Wlog, assume s < t are so close that diam $(J_{s,t}) < 1/2$ .

Let  $z_0 := \lambda(t)$ ,  $r = 2 \operatorname{diam}(J_{s,t})$ . Then  $J_{s,t} \subseteq B := B(z_0, r)$  but  $0 \notin B(z_0, r)$ . So the arc  $C \subseteq \mathbb{D} \cap \partial B$  separates 0 and  $J_{s,t}$  in  $\mathbb{D}$ . Then  $\tilde{C} = \varphi_{s,t}^{-1}(C)$  separates 0 and  $I_{s,t}$  in  $\mathbb{D}$ . Hence, by Theorem 2.17,

$$\operatorname{diam}(I_{s,t}) \le \omega_4(\operatorname{diam}(\tilde{C})) \le \omega_5\left(\frac{\operatorname{diam}(C)}{\varphi'_{s,t}(0)}\right) \le \omega_5(e^{t-s}\operatorname{diam}(C)) \le \omega_6(J_{s,t}) \le \omega_7(|s-t|). \quad \Box$$

Let  $\Omega \subseteq \hat{\mathbb{C}}$  be open,  $f : \Omega \to \mathbb{C}$  be holomorphic (f holomorphic at  $\infty$  if  $z \mapsto f(1/z)$  holomorphic at 0). Define

$$Cl(f,\Omega) = \{ w \in \hat{\mathbb{C}} : \text{there exists sequence } \{z_n\} \text{ in } \Omega$$
  
such that  $z_n \to z_0 \in \partial\Omega$  and  $f(z_n) \to w \},$ 

the set of cluster values of f on  $\Omega$ .

**Proposition 6.3.** Let  $\Omega \subsetneq \hat{\mathbb{C}}$ ,  $f : \hat{\mathbb{C}} \to \mathbb{C}$  holomorphic. Then

i)  $\sup_{z \in \Omega} |f(z)| = \sup\{|w| : w \in Cl(f, \Omega)\} \in [0, \infty]$  (a version of maximum principle),

ii)  $if \operatorname{Cl}(f,\Omega) \subseteq \mathbb{C}$ , then  $\operatorname{osc}(f,\Omega) := \sup\{|f(z_1) - f(z_2)| : z_1, z_2 \in \Omega\} = \sup\{|w_1 - w_2| : w_1, w_2 \in \operatorname{Cl}(f,\Omega)\} = \operatorname{diam}(\operatorname{Cl}(f,\Omega)).$ 

*Proof.* i) The proof is standard. " $\geq$ " is clear. For " $\leq$ ": there exists a sequence  $\{z_n\}$  in  $\Omega$  such that

$$|f(z_n)| \to M := \sup_{z \in \Omega} |f(z)|, \quad \text{as} \quad n \to \infty.$$

Wlog, assume  $z_n \to z_0 \in \overline{\Omega}$ ,  $f(z_n) \to w \in \widehat{\mathbb{C}}$  with M = |w|.

Case 1:  $z_0 \in \partial \Omega$ . Then  $w \in \operatorname{Cl}(f, \Omega)$ , and M = |w|. We have done!

Case 2:  $z_0 \in \Omega$ . Then |f| attains a maximum at  $z_0$ . By the maximum principle,  $f \equiv w$  on the component U of  $\Omega$  with  $z_0 \in U$ . Then we also have  $w \in \operatorname{Cl}(f, \Omega)$  and M = |w|.

ii) " $\geq$ " is clear. For " $\leq$ ": Let  $z_1, z_2 \in \Omega$  be arbitrary. Consider the map  $z \mapsto f(z) - f(z_2)$ . It is holomorphic on  $\Omega$ , so by i) there exists  $w_1 \in \operatorname{Cl}(f, \Omega) \subseteq \mathbb{C}$  such that

$$|f(z_1) - f(z_2)| \le |w_1 - f(z_2)|$$

Applying the same argument to  $z \mapsto w_1 - f(z)$ , we find  $w_2 \in \operatorname{Cl}(f, \Omega) \subseteq \mathbb{C}$  such that

$$|f(z_1) - f(z_2)| \le |w_1 - f(z_2)| \le |w_1 - w_2|$$

The result follows.

**Lemma 6.4.** Setup as in 6.1,  $T \in [a, \infty)$ . Then there exists a distortion function  $\omega$  such that

$$|\varphi_{s,t}(z) - e^{t-s}z| \le \omega(|s-t|), \quad for \quad z \in \overline{\mathbb{D}}, \ 0 \le s \le t \le T, \ |s-t| \ small.$$

*Proof.* Let  $R : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ ,  $R(z) = 1/\overline{z}$ , be the reflection w.r.t.  $\partial \mathbb{D}$ . Let  $J_{s,t}^* = R(J_{s,t})$ . By the Schwarz reflection principle,  $\varphi_{s,t}$  has an extension to a conformal map

$$\varphi_{s,t}:\Omega:=\widehat{\mathbb{C}}\setminus\{\bar{I}_{s,t}\}\to\Omega':=\widehat{\mathbb{C}}\setminus\{\bar{J}_{s,t}\cup J_{s,t}^*\}.$$

by

$$\varphi_{s,t}(z) = R(\varphi_{s,t}(R(z))) \quad \text{for} \quad |z| > 1.$$

Near 0,  $\varphi_{s,t}$  has the expansion

$$\varphi_{s,t}(z) = e^{s-t}z + a_2 z^2 + \cdots .$$

So near  $\infty$ ,

$$\varphi_{s,t}(z) = e^{t-s}z + c_0 + \frac{c_1}{z} + \cdots,$$

which implies that  $\varphi_{s,t}$  has a  $1^{st}$  order pole at  $\infty$ . Let

$$f(z) = \varphi_{s,t}(z) - e^{t-s}z, \quad \text{for} \quad z \in \Omega.$$

Then  $f: \Omega \to \mathbb{C}$  is holomorphic on  $\Omega$  with removable singularity at  $\infty$ .

$$Cl(f,\Omega) = \{ w \in \mathbb{C} : \text{there exists } \{z_n\} \text{ in } \Omega, z_n \to z_0 \in \partial\Omega = \bar{I}_{s,t}, f(z_n) \to w \}$$
$$\subseteq A + B := \{ a + b : a \in A, b \in B \},$$

where  $A = \bar{J}_{s,t} \cup J_{s,t}^*$ ,  $B = \{-e^{t-s}z_0 : z_0 \in \bar{I}_{s,t}\}$ . Note that f(0) = 0. By Proposition 6.3,

$$\sup_{z\in\overline{\mathbb{D}}} |\varphi_{s,t}(z) - e^{t-s}z| = \sup_{z\in\mathbb{D}} |f(z)| = \sup_{z\in\mathbb{D}} |f(z) - f(0)|$$
  
$$\leq \operatorname{osc}(f,\Omega) \leq \operatorname{diam}(\operatorname{Cl}(f,\Omega)) \leq \operatorname{diam}(A) + \operatorname{diam}(B).$$

If |s-t| small, diam $(J_{s,t})$  is small,

$$\operatorname{diam}(J_{s,t}^*) \lesssim \operatorname{diam}(J_{s,t}) \le \omega_1(|s-t|)$$

So diam $(A) \leq \omega_2(|s-t|)$ . If |s-t| small,  $e^{t-s} \leq 1$ , and

$$\operatorname{diam}(B) \lesssim \operatorname{diam}(I_{s,t}) \leq \omega_3(|s-t|).$$

Hence,

$$\sup_{z \in \mathbb{D}} |\varphi_{s,t}(z) - e^{t-s}z| \le \operatorname{diam}(A) + \operatorname{diam}(B) \le \omega(|s-t|).$$

**Corollary 6.5.**  $\lambda$  (as in 6.1) is a continuous function on  $[a, \infty)$ .

*Proof.* Let  $a \leq s < t \leq T$  for any given T. Then  $\lambda(t), \varphi_{s,t}(\lambda(s)) \in \overline{J}_{s,t}$ . We have

(1)  $|\lambda(t) - \varphi_{s,t}(\lambda(s))| \leq \operatorname{diam}(J_{s,t}) \leq \omega_1(|s-t|),$ 

(2)  $|\varphi_{s,t}(\lambda(s)) - e^{t-s}\lambda(s)| \le \omega_2(|s-t|),$  (Lemma 6.4) (3)  $|e^{t-s}\lambda(s) - \lambda(s)| \le |e^{t-s} - 1| \le \omega_3(|s-t|).$ 

By (1) – (3),  $|\lambda(t) - \lambda(s)| \leq \omega(|s-t|)$ . So  $\lambda$  is continuous on [0,T]. Since T is arbitrary,  $\lambda$ is continuous on  $[0, \infty)$ . 

**Theorem 6.6.** (Loewner equation for slit mappings) Let  $\{f_t\}$  be a Loewner chain generated by a slit (as in 6.1). Then

$$\dot{f}_t(z) = -V(z,t)f'_t(z)$$
 for a.e.  $t \in [a,\infty), z \in \mathbb{D}$ ,

where

$$V(z,t) = -z \frac{\lambda(t) + z}{\lambda(t) - z}, \qquad (z,t) \in \mathbb{D} \times I$$

Here,  $\lambda : I = [a, \infty) \to \partial \mathbb{D}$  is continuous.

*Proof.* Let  $\varphi_{s,t} = f_t^{-1} \circ f_s$ . We know from Theorem 4.13 that  $\{f_t\}$  satisfies the Loewner-Kufarev equation with

$$V(z,t) = \lim_{\varepsilon \to 0} \frac{\varphi_{t,t+\varepsilon}(z) - z}{\varepsilon}, \qquad z \in \mathbb{D}, \text{ a.e. } t \in I.$$

For  $a \leq s < t < \infty$ , define

$$\Phi_{s,t}(z) := \log\left(\frac{z}{\varphi_{s,t}(z)}\right) = (t-s) + \cdots$$

which is holomorphic in  $\mathbb{D}$  (cf. (10) in the Proof of Lemma 4.10). Actually,  $z \mapsto z/\varphi_{s,t}(z)$ has a zero-free continuous extension to  $\overline{\mathbb{D}}$ ; hence this function has a continuous logarithm on  $\overline{\mathbb{D}}$ (uniquely determined by a point normalization). Hence,  $\Phi_{s,t}$  has a continuous extension to  $\overline{\mathbb{D}}$ . By the Schwarz formula

$$\Phi_{s,t}(z) = i \operatorname{Im} \Phi_{s,t}(0) + \frac{1}{2\pi} \int_0^{2\pi} \frac{\zeta + z}{\zeta - z} \operatorname{Re} \Phi_{s,t}(\zeta) |d\zeta|,$$

where  $\zeta = e^{it}$ ,  $|d\zeta| = dt$ . Note Im  $\Phi_{s,t}(0) = 0$ ,

$$\operatorname{Re} \Phi_{s,t}(\zeta) = \log \left| \frac{\zeta}{\varphi_{s,t}(\zeta)} \right| = \log \left| \frac{1}{\varphi_{s,t}(\zeta)} \right| \ge 0, \quad \text{for} \quad \zeta \in \partial \mathbb{D},$$

and

$$|\varphi_{s,t}(\zeta)| = 1$$
 for  $\zeta \in \partial \mathbb{D} \setminus I_{s,t}$ .

So  $\operatorname{Re} \Phi_{s,t}(\zeta)$  is supported on  $\overline{I}_{s,t} \ni \lambda(s)$ . Since

$$t - s = \Phi_{s,t}(0) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re} \Phi_{s,t}(\zeta) |d\zeta|,$$

We can define a probability measure  $\mu_{s,t}$  on  $\partial \mathbb{D}$  by

$$d\mu_{s,t}(\zeta) = \frac{1}{2\pi(t-s)} \operatorname{Re} \Phi_{s,t}(\zeta) |d\zeta|.$$

Then  $\operatorname{supp}(\mu_{s,t}) \subseteq \overline{I}_{s,t} \ni \lambda(s)$ . Fix s, and let  $t = s + \varepsilon, \varepsilon \to 0^+$ . Then  $\operatorname{diam}(I_{s,s+\varepsilon}) \to 0$  (Lemma 6.2). Hence,

$$\mu_{s,s+\varepsilon} \xrightarrow{w^*} \delta_{\lambda(s)}$$
 (Dirac mass at  $\lambda(s)$ ) as  $\varepsilon \to 0^+$ .

i.e.,

$$\int_{\partial \mathbb{D}} h(\zeta) d\mu_{s,s+\varepsilon}(\zeta) \to \int_{\partial \mathbb{D}} h(\zeta) d\delta_{\lambda(s)} = h(\lambda(s)), \quad \text{for} \quad h \in C(\partial \mathbb{D}).$$

 $\operatorname{So}$ 

$$\lim_{\varepsilon \to 0^+} \frac{\Phi_{s,s+\varepsilon}(z)}{\varepsilon} = \lim_{\varepsilon \to 0^+} \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu_{s,s+\varepsilon}(\zeta)$$
$$= \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\delta_{\lambda(s)} = \frac{\lambda(s) + z}{\lambda(s) - z}, \quad \text{for all } s \in I, z \in \mathbb{D}.$$

On the other hand,  $\varphi_{s,t}(z) = -z \exp(-\Phi_{s,t}(z))$ . So

$$V(z,t) = \lim_{\varepsilon \to 0^+} \frac{\varphi_{s,s+\varepsilon}(z) - z}{\varepsilon} = \lim_{\varepsilon \to 0^+} z \frac{\exp(-\Phi_{s,s+\varepsilon}(z)) - 1}{\varepsilon}$$
$$= z \frac{\partial}{\partial \varepsilon} \exp(-\Phi_{s,s+\varepsilon}(z)) \bigg|_{\varepsilon=0} = -z \exp(0) \frac{\partial \Phi_{s,s+\varepsilon}(z)}{\partial \varepsilon} \bigg|_{\varepsilon=0}$$
$$= -z \frac{\lambda(s) + z}{\lambda(s) - z}.$$

Here, we have used the fact

$$\lim_{\varepsilon \to 0^+} \Phi_{s,s+\varepsilon}(z) = \lim_{\varepsilon \to 0^+} \varepsilon \cdot \frac{\Phi_{s,s+\varepsilon}(z)}{\varepsilon} = 0.$$

**Example 6.7.** If  $\lambda(t) \equiv 1$ , then

$$f_t(z) = \frac{e^t z}{(1+z)^2}.$$

In fact,

$$\dot{f}_t(z) = \frac{e^t z}{(1+z)^2}, \qquad f'_t(z) = e^t \frac{1-z}{(1+z)^3}$$

 $\operatorname{So}$ 

$$\dot{f}_t(z) = z \frac{1+z}{1-z} f'_t(z).$$

Example 6.8. Stationary solutions of the Loewner-Kufarev equation.

Let  $f \in H(\mathbb{D})$  with f(0) = 0, f'(0) = 1. Suppose that  $f_t(z) = a(t)f(z)$  is a normalized Loewner chain. Then  $f'_t(0) = a(t)f'(0) = a(t) = e^t$ . So

$$f_t(z) = e^t f(z).$$

Note

$$\dot{f}_t(z) = e^t f(z), \qquad f'_t(z) = e^t f'(z).$$

The Loewner-Kufarev equation implies

$$\dot{f}_t(z) = e^t f(z) = -V(z,t) f'_t(z) = z p(z,t) e^t f'(z),$$

where

$$p(z,t) = \frac{f(z)}{zf'(z)} \in \mathcal{P}.$$
 (0 is a removable singularity)

So

$$\operatorname{Re} p(z,t) > 0 \iff \operatorname{Re} \left( \frac{f(z)}{zf'(z)} \right) > 0 \iff \operatorname{Re} \left( \frac{zf'(z)}{f(z)} \right) > 0.$$

**Theorem 6.9.** Let  $f \in H(\mathbb{D})$ , f(0) = 0, f'(0) = 1. TFAE.

i) Re(z f'(z)/f(z)) > 0 (has removable singularities by assumption),
ii) f ∈ S and Ω = f(D) is starlike with respect to 0, i.e., [0, w] ⊆ Ω for all w ∈ Ω.

*Proof.* i)  $\Rightarrow$  ii): By Example 6.8,  $F(z,t) = f_t(z) - e^t f(z)$  solves the Loewner-Kufarev equation. F is  $C^{\infty}$ -smooth on  $\mathbb{R} \times \mathbb{D}$  and  $|f_t(z)| \leq Ce^t$  for  $t \in \mathbb{R}$ ,  $z \in \overline{B}(0, 1/2)$ ;  $f'_t(0) = e^t$ ,  $t \in \mathbb{R}$ . Hence,

 $\{f_t\}$  is a normalized Loewner chain; so  $f = f_0$  is a conformal map and

$$\Omega_t := f_t(\mathbb{D}) = e^t \Omega \subseteq \Omega_0 = \Omega$$

for all t < 0. So  $f \in S$  and  $\Omega$  is starlike w.r.t. 0.

ii)  $\Rightarrow$  i): If  $f \in S$  and  $\Omega$  is starlike w.r.t. 0, then  $\{\Omega_t\}_{t\in\mathbb{R}}$  with  $\Omega_t = e^t\Omega$  forms a geometric Loewner chain, corresponding to the analytic Loewner chain  $\{f_t\}_{t\in\mathbb{R}}$  with  $f_t(z) = e^t f(z)$ . Hence,  $\operatorname{Re}(zf'(z)/f(z)) > 0$  by Example 6.8.

# 7 The radial and chordal versions of the Loewner-Kufarev equation

## 7.1. Radial Loewner chains (disk version of Loewner chain).

Let I = [0, b] with  $b \in (0, \infty]$ . The sequence of regions  $\{\Omega_t\}_{t \in I}$  is called a *(geometric) radial Loewner chain* if

i)  $\Omega_t \subseteq \mathbb{D}$  is a simply connected region with  $0 \in \Omega_t$  for  $t \in I$ ,

- ii)  $\Omega_0 = \mathbb{D}$ ,
- iii)  $\Omega_s \supseteq \Omega_t$  for  $s < t, s, t \in I$ ,
- iv)  $\{\Omega_t\}$  is continuous in t in sense of kernel convergence with respect to  $w_0 = 0$ .

If  $f_t : \mathbb{D} \longleftrightarrow \Omega_t$  be the unique conformal map with  $f_t(0) = 0$ ,  $f'_t(0) > 0$ , then  $\{f_t\}_{t \in I}$  is the corresponding *(analytic) radial Loewner chain.* It is normalized if  $f'_t(0) = e^{-t}$  for  $t \in I$ .

Simplest situation:  $\Omega_t = \mathbb{D} \setminus [1/t, 1)$ , "a radius grows out of  $\partial \mathbb{D}$  towards 0".

Study of radial Loewner chain can be reduced to whole plane version. If  $\{\Omega_t\}_{t\in[0,b]}$  is a radial Loewner chian, define

$$\tilde{\Omega}_t = \begin{cases} \Omega_{-t} & t \in [-b,0] \\ e^t \mathbb{D} & t \ge 0. \end{cases}$$

(continuity clear, also at t = 0.) Then  $\{\Omega_t\}_{t \in [-b,\infty)}$  is a (whole plane) Loewner chain. If the  $\{\Omega_t\}$  is normalized (i.e., the corresponding analytic Loewner chain is), then  $\{\tilde{\Omega}_t\}$  is normalized.  $\{\Omega_t\}$  can be obtained from  $\{\tilde{\Omega}_t\}$  by "time reversed and restriction of time interval. So the regularity theory for whole plane Loewner chains remains valid in radial case, in particular, if  $\{f_t\}_{t \in [0,b]}$  is a normalized radial Loewner chain, then

$$f_t(z) = V(z,t)f'_t(z)$$
 for a.e.  $t \in I$ , all  $z \in \mathbb{D}$ ,

where V is a Herglotz vector field (radial Loewner-Kufarev equation). Note the sign change in comparison to Loewner-Kufarev equation due to time reversal!.

## 7.2. Radial Loewner chains generated by slits.

Let  $\gamma : [0,b] \to \mathbb{C}$  be a simple path,  $\gamma(0) = 1$ ,  $\gamma(t) \in \mathbb{D}$ ,  $t \in (0,b]$ ,  $0 \notin \gamma[0,b]$ . Let  $\Omega_t = \mathbb{D} \setminus \gamma([0,t]) \subseteq \mathbb{D}$  be a simply connected region with  $0 \in \Omega_t$ ,  $\Omega_0 = \mathbb{D}$ ,  $\Omega_t \subseteq \Omega_s$ , t < s. Then  $\{\Omega_t\}_{t \in [0,b]}$  is a geometric radial Loewner chain. We can assume that the corresponding analytic radial Loewner chain  $\{f_t\}$  is normalized:  $f_t(0) = 0$ ,  $f'_t(0) = e^{-t}$ .

Figure 22: Radial Loewner chain and corresponding maps

$$f_t(\lambda(t)) = \gamma(t), \qquad \varphi_{s,t}(\lambda(s)) \in J_{s,t}.$$

**Lemma 6.2.**  $J_{s,t}$ ,  $I_{s,t}$  are uniformly small if |s - t| is small. **Lemma 6.4.**  $\varphi_{s,t}$  is uniformly close to  $id_{\mathbb{C}}$  if |s - t| is small. **Corollary 6.5.**  $|\lambda(s) - \lambda(t)|$  is uniformly small if |s - t| is small.  $\lambda$  is continuous.

Proof of Theorem 6.6 shows

$$\dot{f}_t(z) = -z \frac{\lambda(t) + z}{\lambda(t) - z} f'_t(z), \qquad (z, t) \in \mathbb{D} \times [0, b].$$

## 7.3. Idea of chordal Loewner chains.

## Figure 23: Conformal maps

Let  $f_t : \mathbb{D} \to \Omega_t$  be conformal maps. We want to normalize conformal maps at boundary point, say  $1 \in \partial \mathbb{D}$ . Meaningless, unless we have additional assumptions:

 $\Omega_t \subseteq \mathbb{D}$  such that  $B(1, r(t)) \cap \mathbb{D} \subseteq \Omega_t, \Omega_t \supseteq \Omega_s$  as t < s.

Figure 24: Additional assumptions for  $\Omega_t$ 

Simplest situation:  $\Omega_t = \mathbb{D} \setminus (-1, 1-t], t \in [0, 2]$ . (figure)

Mostly, one switches to upper-half plane  $\mathbb{H} = \{ w \in \mathbb{C} : \operatorname{Im} w > 0 \}, \ \partial \mathbb{H} = \mathbb{R} \cup \{ \infty \}, \text{ and } \mathbb{D} \cup \{ 1 \} \longleftrightarrow \mathbb{H} \cup \{ \infty \}.$ 

**Lemma 7.4.** Let  $\Omega \subseteq \mathbb{D}$  be simply connected region,  $g : \Omega \leftrightarrow \mathbb{D}$  be conformal map. Suppose  $\zeta \in \partial \mathbb{D} \cap \partial \Omega$  and there exists r > 0 such that  $\mathbb{D} \cap B(\zeta, r) \subseteq \Omega$ . Then g has a holomorphic extension to a neighborhood of  $\zeta$  and  $g'(\zeta) \neq 0$ .

*Proof.* Wlog, we assume  $\zeta = 1$  and there exists an open arc  $\alpha \subseteq \partial \mathbb{D} \cap \partial \Omega$  with  $1 \in \alpha$ . By Wolff's lemma, g has a continuous extension to  $\Omega \cup \alpha$ . Then  $g(\alpha) \subseteq \partial \mathbb{D}$ , and g extends to a holomorphic function near  $\zeta$ . Points in  $\mathbb{D}$  near  $g(\zeta) \in \partial \mathbb{D}$  have precisely one preimage near  $\zeta$ , so g is locally injective near  $\zeta$  and  $g'(\zeta) \neq 0$ .

Note that  $f = g^{-1}$  has a locally injective extension to  $\eta = g(\zeta) \in \partial \mathbb{D}$ .

**Corollary 7.5.** Let  $\Omega \subseteq \mathbb{H}$  be a simply connected region such that  $\mathbb{H} \setminus B(0, R) \subseteq \Omega$  for some R > 0. Then there exists a unique conformal map  $f : \mathbb{H} \leftrightarrow \Omega$  such that f has a holomorphic extension near  $\infty$  and

$$f(z) = z + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots, \quad \text{for } z \text{ near } \infty.$$

*Proof.* Existence: By Lemma 7.4, there exists a conformal map  $g : \Omega \leftrightarrow \mathbb{H}$  such that g has a holomorphic and locally injective extension to  $\infty$  with  $g(\infty) \in \hat{\mathbb{R}}$ . Post-composition by a Möbius transformation, we may assume  $g(\infty) = \infty$ . Since g is locally injective, g has the first order pole near  $\infty$ , and so

$$g(z) = b_1 z + b_0 + \frac{b_{-1}}{z} + \frac{b_{-2}}{z^2} + \cdots,$$

 $g(x) \in \hat{\mathbb{R}}$  for  $x \in \mathbb{R}$  near  $\infty$ ; so

$$b_1 = \lim_{x \in \mathbb{R} \to \infty} \frac{g(x)}{x} \in \mathbb{R};$$
  
$$b_0 = \lim_{x \in \mathbb{R} \to \infty} g(x) - b_1 x \in \mathbb{R}.$$

Since  $\operatorname{Im} g(ix) > 0$  for  $x \in \mathbb{R}$ , so

$$b_1 = \operatorname{Re} b_1 = \lim_{x \to +\infty} \operatorname{Re} \left( \frac{g(ix)}{ix} \right) \ge 0,$$

so  $b_1 > 0$ . Then  $\varphi(w) = (w - b_0)/b_1$  preserves  $\mathbb{H}$ , and  $\tilde{g} := \varphi \circ g$  is a conformal map of  $\Omega$  onto  $\mathbb{H}$  with

$$\tilde{g}(z) = z + \frac{b_{-1}}{z} + \cdots, \quad \text{near} \quad \infty.$$

Let  $f := \tilde{g}^{-1}$ . Then  $f : \mathbb{H} \leftrightarrow \Omega$  is a conformal map, holomorphic near  $\infty$ , and

$$f(z) = z + \frac{a_1}{z} + \frac{z_2}{z^2} + \cdots$$
 for  $z$  near  $\infty$ .

Uniqueness: Suppose  $f_1, f_2 : \mathbb{H} \leftrightarrow \Omega$  are two conformal maps, holomorphic near  $\infty$ , and

$$f_1(z) = z + o(1),$$
  $f_2(z) = z + o(1).$ 

Then  $\varphi := f_2 \circ f_1^{-1} : \mathbb{H} \leftrightarrow \mathbb{H}$  is a conformal map, hence a Höbius transformation with  $\varphi(\mathbb{H}) = \mathbb{H}$ .

$$\varphi(z) = \frac{az+b}{cz+d}, \qquad a, b, c, d \in \mathbb{R}, \ ad-bc > 0.$$

Moreover,  $\varphi(\infty) = \infty$ , so  $\varphi(z) = az + b$ , a > 0,  $b \in \mathbb{R}$ .  $\varphi(z) = z + o(1)$ , so a = 1, b = 0, and  $\varphi = \mathrm{id}_{\hat{\mathbb{C}}}$ . Hence,  $f_1 = f_2$ .

= z + o(1).

**Theorem 7.6. (Herglotz representation for positive harmonic functions)** a) (disk version) Let  $h : \mathbb{D} \to (0, \infty)$  be a positive harmonic function. Then there exists a unique positive measure  $\mu$  on  $\partial \mathbb{D}$  with  $0 < \mu(\partial \mathbb{D}) < \infty$  such that

$$h(z) = \int_{\partial \mathbb{D}} \operatorname{Re}\left(\frac{\zeta + z}{\zeta - z}\right) d\mu(\zeta), \qquad z \in \mathbb{D}.$$

b) (half-plane version) Let  $h : \mathbb{H} \to (0, \infty)$  be a positive harmonic function. Then there exist a unique constant  $a \ge 0$  and a unique positive measure  $\nu$  on  $\mathbb{R}$  such that

$$0 < a + \int_{\mathbb{R}} \frac{1}{1+t^2} d\nu(t) < \infty,$$

and

$$h(z) = a \cdot \operatorname{Im} z + \int_{\mathbb{R}} \operatorname{Im}\left(\frac{1}{t-z}\right) d\nu(t), \qquad z \in \mathbb{H}.$$

*Proof.* a) h is a positive harmonic function on  $\mathbb{D}$  if and only if there exists a unique  $f \in H(\mathbb{D})$  such that Re f = h > 0, f(0) = h(0) > 0, if and only if there exists a unique measure  $\mu \ge 0$  on  $\partial \mathbb{D}$  such that

$$f(z) = \int_{\partial \mathbb{D}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta),$$

with  $0 < \mu(\partial D) = f(0) < \infty$ . The existence and uniqueness follow.

b) Let  $\varphi : \mathbb{D} \cup \{1\} \leftrightarrow \mathbb{H} \cup \{\infty\}$  be conformal map with  $\varphi(1) = \infty$ , say

$$z = \varphi(w) = i \frac{1+w}{1-w}, \qquad w = \psi(z) = \varphi^{-1}(z) = \frac{z-i}{z+i}.$$

Suppose that  $h : \mathbb{H} \to (0, \infty)$  is harmonic,  $\Delta h = 0$ . Then  $g = h \circ \varphi : \mathbb{D} \to (0, \infty)$  is harmonic on  $\mathbb{D}$ ,  $\Delta g = 0$ . There exists a unique holomorphic function on  $\mathbb{D}$  such that  $\operatorname{Re} f = g$ , f(0) = g(0) > 0. By (a),

$$f(w) = a \cdot \frac{1+w}{1-w} + \int_{\partial \mathbb{D} \setminus \{1\}} \frac{\zeta+w}{\zeta-w} d\mu(\zeta), \qquad \text{where } a = \mu(\{1\}) \ge 0.$$

Let  $\tau := \varphi_* \mu|_{\partial \mathbb{D} \setminus \{1\}}$  be the measure on  $\mathbb{R}$ ,  $\tau(A) = \mu(\varphi^{-1}(A))$  for  $A \subseteq \mathbb{R}$ .

$$\int_{\mathbb{R}} \rho d\tau = \int_{\partial \mathbb{D} \setminus \{1\}} (\rho \circ \varphi) d\mu, \qquad \rho \in L^{1}(\tau),$$

 $0 < \mu(\partial \mathbb{D}) = a + \tau(\mathbb{R}) < \infty.$   $(a, \tau)$  are unique. Let  $\tilde{f}(z) = f(\psi(z)), z \in \mathbb{H}$ . Since (1+w)/(1-w) = -iz,

$$\operatorname{Re}\left(\frac{1+w}{1-w}\right) = \operatorname{Re}(-iz) = \operatorname{Im} z$$

Set  $\zeta = (t - i)/(t + i), t \in \mathbb{R} \longleftrightarrow \zeta \in \partial \mathbb{D} \setminus \{1\}$ . Then

$$\frac{\zeta+w}{\zeta-w} = -i\Big(\frac{1+tz}{t-z}\Big) = -i\Big(\frac{1+t^2}{t-z}-t\Big),$$

and

$$\operatorname{Re}\left(\frac{\zeta+w}{\zeta-w}\right) = \operatorname{Re}\left(-i\left[\frac{1+t^2}{z-t}\right]\right) = (1+t^2)\operatorname{Im}\left(\frac{1}{z-t}\right).$$

Define measure  $\nu$  on  $\mathbb{R}$  by

$$d\nu(t) = (1+t^2)d\tau(t).$$

Then

$$\int_{\mathbb{R}} \frac{1}{1+t^2} d\nu(t) = \int_{\mathbb{R}} d\tau(t) < \infty,$$

and

$$0 < a + \int_{\mathbb{R}} \frac{1}{1+t^2} d\nu(t) = a + \tau(\mathbb{R}) = \mu(\partial \mathbb{D}) < \infty.$$

Then

$$\tilde{f}(z) = a(-iz) + \int_{\mathbb{R}} (-i) \left(\frac{1+t^2}{t-z} - t\right) d\tau(t), \qquad z \in \mathbb{D}.$$

Hence

$$h(z) = \operatorname{Re} \tilde{f}(z) = a \operatorname{Im} z + \int_{\mathbb{R}} \operatorname{Im}\left(\frac{1}{t-z}\right) d\nu(t), \qquad z \in \mathbb{D}.$$

Setting z = x + iy, y > 0, the integral converges since

$$\operatorname{Im}\left(\frac{1}{t-z}\right) = \operatorname{Im}\left(\frac{1}{(t-x)-iy}\right) = \frac{y}{(x-t)^2 + y^2} \lesssim \frac{1}{1+t^2}$$

for x, y fixed, |t| large.

The uniqueness of  $(a, \nu)$  is clear.

**Remark 7.7.** If  $g \in H(\mathbb{H})$ , Im g > 0. Let f = -ig, g = if. Then Re f > 0. The proof shows that there exist unique constants  $a, b \in \mathbb{R}$ ,  $a \ge 0$ , and a Lebesgue finite measure  $\tau \ge 0$  on  $\mathbb{R}$ , such that

$$g(z) = az + b + \int_{\mathbb{R}} \left(\frac{1+t^2}{t-z} - t\right) d\tau(t), \qquad z \in \mathbb{H}.$$

**Theorem 7.8.** (Julia's Lemma) Let  $f : \mathbb{H} \to \mathbb{H}$  be holomorphic, and

$$c := \inf_{z \in \mathbb{H}} \frac{\operatorname{Im} f(z)}{\operatorname{Im} z} \ge 0$$

Then

$$c = \lim_{y \to +\infty} \frac{\operatorname{Im} f(iy)}{y}.$$
(20)

Suppose in addition that f is holomorphic near  $\infty$ , and has a Laurent expansion of the form

$$f(z) = z + \frac{a_1}{z} + \frac{a_2}{z^2} + \dots$$
(21)

near  $\infty$ . Then c = 1 and  $a_1 \leq 0$  (so  $a_1 \in \mathbb{R}$ ) with equality iff f(z) = z for  $z \in \mathbb{H}$ .

Note: Im  $f(z) \ge \text{Im } z$  for  $z \in \mathbb{H}$ , and so  $f(H_t) \subseteq H_t$   $(t \ge 0)$ , where  $H_t = \{z \in \mathbb{C} : \text{Im } z > t\}$ .

*Proof.* Let h := Im f.  $h \ge 0$ ,  $\Delta h = 0$ . Wlog, h > 0 (otherwise,  $f \equiv a \in \mathbb{R}$ , claim true). By Theorem 7.6

$$h(z) = a \cdot \operatorname{Im} z + \int_{\mathbb{R}} \operatorname{Im}\left(\frac{1}{t-z}\right) d\nu(t),$$

where  $a \ge 0, \nu \ge 0$  and

$$\tilde{h}(z) = \int_{\mathbb{R}} \operatorname{Im}\left(\frac{1}{t-z}\right) d\nu(t) \ge 0, \quad \text{for } z \in \mathbb{H}.$$

So

$$\frac{h(z)}{\operatorname{Im} z} = a + \frac{\tilde{h}(z)}{\operatorname{Im} z},$$

which implies  $c \ge a$ . For claim, it suffices to show that

$$\lim_{y \to +\infty} \frac{\tilde{h}(iy)}{y} = 0, \qquad \text{(then } c = a \text{ and } (1) \text{ true.)}$$

However,

$$\operatorname{Im}(\frac{1}{t-iy}) = \frac{y}{t^2 + y^2} \le \frac{1}{t^2 + 1} \in L^1(\nu),$$

and  $1/((t^2 + y^2) \to 0$  as  $y \to +\infty$ . By the Lebesgue dominate convergence theorem,

$$\frac{\tilde{h}(iy)}{y} = \int_{\mathbb{R}} \frac{1}{t^2 + y^2} d\nu(t) \to 0 \quad \text{as} \quad y \to +\infty.$$

Suppose now in addition that f has expansion as in (21). Then

$$c = \lim_{y \to +\infty} \frac{\operatorname{Im} f(iy)}{y} = \lim_{y \to +\infty} \frac{y + o(1)}{y} = 1.$$

So, by the definition of c,  $\operatorname{Im} f(z) \ge \operatorname{Im} z$  for all  $z \in \mathbb{H}$ . Set  $a_1 = \alpha + i\beta$ ,  $z = x + iy \in \mathbb{H}$ , |z| large.

$$\operatorname{Im}\left(\frac{a_1}{z}\right) = \operatorname{Im}\left(\frac{a_1\overline{z}}{|z|^2}\right) = \frac{1}{|z|^2}(\beta x - \alpha y).$$

Thus

$$0 \le |z|(\operatorname{Im} f(z) - \operatorname{Im} z) = \frac{1}{|z|}(\beta x - \alpha y) + O\left(\frac{1}{|z|}\right).$$

So  $\beta x - \alpha y \ge 0$  for  $x + iy \in \mathbb{H}$ . This implies that  $\beta = 0$  and  $\alpha \le 0$ . So  $a_1 \in \mathbb{R}$  and  $a_1 \le 0$ .

Case of equality: If  $a_1 = 0$ , then inductively,  $a_2 = a_3 = \cdots = 0$ .

Let  $z = re^{i\varphi}, r > 0, \varphi \in (0, \pi)$ . Suppose  $a_1 = \cdot = a_{n-1} = 0$ , inductively,

$$f(z) = z + \frac{a_n}{z^n} + \cdots$$

So

$$0 \le |z|^n (\operatorname{Im} f(z) - \operatorname{Im} z) = \operatorname{Im}(a_n e^{-in\varphi}) + O\left(\frac{1}{|z|}\right).$$

So  $\operatorname{Im}(a_n e^{-in\varphi}) \ge 0$ ,  $\varphi \in (0, \pi)$ , equivalently,  $\operatorname{Im}(a_n e^{i\alpha}) \ge 0$  for all  $\alpha \in [0, 2\pi]$ . This implies  $a_n = 0$ .

**Theorem 7.9.** (Integral representation) Let  $\Omega \subseteq \mathbb{H}$  be a simply connected region such that  $\mathbb{H} \setminus B(0, R) \subseteq \Omega$  for some R > 0.  $f : \mathbb{H} \leftrightarrow \Omega$  be unique conformal map such that

$$f(z) = z + \frac{a_1}{z} + \frac{a_2}{2} + \cdots$$
 for  $z$  near  $\infty$ .

Then there exists a unique finite Borel measure  $\nu \geq 0$  on  $\mathbb{R}$  with compact support such that

$$f(z) = z + \int_{\mathbb{R}} \frac{1}{t-z} d\nu(t).$$

*Proof.* Uniqueness: follows form the uniqueness of Herglotz representation of h = Im f.

Existence: Revisit proof of Herglotz representation. Let  $\varphi : \mathbb{D} \cup \{1\} \leftrightarrow \mathbb{H} \cup \{\infty\}$  be conformal

## Figure 25:

map defined by

$$z = \varphi(w) = i \frac{1+w}{1-w}$$
, and  $\tilde{f} = f \circ \varphi$ .

By the Schwarz reflection principle,  $\tilde{f}$  has a holomorphic extension across an open arc  $\alpha \subseteq \partial \mathbb{D}$ with  $1 \in \alpha$ .  $\tilde{f}(\alpha) \subseteq \hat{\mathbb{R}}$ ;  $\tilde{f}(\alpha \setminus \{1\}) \subseteq \mathbb{R}$ , Im  $\tilde{f}(\zeta) \equiv 0$  for  $\zeta \in \alpha \setminus \{1\}$  (c.f. proof of Lemma 7.4), Im  $\tilde{f} > 0$  on  $\mathbb{H}$ . Let  $\tilde{g} = -i\tilde{f}$ . Then  $\tilde{f} = i\tilde{g}$ , Re  $\tilde{g} = \text{Im } \tilde{f} > 0$ , and Re  $\tilde{g}(\zeta) \equiv 0$  for  $\zeta \in \alpha \setminus \{1\}$ . So

$$\operatorname{Re} \tilde{g}(r\zeta) \to 0 \quad \text{as} \quad r \to 1^-,$$
(22)

locally uniformly for  $\zeta \in \alpha \setminus \{1\}$ . In the Herglotz representation for  $\tilde{g}$ , the measure  $\mu$  on  $\partial \mathbb{D}$  can be obtained as  $w^*$ -limits of measure  $\mu_r$  on  $\partial \mathbb{D}$  as  $r \to 1^-$ , where

$$d\mu_r(\zeta) = \operatorname{Re} \tilde{g}(r\zeta) \frac{|d\zeta|}{2\pi}.$$

Then (22) implies that

$$\operatorname{supp}(\mu) \subseteq \partial \mathbb{D} \setminus (\alpha \setminus \{1\}) = \partial \mathbb{D} \setminus \alpha \cup \{1\}.$$

 $\operatorname{So}$ 

$$\tilde{f}(w) = b + i \int_{\partial \mathbb{D}} \frac{\zeta + w}{\zeta - w} d\mu(\zeta), \quad \text{for some } b \in \mathbb{R}.$$

Going back to  $\mathbb{H}$ ,

$$f(z) = az + b + \int_{\mathbb{R}} \left(\frac{1+t^2}{t-z} - t\right) d\tau(t),$$

where  $a = \mu(\{1\}), b \in \mathbb{R}$ , and  $\tau$  is finite measure with support in  $\varphi(\partial \mathbb{D} \setminus \alpha) \in \mathbb{R}$ . Let

$$d\nu(t) = (1+t^2)d\tau(t), \qquad \tilde{b} = b + \int_{\mathbb{R}} t d\tau(t).$$

Then  $\nu \geq 0$  is a finite measure with compact support, and

$$f(z) = az + \tilde{b} + \int_{\mathbb{R}} \frac{1}{t-z} d\nu(t) = az + \tilde{b} + O\left(\frac{1}{z}\right).$$

On the other hand, f(z) = z + o(1), so a = 1,  $\tilde{b} = 0$ .

**Remark.** If  $f : \mathbb{H} \leftrightarrow \Omega$  is as in Theorem 7.9, and Im f has a continuous extension to  $\overline{\mathbb{H}} = \mathbb{H} \cup \mathbb{R}$ , then

$$f(z) = z + \frac{1}{\pi} \int_{\mathbb{R}} \frac{1}{t-z} \operatorname{Im} f(t) dt.$$

So

$$d\nu(t) = \frac{1}{\pi} \operatorname{Im} f(t) dt.$$

Note that if f has a continuous extension to  $\mathbb{R}$ , then  $\tilde{g}$  has a continuous extension to  $\partial \mathbb{D} \setminus \{1\}$ , and

$$d\mu(\zeta) = \frac{1}{2\pi} \operatorname{Re} \tilde{g}(\zeta) |d\zeta| \quad \text{on} \quad \partial \mathbb{D} \setminus \{1\}.$$

Set w = (z - i)/(z + i),  $\zeta = (t - i)/(t + i)$ . Then  $d\zeta/dt = 2i/(t + i)^2$ ,  $|d\zeta/dt| = 2/(1 + t^2)$ ,

$$d\tau(t) = \frac{1}{2\pi} \operatorname{Re} \tilde{g}(\zeta) |d\zeta| = \frac{1}{2\pi} \operatorname{Im} f(t) \Big| \frac{d\zeta}{dt} \Big| dt = \frac{1}{\pi(1+t^2)} \operatorname{Im} f(t) dt.$$

Note that for |z| large,

$$\int_{\mathbb{R}} \frac{1}{t-z} d\nu(t) = -\frac{1}{z} \int_{\mathbb{R}} \frac{1}{1-t/z} d\nu(t)$$
$$= -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \int_{\mathbb{R}} t^n d\nu(t). \qquad (\text{uniformly converges})$$

If  $f(z) = z + \sum_{n=1}^{\infty} a_n/z^n$  is the Laurent expansion of f near  $\infty$ , then

$$a_n = -\int_{\mathbb{R}} t^{n-1} d\nu(t) \le 0 \quad \text{for} \quad n \in \mathbb{N},$$

if  $a_1 = 0$ , then  $\nu(\mathbb{R}) = 0$ , and  $\nu = 0$ . So f(z) = z.

The proof shows that  $\operatorname{supp}(\nu) \subseteq I$ , if I is an interval such that f has a holomorphic extension to  $\mathbb{R} \setminus I$  with  $f(\mathbb{R} \setminus I) \subseteq \mathbb{R}$ . In particular, if the Laurent expansion converges outside  $\overline{B}(0, R)$ , then  $\operatorname{supp}(\nu) \subseteq [-R, R]$ , and conversely, the integral representation shows that if  $\operatorname{supp}(\nu) \subseteq [-R, R]$ , then the Laurent expansion converges in  $\mathbb{C} \setminus \overline{B}(0, R)$ .

**Definition 7.10.** a) Let  $K \subseteq \mathbb{C}$  be a set. Then  $rad(K) = sup\{|z| : z \in K\}$ .

b) Let A be a set.  $A \subseteq \mathbb{H}$  is called an  $\mathbb{H}$ -hull if A is relatively closed in  $\mathbb{H}$ , i.e.,  $A = \overline{A} \cap \mathbb{H}$ , and if  $\Omega_A = \mathbb{H} \setminus A$  is a simply connected region, then there exists a unique conformal map  $f_A : \mathbb{H} \leftrightarrow \Omega_A$  with holomorphic extension near  $\infty$  of the form

$$f_A(z) = z + \frac{a_1}{z} + \frac{a_2}{z^2} + \cdots$$

We call hcap $(A) := -a_1 \ge 0$  the half-plane capacity of A.

c)  $\mathcal{Q} = \text{set of all } \mathbb{H}\text{-hulls.}$ 

Lemma 7.11. Let A be an  $\mathbb{H}$ -hull,

$$f_A(z) = z + \int_{\mathbb{R}} \frac{1}{t-z} d\nu_A(t)$$

be the integral representation as in 7.10. Then

a)  $\nu_A(\mathbb{R}) = \text{hcap}(A),$ b)  $\operatorname{rad}(\operatorname{supp}(\nu_A)) \simeq \operatorname{rad}(A),$ c)  $\operatorname{hcap}(A) \lesssim \operatorname{rad}(A)^2.$  *Proof.* a) Suppose  $f_A$  has the Laurent expansion  $f_A(z) = z + a_1/z + \cdots$  near  $\infty$ , then

$$hcap(A) = -a_1 = \int_{\mathbb{R}} d\nu_A(t) = \nu_A(\mathbb{R}).$$

b) We know that  $R := \operatorname{rad}(\operatorname{supp}(\nu_A))$  is the smallest number such that the Laurent expansion of  $f_A$  converges on  $\mathbb{C} \setminus \overline{B}(0, R)$ . Then by the Schwarz reflection principle,  $f_A$  has a holomorphic extension to a conformal map on  $\hat{\mathbb{C}} \setminus \overline{B}(0, R)$  into  $\hat{\mathbb{D}}$ . Define

$$h(w) := \frac{1}{R} f_A(Rw) = w + \frac{\tilde{a}_1}{w} + \cdots \qquad \text{for} \quad w \in \mathbb{D}^* := \hat{\mathbb{C}} \setminus \overline{\mathbb{D}}.$$

Then  $h \in \Sigma$  (c.f. Section 1), and so

$$\hat{\mathbb{C}} \setminus g(\mathbb{D}^*) \subseteq \overline{B}(0,2),$$
 (c.f. Corollary 1.3)

So  $\frac{1}{R}A \subseteq \overline{B}(0,2)$ , and so  $A \subseteq \overline{B}(0,2R)$ , i.e.,  $\operatorname{rad}(A) \leq 2R$ .

Conversely, let  $\tilde{R} = \operatorname{rad}(A)$ . Then  $g_A = f_A^{-1}$  has a conformal extension to  $\hat{\mathbb{C}} \setminus \overline{B}(0, \tilde{R})$ . Let

$$\tilde{h}(w) := \frac{1}{\tilde{R}}g_A(\tilde{R}w) = w + \frac{b_1}{w} + \cdots$$

Then  $\tilde{h} \in \Sigma$ , and  $\tilde{h}(\mathbb{D}^*) \supseteq \mathbb{C} \setminus \overline{B}(0,2)$ , i.e.,

$$g_A(\mathbb{C}\setminus \overline{B}(0,\tilde{R}))\supseteq \mathbb{C}\setminus \overline{B}(0,2\tilde{R}).$$

So  $f_A$  is holomorphic on  $\mathbb{C} \setminus \overline{B}(0, 2\tilde{R})$ , i.e.,  $R \leq 2\tilde{R} = 2 \operatorname{rad}(A)$ . So  $R \simeq \tilde{R}$ .

c) Notation as in b).  $f_A(z) = z + a_1/z + \cdots$ ,

$$h(w) = \frac{1}{R} f_A(Rw) = z + \frac{a_1}{R^2 z} + \dots \in \Sigma.$$

By the Area Theorem 1.2,  $|a_1/R^2| \leq 1$ , and so

$$\operatorname{hcap}(A) = -a_1 \le R^2 \lesssim \tilde{R}^2 = \operatorname{rad}(A)^2.$$

**Remark 7.12.** Let  $\mathcal{A}$  be a family of  $\mathbb{H}$ -hulls,  $\mathcal{F} = \{f_A : A \in \mathcal{A}\}$  be corresponding family of conformal maps  $f_A : \mathbb{H} \leftrightarrow \mathbb{H} \setminus A$  with usual normalization  $f_A(z) = z + o(1)$  near  $\infty$ . If rad(A) is uniformly bounded for  $A \in \mathcal{A}$  (i.e., if {rad}(A) :  $A \in \mathcal{A}$ } bounded), then one has good "a priori" control for the maps in  $\mathcal{F}$ . For example,

i)  $f_A(z) = z + \int_{\mathbb{R}} \frac{1}{t-z} d\mu_A(t)$ , where measures  $\mu_A$  have uniformly bounded total mass with supports contained in a fixed interval (follows from Lemma 7.11).

ii)  $\mathcal{F}$  is locally uniformly bounded, and in particular, a normal family. Actually,  $\mathcal{F}$  is uniformly bounded on bounded subsets of  $\mathbb{H}$ . There exists R > 0 such that  $f_A \in \mathcal{F}$  has extension to a conformal map on  $\hat{\mathbb{C}} \setminus \overline{B}(0, R)$ . Let  $h_A(w) = \frac{1}{R} f_A(Rw)$ ,  $w \in \mathbb{D}^*$ . Then  $h_A \in \Sigma$ , and  $h_A(\mathbb{D}^*) \supseteq \hat{\mathbb{C}} \setminus \overline{B}(0, 2)$ . So  $f_A(B(0, R) \cap \mathbb{H}) \subseteq B(0, 2R)$ .

## 7.13. Chordal Loewner chians (half-plane version of Loewner chains)

Let  $I = [0, b], b \in (0, \infty]$ .  $\{\Omega_t\}_{t \in I}$  is a *(geometric) chordal Loewner chain* if

i) each  $\Omega_t \subseteq \mathbb{H}$  is a simply connected region of the form  $\Omega_t = \mathbb{H} \setminus A_t$ , where  $A_t$  is an  $\mathbb{H}$ -hull. ii)  $\Omega_0 = \mathbb{H} (A_0 = \emptyset)$ .

- iii)  $\Omega_s \subsetneq \Omega_t$  for  $s > t, s, t \in I$  (equivalently,  $A_s \supseteq A_t$ ).
- iv)  $\{\Omega_t\}_{t\in I}$  satisfies a continuity requirement (cf. Lemma 7.14).
- If  $f_t : \mathbb{H} \leftrightarrow \Omega_t$  be the unique conformal map such that

$$f_t(z) = z + \frac{a_1(t)}{z} + \frac{a_2(t)}{z^2} + \cdots,$$
 near  $\infty$ ,

then  $\{f_t\}_{t\in I}$  is the corresponding (analytic) chordal Loewner chain. It is normalized if

$$f_t(z) = z - \frac{2t}{z} + \cdots, \quad \text{near} \quad \infty \quad \text{for} \quad t \in I,$$

i.e.,  $a_1(t) = -2t, t \in I$ .

**Lemma 7.14.** Let  $\{\Omega_t\}_{t\in I}$  be a chordal Loewner chain corresponding to analytic Loewner chain  $\{f_t\}_{t\in I}$ . Let  $\{t_n\}$  be a sequence in I with  $t_n \to t_\infty$  as  $n \to \infty$ . Denote  $\Omega_n = \Omega_{t_n}$ ,  $f_n = f_{t_n}$ ,  $\Omega_n = \mathbb{H} \setminus A_n$ , and

$$f_n(z) = z + \int_{\mathbb{R}} \frac{d\mu_n(u)}{u-z}, \qquad z \in \mathbb{H}.$$

Then the following are equivalent:

i) f<sub>n</sub> → f<sub>∞</sub> locally uniformly on H.
ii) μ<sub>n</sub> → m<sub>∞</sub>, *i.e.*, ∫ φdμ<sub>n</sub> → ∫ φdμ<sub>∞</sub> for all φ ∈ C<sub>c</sub>(ℝ) (equivalently, for all φ ∈ C(ℝ)).

iii)  $\operatorname{hcap}(A_n) \to \operatorname{hcap}(A_\infty)$ .

iv)  $\Omega_n \to \Omega_\infty$  in the sense of kernel convergence with respect to  $\infty$ , where the kernel of  $\{\Omega_n\}$  with respect to  $\infty$ ,  $\operatorname{Kern}_\infty(\{\Omega_n\}) =$  the set of all points  $w \in \mathbb{C}$  for which there exists an unbounded region U with  $w \in U$  and  $U \subseteq \Omega_n$  for all large n.

*Proof.* Let  $T = \sum \{t_n : n \in \mathbb{N} \cup \{\infty\}\} \in I$ . So  $A_n \subseteq A_T$  and  $\operatorname{rad}(A_n) \leq \operatorname{rad}(A_T) < \infty$  for  $n \in \mathbb{N} \cup \{\infty\}$ . In particular,  $f_n, n \in \cup \{\infty\}$ , is uniformly bounded on bounded subsets of  $\mathbb{H}$  and there exist  $C_0 \geq 0$ ,  $R_0 \geq 0$ , such that

$$\mu_n(\mathbb{R}) \le C_0, \quad \text{supp}(\mu_n) \subseteq [-R_0, R_0] \quad \text{for } n \in \mathbb{N} \cup \{\infty\}.$$

i)  $\implies$  ii).

I) If  $\psi \in C_c(\mathbb{R}^2)$  is arbitrary, then

$$\int_{\mathbb{H}} f_n \psi dA \to \int_{\mathbb{H}} f_\infty \psi dA.$$

Suppose supp $(\psi) \subseteq \overline{B}(0,R)$  and let  $K_{\delta} = \{z \in \overline{B}(0,R) : \text{Im } z \geq \delta\}$  for  $\delta > 0$ . Then

$$\begin{split} \left| \int_{\mathbb{H}} (f_n - f_\infty) \psi \right| &\leq \int_{\mathbb{H} \cap \overline{B}(0,R)} |\psi| \cdot |f_n - f_\infty| dA \\ &\leq A(K_\delta) \|\psi\|_\infty \cdot \sup_{z \in K_\delta} |f_n(z) - f_\infty(z)| \\ &\quad + 4\delta R \|\psi\|_\infty \sup\{|f_n(z)| : n \in \mathbb{N} \cup \{\infty\}, z \in \overline{B}(0,R) \cap \mathbb{H}\} \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

if  $\delta > 0$  is sufficiently small and n is sufficiently large.

II) Let P be an arbitrary polynomial (in z). Then

$$\int P d\mu_n \to \int P d\mu_\infty$$

Pick  $\chi \in C_c^{\infty}(\mathbb{C})$  such that  $\chi|_{\overline{B}(0,R)} \equiv 1$ , and  $h = \chi \cdot P$ . Then  $h_{\overline{z}} = \chi_{\overline{z}} \cdot P \in C_c^{\infty}(\mathbb{C})$ . Hence

$$h(z) = -\frac{1}{\pi} \int_{\mathbb{C}} \frac{h_{\overline{z}}(w)}{w - z} dA(w), \qquad z \in \mathbb{C}.$$

 $\operatorname{So}$ 

$$\begin{split} \int_{\mathbb{R}} P d\mu_n &= \int_{\mathbb{R}} \chi P d\mu_n = \int_{\mathbb{R}} h d\mu_n = -\frac{1}{\pi} \int_{\mathbb{R}} \int_{\mathbb{C}} \frac{h_{\overline{z}}(w)}{w - u} dA(w) d\mu_n(u) \\ &= \frac{1}{\pi} \int_{\mathbb{C}} \left( \int_{\mathbb{R}} \frac{d\mu_n(u)}{u - w} \right) h_{\overline{z}}(w) dA(w) = \frac{1}{\pi} \int_{\mathbb{C}} (f_n(w) - w) h_{\overline{z}}(w) dA(w) \\ &\to \frac{1}{\pi} \int_{\mathbb{C}} (f_{\infty}(w) - w) h_{\overline{z}}(w) dA(w) = \int_{\mathbb{R}} P d\mu_{\infty}. \end{split}$$

III) Let  $\varphi \in C(\mathbb{R})$  be arbitrary. By the Weierstrass Approximation Theorem, there exists a polynomial such that  $|P - \varphi| < \varepsilon$  on  $[-R_0, R_0]$ . Then

$$\left|\int \varphi d\mu_n - \int \varphi d\mu_\infty\right| \le \varepsilon \mu_n(\mathbb{R}) + \varepsilon \mu_\infty(\mathbb{R}) + \left|\int P d\mu_n - \int P d\mu_\infty\right| \le (2C_0 + 1)\varepsilon$$

for n large.

ii)  $\implies$  iii) Suppose  $\mu_n \xrightarrow{w^*} \mu_\infty$ . Then

$$\operatorname{hcap}(A_n) = \mu_n(\mathbb{R}) = \int_{\mathbb{R}} 1d\mu_n \to \int_{\mathbb{R}} 1d\mu_\infty = \mu_\infty(\mathbb{R}) = \operatorname{hcap}(A_\infty).$$

iii)  $\implies$  i)

Suppose hcap $(A_n) \to$  hcap $(A_\infty)$ . We want to show that  $f_n \to f_\infty$  locally uniformly on  $\mathbb{H}$ . Equivalently, for all sequence  $\{z_n\}$  in  $\mathbb{H}$  with  $z_n \to z_\infty \in \mathbb{H}$ , we have  $f_n(z_n) \to f_\infty(z_\infty)$ .

**Spacial case I.**  $t_{\infty} \leq t_n$  for all  $n \in \mathbb{N}$ . Then  $A_{\infty} \subseteq A_n$ , equivalently,  $\Omega_{\infty} \supseteq \Omega_n$ . Let  $\varphi_n := f_{\infty}^{-1} \circ f_n$ ,  $n \in \mathbb{N}$ , equivalently,  $f_n = f_{\infty} \circ \varphi_n$ . Then  $\varphi_n(\mathbb{H}) \subseteq \mathbb{H}$ , and  $\varphi_n$  is conformal near  $\infty$ . Let  $\varphi_n(\mathbb{H}) = \mathbb{H} \setminus B_n$ , where  $B_n$  is a  $\mathbb{H}$ -hull.

Let  $a_n = hcap(A_n), a_{\infty} = hcap(A_{\infty})$ . Then

$$f_n(z) = z + \frac{a_n}{z} + \cdots, \qquad f_\infty(z) = z + \frac{a_\infty}{z} + \cdots,$$

and

$$\varphi_n(z) = z + \frac{a_n - a_\infty}{z} + \cdots$$

So

$$hcap(B_n) = a_n - a_\infty = hcap(A_n) - hcap(A_\infty) \to 0$$
 as  $n \to \infty$ .

Write

$$\varphi_n(z) = z + \int_{\mathbb{R}} \frac{1}{u - z} d\nu_n(u),$$

where  $\nu_n \ge 0$ ,  $\operatorname{supp}(\nu_n) \in \mathbb{R}$ . Then  $\nu_n(\mathbb{R}) = \operatorname{hcap}(B_n) \to 0$ . Since

$$|\varphi_n(z) - z| \le \frac{\nu_n(\mathbb{R})}{\operatorname{Im} z} \quad \text{for } z \in \mathbb{H},$$

we have  $\varphi_n \to \mathrm{id}_{\mathbb{H}}$  locally uniformly on  $\mathbb{H}$ . If  $z_n \in \mathbb{H} \to z_\infty \in \mathbb{H}$ , then  $\varphi_n(z_n) \to z_\infty$ , and so  $f_n(z_n) = f_\infty(\varphi_n(z_n)) \to f_\infty(z_\infty)$ .

**Spacial case II.**  $t_n \leq t_\infty$  for all  $n \in \mathbb{N}$ . In this case  $A_n \subseteq A_\infty$ , equivalently,  $\Omega_n \supseteq \Omega_\infty$ . Let  $\varphi_n = f_n^{-1} \circ f_\infty$ , equivalently,  $f_n \circ \varphi_n = f_\infty$ . Then  $\varphi_n(\mathbb{H}) \subseteq \mathbb{H}$ , and  $\varphi_n$  is conformal near  $\infty$ . Let  $\varphi_n(\mathbb{H}) = \mathbb{H} \setminus B_n$ , where  $B_n$  is a  $\mathbb{H}$ -hull. Similarly, we have

$$\operatorname{hcap}(B_n) = \operatorname{hcap}(A_\infty) - \operatorname{hcap}(A_n) \to 0 \implies \varphi_n \to \operatorname{id}_{\mathbb{H}}$$

locally uniformly on  $\mathbb{H}$ . If  $z_n \in \mathbb{H} \to z_\infty \in \mathbb{H}$ , then  $\varphi_n(z_n) \to z_\infty$ . From Remark 7.12,  $\{f_n\}$  is a normal family. So  $\{f_n\}$  is equicontinuous at  $z_\infty$ . We have

$$f_{\infty}(z_n) = f_{\infty}(z_{\infty}) + o(1)$$
  

$$f_{\infty}(z_n) = f_n(\varphi(z_n)) = f_n(z_{\infty}) + o(1)$$
  

$$f_n(z_n) = f_n(z_{\infty}) + o(1).$$

So

$$f_n(z_n) = f_\infty(z_\infty) + o(1).$$

Special case I + II imply general case.

i)  $\implies$  iv)

Assume  $f_n \to f_\infty$  locally uniformly on  $\mathbb{H}$ . We want to show that  $\operatorname{Kern}_\infty := \operatorname{Kern}_\infty(\{\Omega_n\}) = \Omega_\infty$  (applied to all subsequences gives  $\Omega_n \to \Omega_\infty$  with respect to  $\infty$ ).

Note that  $\operatorname{rad}(A_n) \leq \tilde{R} < \infty$  for  $n \in \mathbb{N} \cup \{\infty\}$ ; so  $U := \mathbb{H} \setminus \overline{B}(0, \tilde{R}) \subseteq \Omega_n, n \in \mathbb{N} \cup \{\infty\}$ . I.  $\Omega_{\infty} = f_{\infty}(\mathbb{H}) \subseteq \operatorname{Kern}_{\infty}$ .

Let  $w \in \Omega_{\infty}$  be arbitrary. Then there exists  $V \Subset \Omega_{\infty}$  open with  $w \in V$  and  $U \cap V \neq \emptyset$ . It is enough to show that  $V \subseteq \Omega_n$  for large  $n \ (\Rightarrow w \in \operatorname{Kern}_{\infty})$ . If not, there exist  $n_k \in \mathbb{N} \to \infty$ and  $w_k \in V \setminus \Omega_n$  (without lose of generality  $w_k \to w_\infty \in \overline{V} \subseteq \Omega_\infty$ ) such that  $f_{n_k} - w_k$  zero free on  $\mathbb{H}$ . Note that  $f_{n_k} - w_k \to f_\infty - w_\infty$  locally uniformly on  $\mathbb{H}$ . Since  $w_\infty \in \Omega_\infty$ , so  $f_\infty - w_\infty$  is not zero free. So  $f_\infty - w_\infty \equiv 0$  by Hurwitz, and  $f_\infty \equiv w_\infty$ , contradiction!

II.  $\operatorname{Kern}_{\infty} \subseteq \Omega_{\infty}$ .

Note that there exist  $R_1, R'_1 > 0$  and  $C_1, C'_1 > 0$  such that

(1)  $|f_n(z) - z| \le C_1$  for  $z \in \mathbb{H} \setminus \overline{B}(0, R_1)$ ,

(2)  $|f_n^{-1}(w) - w| \le C'_1$  for  $w \in \mathbb{H} \setminus \overline{B}(0, R'_1)$ .

Let  $w_{\infty} \in \text{Kern}_{\infty}$  be arbitrary. We want to show  $w_{\infty} \in \Omega_{\infty}$ , i.e., there exists  $z_{\infty} \in \mathbb{H}$  such that  $f_{\infty}(z_{\infty}) = w_{\infty}$ . Since  $w_{\infty} \in \text{Kern}_{\infty}$ , there exists a region  $V \in \mathbb{H}$  with  $V \cap U \neq \emptyset$ ,  $w_{\infty} \in V$ , and  $V \in \Omega_n$  for large n (wlog, for all n). Then  $W = U \cup V \subseteq \Omega_n \subseteq \mathbb{H}$ . Let  $g_n = f_n^{-1}|_W$ .

**Claim.**  $\{g_n\}$  is locally uniformly bounded and hence a normal family.

Proof by contradiction. Suppose not. Then there exist  $K \subseteq W$  compact and a sequence  $\{w_n\}$  in K such that  $\{g_n(w_n)\}$  is unbounded. Without lose of generality,  $w_n \to w \in K$ ,  $g_n(w_n) \to \infty$ . Then  $w_n = f_n(g_n(w_n)) = g_n(w_n) + O(1)$  by (1) and  $w_n \to w_\infty$ . Contradiction! Using claim and passing to a subsequence, we may assume  $g_n \to g_\infty \in H(W)$  locally uniformly on W.  $g_n(W) \subseteq \mathbb{H}$ , so  $g_\infty(W) \subseteq \mathbb{H} \cup \mathbb{R}$ .

Claim.  $g_{\infty}(W) \subseteq \mathbb{H}$ .

Otherwise,  $g_{\infty} \equiv \text{const.}$  by open mapping theorem. But by (2),  $|g_{\infty}(w) - w| \leq C'_1$  for  $w \in \mathbb{H}$  with |w| large. Contradiction!

Define  $z_{\infty} = g_{\infty}(w_{\infty}) \in \mathbb{H}$ . Then

$$f_{\infty}(z_{\infty}) = \lim_{n \to \infty} f_n(g_n(w_{\infty})) = w_{\infty}$$

since  $f_n \to f_\infty$  is locally uniform convergence.

 $vi) \Longrightarrow i)$ 

Assume  $\Omega_n \to \Omega_\infty$ . We want to show that  $f_n \to f_\infty$  locally uniformly on  $\mathbb{H}$ . Since  $\{f_n\}$  is a normal family, it suffices to show every subsequence  $\{\tilde{f}_n\}$  of  $\{f_n\}$  has a subsequence that converges to  $f_\infty$  locally uniformly on  $\mathbb{H}$ . Write

$$\tilde{f}_n(z) = z + \int_{\mathbb{R}} \frac{d\tilde{\mu}_n(u)}{u-z},$$

where  $\operatorname{supp}(\tilde{\mu}_n) \subseteq [-R_0, R_0], \ \tilde{\mu}_n(\mathbb{R}) \leq C_0$ . Passing to a subsequence, wlog,  $\tilde{\mu}_n \xrightarrow{w^*} \tilde{\mu}_{\infty}$ , where  $\tilde{\mu}_{\infty} \geq 0$  is a measure supported on  $[-R_0, R_0]$ . Then

$$\int_{\mathbb{R}} \varphi d\tilde{\mu}_n \longrightarrow \int_{\mathbb{R}} \varphi d\tilde{\mu}_{\infty} \quad \text{for all } \varphi \in C(\mathbb{R}).$$

So

$$\tilde{f}_n(z) = z + \int_{\mathbb{R}} \frac{d\tilde{\mu}_n(u)}{u-z} \longrightarrow \tilde{f}_\infty(z) = z + \int_{\mathbb{R}} \frac{d\tilde{\mu}_\infty(u)}{u-z}$$

pointwise for all  $z \in \mathbb{H}$ . Since  $\{\tilde{f}_n\}$  is a normal family,  $\tilde{f}_n \to \tilde{f}_\infty$  is locally uniformly on  $\mathbb{H}$ .

 $\tilde{f}_{\infty}$  is a conformal map,  $\tilde{f}_{\infty}(z) = z + o(1)$  near  $\infty$ ,  $\tilde{f}_{\infty}(\mathbb{H}) = \mathbb{H} \setminus \tilde{A}_{\infty}$ , where  $\tilde{A}_{\infty}$  is a  $\mathbb{H}$ -hull. By implication i)  $\Longrightarrow$  iv), we have

$$\tilde{\Omega}_{\infty} = \operatorname{Kern}_{\infty}({\tilde{\Omega}_n}) = \Omega_{\infty}$$

So both  $f_{\infty}, \tilde{f}_{\infty} : \mathbb{H} \leftrightarrow \Omega_{\infty} = \tilde{\Omega}_{\infty}$  are conformal maps. Since

$$f_{\infty}(z) = z + o(1),$$
  $\tilde{f}_{\infty}(z) = z + o(1),$  near  $\infty,$ 

by uniqueness (Corollary 7.5),  $\tilde{f}_{\infty} = f_{\infty}$ . So  $\tilde{f}_n \to f_{\infty}$  locally uniformly on  $\mathbb{H}$ .

## **Lemma 7.15.** Let A, B be $\mathbb{H}$ -hulls. Then

- i) hcap $(A) \ge 0$  with equality if and only if  $A = \emptyset$ .
- ii)  $hcap(x + A) = hcap(A), x \in \mathbb{R}.$
- iii)  $hcap(\lambda A) = \lambda^2 hcap(A), \lambda > 0.$
- iv) Suppose  $A \subseteq B$ . Then hcap $(A) \leq$  hcap(B) with equality if and only if A = B.

*Proof.* Let  $f_A : \mathbb{H} \leftrightarrow \mathbb{H} \setminus A$  be conformal, with

$$f_A(z) = z + \frac{a_1}{z} + \dots = z + \int_{\mathbb{R}} \frac{d\mu_A(u)}{u - z} \quad \text{near } \infty.$$

Then hcap $(A) = -a_1 = \mu_A(\mathbb{R}).$ 

i) So hcap $(A) \ge 0$  with equality if and only if  $\mu_A \equiv 0$  if and only if  $f_A(z) \equiv z$  if and only if  $\mathbb{H} \setminus A = \mathbb{H}$  if and only if  $A = \emptyset$ .

ii) Let  $x \in \mathbb{R}$ .

$$f_{x+A}(z) = x + f_A(z-x) = z + \frac{a_1}{z-x} + \dots = z + \frac{a_1}{z} + \dots$$

So hcap(x + A) = hcap(A).

iii) Let  $\lambda > 0$ .

$$f_{\lambda A}(z) = \lambda f_A(z/\lambda) = z + \frac{a_1\lambda}{z/\lambda} + \dots = z + \frac{\lambda^2 a_1}{z} + \dots$$

So hcap $(\lambda A) = \lambda^2$  hcap(A).

iv) Let  $\varphi = f_A^{-1} \circ f_B : \mathbb{H} \leftrightarrow \mathbb{H} \setminus C$ . Then  $\operatorname{hcap}(C) = \operatorname{hcap}(B) - \operatorname{hcap}(A) \ge 0$  with equality if and only if  $C = \emptyset$  if and only if  $\varphi = \operatorname{id}_{\mathbb{H}}$  if and only if  $f_A = f_B$  if and only if A = B.

**Remark 7.16.** Let  $\{\Omega_t\}_{t\in I}$  be a chordal Loewner chain,  $\Omega_t = \mathbb{H} \setminus A_t$ ,  $A_t \in \mathbb{H}$  be  $\mathbb{H}$ -hull,  $A_t \subsetneq A_s$  if t < s and  $A_0 = \emptyset$ . The map  $t \to \text{hcap}(A_t)$  is continuous (Lemma 7.14) and strictly increasing (Lemma 7.15). So  $t \to \text{hcap}(A_t)$  is a homeomorphism of I = [0, b] onto its image J = [0, b']. By reparametrizing t, we may assume that  $\text{hcap}(A_t) = 2t$  for  $t \in I$ . Then

$$f_t(z) = z - \frac{2t}{z} + \cdots$$
 near  $\infty_t$ 

and  $\{f_t\}$  is normalized. So, without lose of generality, one can assume that a chordal Loewner chain is normalized.

#### 7.17. The associated semi-group

Let  $\{f_t\}_{t\in I}$  be a chordal Loewner chain,  $f_t : \mathbb{H} \leftrightarrow \Omega_t = \mathbb{H} \setminus A_t$ . For  $0 \leq t \leq s$ , let  $\varphi_{s,t} = f_t^{-1} \circ f_s$ , or equivalently,  $f_s = f_t \circ \varphi_{s,t}$ . Then  $\varphi_{s,t}$  satisfies the following semigroup property

$$\varphi_{t,u} \circ \varphi_{s,t} = \varphi_{s,u}, \quad 0 \le u \le t \le s, \quad \text{and} \quad \varphi_{t,t} = \mathrm{id}_{\mathbb{H}}.$$

**Lemma 7.18.** Let  $\{f_t\}_{t\in I}$  be a normalized chordal Loewner chain with associated semigroup  $\varphi_{s,t}$ . Then for  $t, s \in I$ ,  $t \leq s$ ,  $\varphi_{s,t}$  is a conformal map  $\mathbb{H} \leftrightarrow \mathbb{H} \setminus B_{s,t}$ , where  $B_{s,t}$  is a  $\mathbb{H}$ -hull, and

$$\varphi_{s,t}(z) = z - \frac{2(s-t)}{z} + \cdots$$
 near  $\infty$ .

There exists a measure  $\mu_{s,t} \geq 0$ ,  $\operatorname{supp}(\mu_{s,t}) \in \mathbb{R}$  such that

$$\varphi_{s,t}(z) = z + \int_{\mathbb{R}} \frac{d\nu_{s,t}(u)}{u-z}, \qquad z \in \mathbb{H}.$$

 $\nu_{s,t}(\mathbb{R}) = 2(s-t)$ . Moreover, if  $t \leq s \leq T$ , then  $\operatorname{rad}(B_{s,t}) \leq C_0$  (and so  $\operatorname{supp}(\nu_{s,t})$  is uniformly bounded).

*Proof.* Clear that  $\varphi_{s,t} = f_t^{-1} \circ f_s$  has a conformal extension near  $\infty$  that maps real axis near  $\infty$  into itself. So  $\varphi_{s,t}$  is conformal map of  $\mathbb{H}$  onto  $\mathbb{H}\setminus$ compact set, i.e.,  $\varphi_{s,t}(\mathbb{H}) = \mathbb{H} \setminus B_{s,t}$ , where  $B_{s,t}$  is a  $\mathbb{H}$ -hull.

$$hcap(B_{s,t}) = hcap(A_s) - hcap(A_t) = 2(s-t)$$

So

$$\varphi_{s,t}(z) = z - \frac{2(s-t)}{z} + \cdots$$
 near  $\infty$ ,

and

$$\varphi_{s,t}(z) = z + \int_{\mathbb{R}} \frac{d\nu_{s,t}(u)}{u-z}, \qquad z \in \mathbb{H}.$$
 (Theorem 7.9)

We know  $\nu_{s,t} \ge 0$ ,  $\operatorname{supp}(\nu_{s,t}) \Subset \mathbb{R}$ , and  $\nu_{s,t}(\mathbb{R}) = \operatorname{hcap}(B_{s,t}) = 2(s-t)$ . Finally,  $\operatorname{rad}(B_{s,t}) \le 2\operatorname{rad}(A_s) \le C_0$  for  $t, s \le T$ .

**Lemma 7.19.** Let  $\{f_t\}_{t\in I}$  be a normalized chordal Loewner chain.  $\varphi_{s,t} = f_t^{-1} \circ f_s, t \leq s, s, t \in I$ . Then for fixed  $z \in \mathbb{H}$ ,

$$\begin{aligned} &\text{i)} \quad |\varphi_{s,t}(z) - z| \leq \frac{2(s-t)}{\operatorname{Im} z}. \\ &\text{ii)} \quad |f_t(z) - f_s(z)| \leq \frac{2(s-t)}{(\operatorname{Im} z)^3} [2t + (\operatorname{Im} z)^2]. \\ &\text{iii)} \quad |\varphi_{s,t}(z) - \varphi_{s,u}(z)| \leq \frac{2(t-u)}{\operatorname{Im} z}, \quad for \ u \leq t \leq s, \ u, t, s \in I. \\ &\text{iv)} \quad |\varphi_{s,u}(z) - \varphi_{t,u}(z)| \leq \frac{2(s-t)}{(\operatorname{Im} z)^3} [2t + (\operatorname{Im} z)^2], \quad for \ u \leq t \leq s, \ u, t, s \in I. \end{aligned}$$

So the maps  $(z,t) \mapsto f_t(z), (z,t) \mapsto \varphi_{s,t}(z), (z,t) \mapsto \varphi_{t,u}(z)$  belong to  $HL(\mathbb{H} \times I), HL(\mathbb{H} \times [0,s]), HL(\mathbb{H} \times [u,b]),$  respectively, where I = [0,b].

Proof. Recall

$$f_t(z) = z + \int_{\mathbb{R}} \frac{d\mu_t(u)}{u - z}, \qquad \mu_t(\mathbb{R}) = 2t,$$
$$\varphi_{s,t}(z) = z + \int_{\mathbb{R}} \frac{d\nu_{s,t}(u)}{u - z}, \qquad \nu_{s,t}(\mathbb{R}) = 2(s - t).$$

By Julia's Lemma on integral representation,  $\operatorname{Im} \varphi_{s,t}(z) \geq \operatorname{Im} z.$ 

i) 
$$|\varphi_{s,t}(z) - z| \leq \int_{\mathbb{R}} \frac{d\nu_{s,t}(u)}{|u - z|} \leq \frac{\nu_{s,t}(\mathbb{R})}{\operatorname{Im} z} = \frac{2(s - t)}{\operatorname{Im} z}.$$
  
ii)  $f'_t(z) = 1 - \int_{\mathbb{R}} \frac{d\mu_t(u)}{(u - z)^2}, \ |f'_t(z)| \leq 1 + \frac{2t}{(\operatorname{Im} z)^2}.$   
 $|f_t(z) - f_s(z)| \leq |f_t(z) - f_t(\varphi_{s,t}(z))|$   
 $\leq |z - \varphi_{s,t}(z)| \cdot \left(1 + \frac{2t}{(\operatorname{Im} z)^2}\right) \leq \frac{2(s - t)}{(\operatorname{Im} z)^3} [2t + (\operatorname{Im} z)^2].$ 

iii)  $\varphi_{t,u} \circ \varphi_{s,t} = \varphi_{s,u}$ . So

$$|\varphi_{s,t}(z) - \varphi_{s,u}(z)| = |\varphi_{s,t}(z) - \varphi_{t,u}(\varphi_{s,t}(z))| \stackrel{\mathrm{i}}{\leq} \frac{2(t-u)}{\mathrm{Im}\,\varphi_{s,t}(z)} \leq \frac{2(t-u)}{\mathrm{Im}\,z}.$$

iv) 
$$|\varphi'_{t,u}(z)| = \left|1 - \int_{\mathbb{R}} \frac{d\nu_{t,u}(x)}{(x-z)^2}\right| \le 1 + \frac{2(t-u)}{(\operatorname{Im} z)^2} \le 1 + \frac{2t}{(\operatorname{Im} z)^2}.$$
 So  
 $|\varphi_{s,u}(z) - \varphi_{t,u}(z)| = |\varphi_{t,u}(\varphi_{s,t}(z)) - \varphi_{t,u}(z)|$   
 $\le |\varphi_{s,t}(z) - z| \cdot \left(1 + \frac{2t}{(\operatorname{Im} z)^2}\right) \le \frac{2(s-t)}{(\operatorname{Im} z)^3} [2t - (\operatorname{Im} z)^2].$ 

**Corollary 7.20.** Let  $\{f_t\}_{t\in I}$  be a normalized chordal Loewner chain,  $\varphi_{s,t} = f_t^{-1} \circ f_s$ ,  $t \leq s$ ,  $s, t \in I$ . Denote  $f(z,t) = f_t(z)$ . Then there exists a set  $E \subseteq I$  with |E| = 0 such that

i) f is differentiable at each point  $(z,t) \in \mathbb{H} \times I \setminus E$ , i.e.,

$$f(z',t') = f(z,t) + \frac{\partial f}{\partial z}(z,t)(z'-z) + \frac{\partial f}{\partial t}(z,t)(t'-t) + o(|t'-t| + |z'-z|) \quad near\ (z,t).$$

In particular,  $\partial f(z,t)/\partial t$  exists for all  $(z,t) \in \mathbb{H} \times I \setminus E$ .

ii) 
$$V(z,t) = \lim_{\varepsilon \to 0^+} \frac{\varphi_{t,t-\varepsilon}(z) - z}{\varepsilon}$$
 exists for all  $(z,t) \in \mathbb{H} \times I \setminus E$ , and

$$\frac{\partial f}{\partial t}(z,t) = V(z,t) \cdot \frac{\partial f}{\partial z}(z,t).$$

*Proof.* i) follows from Lemma 7.19 and Proposition 4.12.

ii) Let  $(z,s) \in \mathbb{H} \times I \setminus E$ ,  $t \leq s$ , t near s.  $f_t \circ \varphi_{s,t} = f_s$ ,  $z' = \varphi_{s,t}(z)$ .

$$|z'-z| = |\varphi_{s,t}(z) - z| \le C|s-t|,$$
 (Lemma 7.19)

$$0 = f_t(\varphi_{s,t}(z)) - f_s(z) = f(z',t) - f(z,s)$$
  
=  $\frac{\partial f}{\partial z}(z,s)(z'-z) + \frac{\partial f}{\partial t}(z,s)(t-s) + o(|t-s| + |z'-z|)$   
=  $\frac{\partial f}{\partial z}(z,s)(z'-z) + \frac{\partial f}{\partial t}(z,s)(t-s) + o(|t-s|)$ 

Note that  $\partial f(z,s)/\partial z \neq 0$ . So

$$V(z,s) = \lim_{t \to s^{-}} \frac{\varphi_{s,t}(z) - z}{s - t} = \lim_{t \to s^{-}} \frac{z' - z}{s - t} = \lim_{t \to s^{-}} \frac{\dot{f}(z,s)}{f'(z,s)} + o(1) = \frac{\dot{f}(z,s)}{f'(z,s)}.$$

**Theorem 7.21.** (Loewner-Kufarev equation for chordal case) Let  $\{f_t\}_{t\in I}$  be a normalized chordal Loewner chain,  $\varphi_{s,t} = f_t^{-1} \circ f_s$ ,  $t \leq s$ ,  $s, t \in I$ . Denote  $f(z,t) = f_t(z)$ . Then there eixsts  $E \subseteq I$  with |E| = 0 such that

(a) 
$$V(z,t) = \lim_{\varepsilon \to 0^+} \frac{\varphi_{t,t-\varepsilon}(z) - z}{\varepsilon}$$

exists for all  $(z,t) \in \mathbb{H} \times I \setminus E$ .

(b)  $\partial f(z,t)/\partial t$  exists for all  $z \in \mathbb{H}$ ,  $t \in I \setminus E$ , and

$$\frac{\partial f}{\partial t}(z,t) = V(z,t) \frac{\partial f}{\partial t}(z,t). \qquad (Loewner-Kufarev \ equation)$$

Moreover, V(z,t) has the following properties:

i)  $V(\cdot, t)$  is holomorphic on  $\mathbb{H}$  for each  $t \in I \setminus E$ ,

ii) V is measurable on  $\mathbb{H} \times I$ ,

iii) for each  $t \in I \setminus E$ , there exists a probability measure  $\nu_t$  on  $\mathbb{R}$ ,  $\operatorname{supp}(\nu_t) \in \mathbb{R}$  such that

$$V(z,t) = 2 \int_{\mathbb{R}} \frac{d\nu_t(u)}{u-z}, \qquad t \in I \setminus E, \ z \in \mathbb{H}.$$

*Proof.* We know that there exists  $E \subseteq I$ , |E| = 0, such that

$$V(z,t) := \lim_{\varepsilon \to 0^+} \frac{\varphi_{t,t-\varepsilon}(z) - z}{\varepsilon}$$

exists for all  $z \in \mathbb{H}$ ,  $t \in I \setminus E$ ,  $\partial f(z,t) / \partial t$  exists for all  $z \in \mathbb{H}$ ,  $t \in I \setminus E$ , and

$$\frac{\partial f}{\partial t}(z,t) = V(z,t)\frac{\partial f}{\partial z}(z,t)$$

We know  $\partial f(z,t)/\partial z \neq 0$ ,  $\partial f(\cdot,t)/\partial t \in H(\mathbb{H})$  for  $t \in I \setminus E$  (Proposition 4.12). So

$$V(\cdot,t) = \frac{\dot{f}(\cdot,t)}{f'(\cdot,t)} \in H(\mathbb{H}) \quad \text{for } t \in I \setminus E,$$

and V is measurable on  $\mathbb{H} \times I$ .

$$\frac{\varphi_{t,t-\varepsilon}(z)-z}{\varepsilon} = \frac{1}{\varepsilon} \int_{\mathbb{R}} \frac{d\nu_{t,t-\varepsilon}(u)}{u-z}.$$

Here  $\nu_{t,t-\varepsilon}(\mathbb{R}) = 2\varepsilon$ ,  $\operatorname{supp}(\nu_{t,t-\varepsilon}) \in \mathbb{R}$ . Actually, the supports of  $\nu_{t,t-\varepsilon}$  are uniformly bounded for  $\varepsilon > 0$ , t fixed (Lemma 7.18), say  $\operatorname{supp}(\nu_{t,t-\varepsilon}) \subseteq [-R_0, R_0]$ . Let

$$\tau_{\varepsilon} := \frac{1}{2\varepsilon} \nu_{t,t-\varepsilon}$$

Then  $\tau_{\varepsilon}$  subconverges to a probability measure  $\nu_t$  on  $[-R_0, R_0]$  as  $\varepsilon \to 0$  with respect to  $w^*$ convergence. So

$$V(z,t) := \lim_{\varepsilon \to 0^+} \frac{\varphi_{t,t-\varepsilon}(z) - z}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0^+} 2 \int_{[-R_0,R_0]} \frac{1}{u-z} d\tau_{\varepsilon} = 2 \int_{[-R_0,R_0]} \frac{d\nu_t(u)}{u-z}, \qquad z \in \mathbb{H}, \ t \in I \setminus E. \qquad \Box$$

**Remark 7.22.** The following are equivalent:

i) 
$$V(z) = \int_{\mathbb{R}} \frac{d\nu(u)}{u-z}$$
 for  $z \in \mathbb{H}$ 

where  $\nu \ge 0$ ,  $\nu(\mathbb{R}) = 1$ , and  $\operatorname{supp}(\nu) \ge 0$ .

ii) V is holomorphic on  $\mathbb{H}$ ,  $\operatorname{Im} V(z) \geq 0$  for  $z \in \mathbb{H}$ , V has a holomorphic extension near  $\infty$  such that

$$V(z) = -\frac{1}{z} + \cdots$$
 near  $\infty$ ,

and  $\operatorname{Im} f(x) = 0$  for  $x \in \mathbb{R}$ , |x| large.

*Proof.* i)  $\Longrightarrow$  ii) Let z = x + iy.

$$\operatorname{Im}\left(\frac{1}{u-z}\right) = \frac{y}{(u-x)^2 + y^2} > 0, \quad \text{for } z \in \mathbb{H}.$$

ii)  $\implies$  i) Follows as in the proof of Theorem 7.9 from Herglotz representation. Note that if Im V has a continuous extension to  $\mathbb{R}$ , then

$$d\nu(u) = \frac{1}{\pi} \operatorname{Im} V(u) du.$$

Example 7.23.  $\Omega_s = \mathbb{H} \setminus [0, is]$ 

Figure 26:

$$z = i\sqrt{-w^2 - s^2} = \sqrt{w^2 + s^2} = w\sqrt{1 + \frac{s^2}{w^2}} = w + \frac{s^2}{2w} + \cdots$$
 near  $\infty$ .

Let  $2t = s^2/2$ ,  $s^2 = 4t$ . Then  $z = \sqrt{w^2 + 4t}$  or  $z^2 = w^2 + 4t$  or  $w = f_t(z) = \sqrt{z^2 - 4t}$ , which is the normalized Loewner chain.

$$\dot{f}_t(z) = -\frac{2}{\sqrt{z^2 - 4t}}, \qquad f'_t(z) = \frac{z}{\sqrt{z^2 - 4t}},$$
$$V(z, t) = \frac{\dot{f}_t(z)}{f'_t(z)} = -\frac{2}{z} = 2 \int_{\mathbb{R}} \frac{d\delta_0(u)}{u - z}.$$

So  $\nu_t = \delta_0$  for all  $t \ge 0$ .

$$f_t(z) = z + \frac{1}{\pi} \int_{\mathbb{R}} \frac{\operatorname{Im} f_t(z)}{u - z} du,$$
  

$$\operatorname{Im} f_t(z) = \begin{cases} \sqrt{4t - u^2} & \text{for } u \in [-2\sqrt{t}, 2\sqrt{t}] \\ 0 & \text{elsewhere} \end{cases}$$
  

$$f_t(z) = z + \int_{\mathbb{R}} \frac{d\mu_t(u)}{u - z},$$

where

$$d\mu_t(u) = \frac{1}{\pi} \sqrt{4t - u^2} \chi_{[-2\sqrt{t}, 2\sqrt{t}]}(u) du, \qquad t \ge 0.$$
 (semi-circle law)  
$$\mu_t(\mathbb{R}) = \mu_t(2t) = \frac{1}{\pi} \frac{\pi}{2} (2\sqrt{t})^2 = 2t.$$

**Example 7.24.**  $\Omega_s = \mathbb{H} \setminus \overline{B}(0,s)$ . Using Joukowski function v = u + 1/u.

$$z = s\left(\frac{w}{s} + \frac{s}{w}\right) = w + \frac{s^2}{w} \stackrel{2t=s^2}{=} w + \frac{2t}{w}.$$
$$w^2 - zw + 2t = 0, \quad w = \frac{z}{2} + \sqrt{\frac{z^2}{4} - 2t} = \frac{1}{2}\left(z + \sqrt{z^2 - 8t}\right)$$

.

 $\operatorname{So}$ 

$$f_t(z) = \frac{1}{2} \left( z + \sqrt{z^2 - 8t} \right),$$
 (normalized Loewner chain)

$$\begin{split} \dot{f}_t(z) &= -\frac{2}{\sqrt{z^2 - 8t}}, \qquad f_t'(z) = \frac{1}{2} \Big( 1 + \frac{z}{\sqrt{z^2 - 8t}} \Big). \\ V(z,t) &= \frac{\dot{f}_t(z)}{f_t'(z)} = \dots = -\frac{1}{2t} \Big( z - \sqrt{z^2 - 8t} \Big), \\ \mathrm{Im} \, V(u,t) &= \begin{cases} \frac{1}{2t} \sqrt{8t - u^2} & \text{for } u \in [-\sqrt{8t}, \sqrt{8t}] \\ 0 & \text{elsewhere} \end{cases}. \\ V(z,t) &= 2 \int_{\mathbb{R}} \frac{d\nu_t(u)}{u - z}, \qquad d\nu_t(u) = \frac{1}{4\pi t} \sqrt{8t - u^2} \chi_{[-\sqrt{8t}, \sqrt{8t}]}(u) du, \\ \mathrm{Im} \, f_t(u) &= \begin{cases} \frac{1}{2} \sqrt{8t - u^2} & \text{for } u \in [-\sqrt{8t}, \sqrt{8t}] \\ 0 & \text{elsewhere} \end{cases} \\ f_t(z) &= z + \int_{\mathbb{R}} \frac{d\mu_t(u)}{u - z}, \qquad d\mu_t(u) = \frac{1}{2\pi} \sqrt{8t - u^2} \chi_{[-\sqrt{8t}, \sqrt{8t}]}(u) du, \\ \mu_t(\mathbb{R}) &= 2t, \qquad \frac{1}{2t} \mu_t = \nu_t. \end{split}$$

# 8 Basic probabilistic concepts

## 8.1. Probability space

Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space, where

 $\Omega$  is a sample space, the space of outcomes.  $\omega \in \Omega$  is a elementary outcome or event.

 $\mathscr{A}$  is a  $\sigma$ -algebra or " $\sigma$ -field".  $A \in \mathscr{A}$  is an event.

 $\mathbb{P}$  is a probability measure defined on  $\mathscr{A}$ ,  $\mathbb{P} \geq 0$  and  $\mathbb{P}(\Omega) = 1$ .

**Example 8.2.** Let  $\Omega = \{1, 2, 3, 4, 5, 6\}$ ,  $\mathscr{A} = \wp(\Omega)$ ,  $\mathbb{P} = 1/6 \cdot \text{counting measure.}$  Pick  $\omega \in \Omega$  "at random" = roll a dice.

## 8.3. random variables

A measurable map  $X : \Omega \to \mathbb{R}$  is called a *random variable* (i.e.,  $X^{-1}(B) \in \mathscr{A}$  for each Borel set  $B \subseteq \mathbb{R}$ ).

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \, d \, \mathbb{P}(\omega)$$

is called the *expectation* or *mean* of X.

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{\Omega} (X - \mathbb{E}[X])^2 d\,\mathbb{P} = \mathbb{E}[X^2] - [X]^2$$

is called the *variance* of X.

**Lemma 8.4.** (Borel-Cantelli-I) Let  $A_n$ ,  $n \in \mathbb{N}$ , be events. If  $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$ , then

$$\mathbb{P}(A_{n,\text{i.o.}}) = 0$$

where  $A_{n,i.o.}$  means that events in  $\{A_n\}$  infinitely often occur. That is,

$$A_{n,\text{i.o.}} = \{ \omega \in \Omega : \omega \in A_n \text{ for infinitely many } n \} = \bigcap_{k=1}^{\infty} \bigcup_{n \ge k} A_n$$

*Proof.* 
$$\mathbb{P}(A_{n,i.o.}) = \lim_{k \to \infty} \mathbb{P}(\bigcup_{n \ge k} A_n) \le \limsup_{k \to \infty} \sum_{n=k}^{\infty} \mathbb{P}(A_n) = 0.$$

## Lemma 8.5. (Chebyshev Inequality) If $X \ge 0$ , then

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}, \qquad a > 0.$$

$$Proof. \qquad \qquad \mathbb{P}(X \ge a) = \int_{\Omega} \chi_{X \ge a}(\omega) \, d \, \mathbb{P}(\omega) \le \int_{\Omega} \frac{1}{a} X d \, \mathbb{P} = \frac{\mathbb{E}[X]}{a}. \qquad \qquad \square$$

### 8.6. The distribution of a random variable

Let  $X : \Omega \to \mathbb{R}^n$  be random variable. The *distribution* or *law* of X is the push-forward measure  $\mathbb{P}_X := X_*\mathbb{P}$  on  $\mathbb{R}^n$ , i.e.,

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$$
 for each Borel set  $B \subseteq \mathbb{R}^n$ .

We have

$$\mathbb{E}[X] = \int_{\mathbb{R}} x \, d \, \mathbb{P}_X(x).$$

The characteristic function of  $X: \Omega \to \mathbb{R}^n$  is defined by

$$f(u) := \mathbb{E}[e^{iu \cdot X}] \quad \text{for} \quad u \in \mathbb{R}^n.$$

or

$$f(u) = \int_{\Omega} e^{iu \cdot X(\omega)} d\mathbb{P}(\omega) = \int_{\mathbb{R}^n} e^{iu \cdot v} d\mathbb{P}_X(v)$$

= the Fourier transform of its distribution.

Let  $X_1, \ldots, X_n : \Omega \to \mathbb{R}$  be random variables, and let  $X = (X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ . Then the *joint law* of  $X_1, \ldots, X_n$  is defined to be the law of X.

## 8.7. Independence

Let  $A, B \in \mathscr{A}$  be events. A and B are *independent* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Denote  $A^c := \Omega \setminus A$ . Then if A, B are independent, then  $A^c, B$  are independent. In fact

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(B)(1 - \mathbb{P}(A)) = \mathbb{P}(A^c)\mathbb{P}(B).$$

If  $\mathscr{F}_1, \ldots, \mathscr{F}_n \subseteq \mathscr{A}$  are  $\sigma$ -algebras.  $\mathscr{F}_1, \ldots, \mathscr{F}_n$  are independent if

$$\mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1) \cdots \mathbb{P}(A_n)$$

whenever  $A_1 \in \mathscr{F}_1, \ldots, A_n \in \mathscr{F}_n$ .

A, B are independent iff the  $\sigma$ -algebras generated by A and by B are independent.

Let  $X_1, \ldots, X_n$  are random variables. They are independent if the  $\sigma$ -algebras  $\sigma(X_1), \ldots, \sigma(X_n)$  generated by them are independent, where for a random variable X,

$$\sigma(X) = \{X^{-1}(B) : B \subseteq \mathbb{R}^n \text{ Borel}\}\$$

If  $X_1, \ldots, X_n$  are independent, and  $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$  are Borel, then  $f_1(X_1), \ldots, F_n(X_n)$  are independent. Note that  $\sigma(f(X)) \subseteq \sigma(X)$ .

**Theorem 8.8.** Let  $X_1, \ldots, X_n : \Omega \to \mathbb{R}$  be random variables, and let  $X = (X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ . then TFAE:

(i)  $X_1, \ldots, X_n$  are independent,

(ii)  $\mathbb{P}(X_1 \in B_1, \ldots, X_n \in B_n) = \mathbb{P}(X_1 \in B_1) \cdots \mathbb{P}(X_n \in B_n)$  for all Borel sets  $B_1, \ldots, B_n \subseteq \mathbb{R}$ ,

(iii) the law of X is a product of the laws of  $X_1, \ldots, X_n$ , i.e.,  $\mathbb{P}_X = \mathbb{P}_{X_1} \times \cdots \times \mathbb{P}_{X_n}$ ,

(iv) the characteristic function of X is the product of the characteristic functions of  $X_1, \ldots, X_n$ , that is,

$$\mathbb{E}[e^{iu \cdot X}] = \mathbb{E}[e^{iu_1 X_1}] \cdots \mathbb{E}[e^{iu_n X_n}]$$

for  $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ .

Idea of proof. (i)  $\iff$  (ii): By definition.

 $(iii) \Longrightarrow (ii)$ : Clear.

(ii)  $\implies$  (iii): Follows from fact: if two Borel probability measures  $\nu, \mu$  on  $\mathbb{R}^n$  agree on sets of form  $B_1 \times \cdots \times B_n$ ,  $B_i$  Borel, then  $\nu = \mu$ .

(iii)  $\implies$  (iv): Clear.

(iv)  $\implies$  (iii): Follows from fact that a measure is uniquely determined by its Fourier transform.  $\Box$ 

**Corollary 8.9.** If X, Y are integrable and independent, then

$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

Proof. Let  $Z = (X, Y) : \Omega \to \mathbb{R}^2$ .

$$\mathbb{E}[XY] = \int_{\mathbb{R}^2} xy \, d\,\mathbb{P}_Z(x, y)$$
  
=  $\int_{\mathbb{R}^2} xy \, d\,\mathbb{P}_X(x)\mathbb{P}_Y(y)$  (Theorem 8.8)  
=  $\left(\int_{\mathbb{R}} x \, d\,\mathbb{P}_X(x)\right) \left(\int_{\mathbb{R}} y \, d\,\mathbb{P}_Y(y)\right) = \mathbb{E}[X] \cdot \mathbb{E}[Y].$ 

**Lemma 8.10.** (Borel-Cantelli-II) Let  $A_n$ ,  $n \in \mathbb{N}$ , be independent events. If  $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ , then

$$\mathbb{P}(A_{n,\text{i.o.}}) = 1.$$

*Proof.* Note that  $e^{-x} \ge 1 - x$  for  $x \in [0, 1]$ . So

$$\mathbb{P}(\bigcup_{n=k}^{N} A_n) = 1 - \mathbb{P}(\bigcap_{n=k}^{N} A_n^c) = 1 - \prod_{n=k}^{N} (1 - \mathbb{P}(A_n)) \qquad \text{(independence)}$$
$$\geq 1 - \prod_{n=k}^{N} e^{-\mathbb{P}(A_n)} = 1 - e^{-\sum_{n=k}^{N} \mathbb{P}(A_n)} \to 1 \qquad \text{as} \quad N \to \infty.$$

 $\operatorname{So}$ 

$$\mathbb{P}(\bigcup_{n=k}^{\infty} A_n) = 1,$$

and

$$\mathbb{P}(A_{n,\text{i.o.}}) = \mathbb{P}(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n) = \lim_{k \to \infty} \mathbb{P}(\bigcup_{n=k}^{\infty} A_n) = 1.$$

**Lemma 8.11.** Let  $X, Y : \Omega \to \mathbb{R}^n$  be random variables, let Z = X + Y. Then

$$\mathbb{P}_Z = \mathbb{P}_X * \mathbb{P}_Y \qquad (convolution)$$

and

$$\phi_Z(u) := \mathbb{E}[e^{iu \cdot Z}] = \phi_X(u) \cdot \phi_Y(u), \quad for \quad u \in \mathbb{R}^n.$$

*Proof.* Let  $\pi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \pi(x, y) = x + y$ . Then  $\mathbb{P}_Z = \pi_* \mathbb{P}_{(X,Y)}$ . Since X, Y are independent,  $\mathbb{P}_{(X,Y)} = \mathbb{P}_X \times \mathbb{P}_Y$ . So if  $A \subseteq \mathbb{R}^n$  is a Borel set, then

$$\mathbb{P}_Z(A) = \pi_* \mathbb{P}_{(X,Y)}(A) = \int \chi_A * \pi \, d \, \mathbb{P}_{(X,Y)} = \int \chi_A(x+y) d \, \mathbb{P}_X(x) \mathbb{P}_Y(y) = \int \chi_A d \, \mathbb{P}_X * \mathbb{P}_Y.$$

Hence  $\mathbb{P}_Z = \mathbb{P}_X * \mathbb{P}_Y$ .

$$\phi_Z(u) = \mathbb{E}[e^{iu \cdot (X+Y)}] = \mathbb{E}[e^{iu \cdot X}e^{iu \cdot Y}] \stackrel{\text{ind.}}{=} \mathbb{E}[e^{iu \cdot X}] \cdot \mathbb{E}[e^{iu \cdot Y}] = \phi_X(u) \cdot \phi_Y(u). \qquad \Box$$

## 8.12. Gaussian random variables

Let  $X : \Omega \to \mathbb{R}$  be a real-valued random variable. Then X is *Gaussian* with mean  $\mu \in \mathbb{R}$ and variance  $\sigma^2 > 0$  if its distribution is given by

$$d\mathbb{P}_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx.$$
 (Gaussian or normal distribution)

We write  $X \sim \mathcal{N}(\mu, \sigma^2)$ .

X is standard Gaussian or normal if  $X \sim \mathcal{N}(0, 1)$ , i.e.,

$$d\mathbb{P}_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

If  $X \sim \mathcal{N}(0,1)$ , then  $\mathbb{E}[X] = \mu$  and  $\operatorname{Var}[x] = \sigma^2$ , and  $\sigma = \operatorname{Var}[x]^{1/2}$  the standard deviation. Characteristic function: if  $X \sim \mathcal{N}(\mu, \sigma)$ , then

$$\phi_X(u) = \exp\left(-\frac{1}{2}\sigma^2 u^2 + in\mu\right).$$

If  $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ ,  $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ , and X, Y are independent, then

$$Z = X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

*Proof.*  $\phi_Z(u) = \phi_X(u) \cdot \phi_Y(u) = \exp\left(-\frac{1}{2}(\sigma_1^2 + \sigma_2^2)u^2 + iu(\mu_1 + \mu_2)\right).$ 

It is convenient to consider a random variable x such that  $X = \mu$  a.s. as a "generalized" Gaussian, where  $\sigma^2 = 0$ . Namely,

$$\mathbb{P}_X = \delta_\mu, \qquad \phi_X(u) = \exp(-iu\mu) = \exp\left(-\frac{1}{2}0u^2 + iu\mu\right).$$

**Definition.** A random variable  $X = (X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$  is a (generalized, vector valued) Gaussian, if

$$\phi_X(u) = \mathbb{E}[e^{iu \cdot X}] = \exp\left(-\frac{1}{2}u^t C u + iu \cdot \mu\right) \quad \text{for} \quad u \in \mathbb{R}^n,$$

where  $\mu \in \mathbb{R}^n$  and C is a positive semi-defined  $n \times n$ -matrix.
Let

$$Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

be the covariance of X, Y. Then C is the covariance matrix of X, i.e.,  $C = (c_{ij})$ , where

 $c_{ij} = \operatorname{Cov}(X_i, X_j).$ 

X is Gaussian iff X = BY, where B is a  $n \times n$ -matrix and  $Y = (Y_1, \ldots, Y_n)$  such that  $Y_1, \ldots, Y_n$  are real-valued independent generalized Gaussians iff X = DZ + a, where  $a \in \mathbb{R}^n$ , D is a  $n \times k$ -matrix,  $Z = (Z_1, \ldots, Z_k)$ ,  $Z_1, \ldots, Z_k$  is independent Gaussians.

Let Y = AX, where A is a  $n \times k$ -matrix,  $X : \Omega \to \mathbb{R}^n$ ,  $Y : \Omega \to \mathbb{R}^k$ . If X is Gaussian, then Y is Gaussian.

Proof.  

$$\phi_Y(v) = \mathbb{E}[e^{iv \cdot Y}] = \mathbb{E}[e^{iv \cdot AX}] = \mathbb{E}[e^{iA^t v \cdot X}]$$

$$= \phi_X(A^t v) = \exp\left(-\frac{1}{2}(A^t v)^t C(A^t v) + i(A^t v) \cdot \mu\right)$$

$$= \exp\left(-\frac{1}{2}v^t (ACA^t)v + iv \cdot A\mu\right).$$

So  $\mu' = A\mu$ ,  $C' = ACA^t$ .

If  $X: \Omega \to \mathbb{R}^n$  has a multi-normal distribution given by

$$d\mathbb{P}_X(x) = \frac{|A|^{1/2}}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}(x-\mu)^t A(x-\mu)\right),$$

where  $\mu \in \mathbb{R}^n$ , and A is a positive defined  $n \times n$ -matrix, then X is Gaussian and

$$\phi_X(u) = \exp\left(-\frac{1}{2}u^t C u + i(u \cdot \mu)\right),\,$$

where  $C = A^{-1}$ .

# 8.13. Modes of convergence of random variables

Let  $X_n, n \in \mathbb{N} \cup \{\infty\}$ , be real (or vector valued) random variables. i)  $X_n \to X_\infty$  a.s. (almost surely) iff

$$\mathbb{P}(X_n \to X_\infty) = \mathbb{P}(\{\omega \in \Omega : X_n(\omega) \to X_\infty(\omega)\}) = 1,$$

iff  $X_n \to X_\infty$  for a.e.  $\omega \in \Omega$ .

ii)  $X_n \to X_\infty$  in probability iff

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X_{\infty}| \ge \varepsilon) = 0 \quad \text{for all} \quad \varepsilon > 0.$$

(equivalent to "convergence in measure".)

iii)  $X_n \to X_\infty$  in  $L^p$ ,  $p \ge 1$ , iff

$$\mathbb{E}[|X_n - X_{\infty}|^p] \to 0,$$

equivalently

$$\int_{\Omega} |X_n(\omega) - X_{\infty}(\omega)|^p d \mathbb{P}(\omega) \to 0$$

$$\begin{array}{ccc} X_n \to X_\infty \text{ a.s.} & \stackrel{1}{\Longrightarrow} & \\ & & & \\ & & 3 \uparrow \text{ subseq.} & \\ & & & \text{in probability} \\ X_n \to X_\infty \text{ in } L^p & \stackrel{2}{\Longrightarrow} & \end{array}$$

*Proof.* (easy) e.g. 1: Fix  $\varepsilon > 0$ , define

$$E_n = \{ \omega \in \Omega : |X_n(\omega) - X_\infty(\omega)| \ge \varepsilon \}.$$

Then  $X_n \to X_\infty$  a.s. implies

$$0 = \mathbb{P}(E_{n,\text{i.o.}}) = \mathbb{P}(\bigcap_n \bigcup_{k \ge n} E_k) = \lim_{n \to \infty} \mathbb{P}(\bigcup_{k \ge n} E_k) \ge \limsup_{n \to \infty} \mathbb{P}(E_n).$$

**Lemma 8.14.** Let  $X_n$  be  $\mathbb{R}^d$ -valued Gaussian random variables,  $n \in \mathbb{N}$ ,  $X_n \to X_\infty$  in probability. Then  $X_\infty$  is  $\mathbb{R}^d$ -valued Gaussian.

*Proof.* (outline) 1. If  $X_n \to X_\infty$  in probability, then

$$\phi_{X_n}(u) \to \phi_{X_\infty}(u)$$
 locally uniformly on  $\mathbb{R}^d$ . (23)

In fact,

$$|e^{iu \cdot X_n} - e^{iu \cdot X_\infty}| \le |u \cdot X_n - u \cdot X_\infty| \le |u| \cdot |X_n - X_\infty|.$$

 $\operatorname{So}$ 

$$\phi_{X_n}(u) - \phi_{X_\infty}(u)| \le \mathbb{E}[|e^{iu \cdot X_n} - e^{iu \cdot X_\infty}|] \le |u|\delta + 2\mathbb{P}(|X_n - X_\infty| \ge \delta) \le \varepsilon$$

for n large. So (23) follows.

2.  $X_n$  Gaussian, so

$$\phi_{X_n}(u) = \exp\left(-\frac{1}{2}u^t C_n u + iu \cdot \mu_n\right),$$

where  $C_n \geq 0$  and  $\mu_n \in \mathbb{R}^d$ . If

$$\phi_{X_n}(u) \to \phi_{X_\infty}(u)$$
 locally uniformly,

then  $\phi_{X_{\infty}}$  has the same form, i.e.,

$$\phi_{X_{\infty}}(u) = \exp\left(-\frac{1}{2}u^{t}Cu + iu \cdot \mu\right),$$

where  $C \ge 0$  and  $\mu \in \mathbb{R}^d$ .

**Lemma 8.15.** Let  $X_1, \ldots, X_n$  be real-valued random variables with joint Gaussian distribution (i.e.,  $X = (X_1, \ldots, X_n)$  is  $\mathbb{R}^n$ -valued Gaussian random variable). Then  $X_1, \ldots, X_n$  are independent iff they are pairwise uncorrelated, i.e.,  $Cov(X_i, X_j) = 0$  for  $i, j = 1, \ldots, n, i \neq j$ .

*Proof.* " $\Longrightarrow$ " Clear:

$$\operatorname{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[x_i])(X_j - \mathbb{E}[X - j])] \stackrel{\text{ind.}}{=} \mathbb{E}[X_i - \mathbb{E}[X_i]] \cdot \mathbb{E}[X_j - \mathbb{E}[X_j]] = 0.$$

" $\Leftarrow$ " Since X Gaussian,

$$\phi_X(u) = \exp\left(-\frac{1}{2}u^t C u + iu \cdot \mu\right), \qquad u \in \mathbb{R}^n,$$

where  $C = (C_{ij})$  is the covariance matrix. So  $c_{ij} = \text{Cov}(X_i, X_j), i, j = 1, \dots, n$ .

By assumption,  $c_{ij} = 0$  for  $i \neq j$ , and so C is a diagonal matrix. Hence,

$$\phi_X(u) = \phi_{X_1}(u_1) \cdots \phi_{X_n}(u_n)$$

for  $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ . This shows that  $X_1, \ldots, X_n$  are independent by Theorem 8.8.  $\Box$ 

## 8.16. Stochastic processes

A stochastic process in  $\mathbb{R}^n$  is a collection  $\{X_t\}_{t\in T}$  of random variables defined on a probability space  $(\Omega, \mathscr{A}, \mathbb{P})$ , where  $T \subseteq \mathbb{R}$  the parameter set of "times".

If  $T = \mathbb{N}_0, \mathbb{N}$ , it is a "discrete time stochastic process", which is a sequence of random variables:  $X_1, X_2, \ldots, X_n, \ldots$ 

If  $T = [0, \infty), [a, b]$  etc., it is a "continuous time stochastic process".

If  $t \in T$  fixed,  $\omega \mapsto X_t(\omega)$  is a random variable on  $\Omega$ . If  $\omega$  fixed,  $t \in T \mapsto X_t(\omega)$  is a sample path of the stochastic process.

**Definition 8.17. (Brownian motion)** A real-valued stochastic process  $\{B_t\}_{t \in [0,\infty)}$  is called a (version of) *Brownian motion* if the following conditions are true:

(i) the process is a Gaussian process, i.e., for all  $n \in \mathbb{N}$ ,  $0 \leq t_1 < \cdots < t_n$ , the random variables  $B_{t_1}, \ldots, B_{t_n}$  have a joint Gaussian distribution.

(ii)  $B_t$  for  $t \in [0, \infty)$  is centered, i.e.,  $\mathbb{E}[B_t] = 0$ .

(iii)  $\operatorname{Cov}(B_t, B_s) = \mathbb{E}[B_t B_s] = s \wedge t, \, s, t \in [0, \infty).$ 

(iv) sample paths  $t \mapsto B_t$  are continuous a.s., i.e.,  $t \mapsto B_t(\omega)$  is continuous for a.e.  $\omega$ .

**Remark 8.18.** Let  $\{B_t\}_{t \in [0,\infty)}$  be a Brownian motion.

1)  $\mathbb{E}[B_t] = 0$ ,  $\operatorname{Var}(B_t) = \operatorname{Cov}(B_t, B_t) = t$  for  $t \ge 0$ . So  $B_t \sim \mathcal{N}(0, t)$  for t > 0,  $B_0 = 0$  a.s.. Brownian motion starts at 0 from time 0 a.s..

2) Brownian motion has "independent increments". If  $t_1 < t_2 < \ldots < t_n$ , then

$$X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}}$$
(24)

are independent Gaussian random variables.

$$X_{t_k} - X_{t_{k-1}} \sim \mathcal{N}(0, t_k - t_{k-1}).$$

Indeed, the random variables in (24) are joint Gaussian, centered, and for  $k < l, t_{k-1} < t_k \le t_{l-1} < t_l$ ,

$$Cov(X_{t_k} - X_{t_{k-1}}, X_{t_l} - X_{t_{l-1}}) = \mathbb{E}[(X_{t_k} - X_{t_{k-1}})(X_{t_l} - X_{t_{l-1}})]$$
  
=  $t_k \wedge t_l - t_{k-1} \wedge t_l - t_k \wedge t_{l-1} + t_{k-1} \wedge t_{l-1}$   
=  $t_k - t_{k-1} - t_k + t_{k-1} = 0.$ 

So by Lemma 8.15, the random variables in (24) are independent.

## 8.19. Hilbert space bases

Let H be a separable real Hilbert space. A sequence  $\{x_n\}_{n\in\mathbb{N}}$  is called a *complete orthonormal* system or a Hilbert space basis if

i) the vectors are orthonormal, i.e.,  $(x_i, x_j) = \delta_{ij}, i, j \in \mathbb{N}$ ,

ii) if  $x \in H$  and  $(x, x_n) = 0$  for all  $n \in \mathbb{N}$ , then x = 0.

In this case,

$$x = \sum_{n=1}^{\infty} (x, x_n) x_n,$$
$$\|x\|^2 = \sum_{n=1}^{\infty} |(x, x_n)|^2, \quad (x, y) = \sum_{n=1}^{\infty} (x, x_n) (y, x_n).$$
(Parseval's identities)

Equivalent to ii) is

ii') the set S of all (finite) linear combinations of the vectors  $x_1, x_2, \ldots, x_n, \ldots$  is dense in H.

**Example.** Let  $H = L^2[0,1]$ , with inner product  $(f,g) = \int_0^1 f(x)g(x)dx$ . The Hilbert space bases:

1. trigonometric functions basis

$$\frac{1}{\sqrt{2}}\cos(2\pi nx), \qquad \frac{1}{\sqrt{2}}\sin(2\pi nx), \qquad n \in \mathbb{N}.$$

2. Haar basis

$$\varphi_{n,k}(x) := \begin{cases} 1 & [k/2^n, (k+1/2)/2^n), \\ -1 & \text{for } x \in [(k+1/2)/2^n, (k+1)/2^n), \\ 0 & \text{else}, \end{cases}$$

where  $n \in \mathbb{N}_0$ ,  $k = 0, 1, \ldots, 2^n - 1$ .  $\varphi_{-1,0} \equiv 1$ . Denote *I* the set of indices. Obviously,  $\varphi_{n,k} \in L^2[0,1]$ , pairwise orthogonal.

$$\|\varphi_{n,k}\|^2 = \int_0^1 \varphi_{n,k}(x)^2 dx = \frac{1}{2^n}, \qquad n \in \mathbb{N}_0.$$

Set

$$\psi_{n,k} = 2^n \varphi_{n,k}, \qquad \psi_{-1,0} \equiv 1.$$

Then  $\{\psi_{n,k}\}_{(n,k)\in I}$  forms an orthonormal system. Its linear combinations are dense in  $L^2[0,1]$ (because step functions on dyadic intervals are). So  $\{\psi_{n,k}\}_{(n,k)\in I}$  is a Hilbert space basis of  $L^{2}[0,1].$ 

If  $\{x_n\}$  is an orthonormal system, then

$$\sum_{n=1}^{\infty} a_n x_n \text{ converges} \quad \text{iff} \quad \sum_{n=1}^{\infty} a_n^2 < \infty.$$

In fact, it follows from the Cauchy criterion since the partial sum  $s_n = \sum_{k=1}^n a_k x_k$  satisfies

$$|s_n - s_m||^2 = \sum_{k=m+1}^n a_k^2, \qquad n \ge m.$$

## 8.20. Construction of Brownian motion

## 1. Brownian motion on T = [0, 1].

Let  $Z_n$ ,  $n \in \mathbb{N}$ , be i.i.d. random variables, i.e., independent, identically distributed random variables on the same probability space  $(\Omega, \mathscr{A}, \mathbb{P})$ , and  $Z_n \sim \mathcal{N}(0, 1)$ . For example, let  $\tilde{\Omega} = (\mathbb{R}, \mathscr{B}, \mu)$ , where  $\mathscr{B}$  is the Borel  $\sigma$ -algebra, and

$$d\mu(x) = \frac{1}{\sqrt{2}}e^{-x^2/2}dx.$$

Set  $\Omega = \tilde{\Omega}^{\mathbb{N}}$ , and  $Z_n$  = the projection onto the *n*-th coordinate.

 $Z_n, n \in \mathbb{N}$ , forms an orthonormal system in  $L^2(\Omega)$ . In fact,

$$\int_{\Omega} Z_n(\omega) Z_k(\omega) d \mathbb{P}(\omega) = \operatorname{Cov}(Z_n, Z_k) = \delta_{nk}, \qquad n, k \in \mathbb{N}.$$

Let  $\psi_n, n \in \mathbb{N}$ , be a Hilbert space basis of  $L^2[0, 1]$ . Let

$$f_n(t) = \int_0^t \psi_n(u) du = (\psi_n, \chi_{[0,t]}), \quad \text{inner product in } L^2[0,1].$$

Define

$$B_t = \sum_{n=1}^{\infty} f_n(t) Z_n, \quad \text{for} \quad t \in [0, 1].$$

i) For each  $t \in [0, 1]$ , the sum converges in  $L^2[0, 1]$ , equivalently,

$$\sum_{n=1}^{\infty} f_n(t)^2 = \sum_{n=1}^{\infty} (\psi_n, \chi_{[0,t]})^2 \stackrel{*}{=} \|\chi_{[0,t]}\|^2 = t < \infty. \quad (* \text{ Parseval})$$

ii) Each  $B_t$  is a Gaussian; actually, for  $t_1 < t_2 < \cdots < t_m$ ,  $B_{t_1}, B_{t_2}, \ldots, B_{t_m}$  have a joint Gaussian distribution.

In fact,

$$B_t^n := \sum_{k=1}^n f_k(t) Z_k$$

is Gaussian (linear combination of Gaussians), and  $B_t^n \to B_t$  as  $n \to \infty$  in  $L^2(\Omega)$ . So  $B_t$  is Gaussian by Lemma 8.14.

Similarly,  $(B_{t_1}^n, B_{t_2}^n, \ldots, B_{t_m}^n)$  have a joint Gaussian distribution, and  $(B_{t_1}^n, B_{t_2}^n, \ldots, B_{t_m}^n) \to (B_{t_1}, B_{t_2}, \ldots, B_{t_m})$  as  $n \to \infty$  in  $L^2(\Omega, \mathbb{R}^m)$ . So  $(B_{t_1}, B_{t_2}, \ldots, B_{t_m})$  have a joint Gaussian distribution.

iii)  $B_t$  is centered.

$$\mathbb{E}[B_t] = \int_{\Omega} B_t(\omega) d \mathbb{P}(\omega) = \lim_{n \to \infty} \int_{\Omega} B_t^n(\omega) d \mathbb{P}(\omega) = \lim_{n \to \infty} \sum_{k=1}^n f_k(t) \mathbb{E}[Z_k] = 0,$$

because  $Z_n, n \in \mathbb{N}$ , is centered.

iv)

$$\operatorname{Cov}(B_s, B_t) = \int_{\Omega} B_s(\omega) B_t(\omega) d \mathbb{P}(\omega) = \lim_{n \to \infty} \int_{\Omega} B_s^n(\omega) B_t^n(\omega) d \mathbb{P}(\omega)$$
$$= \lim_{n \to \infty} \sum_{k,l=1}^n f_k(s) f_l(t) \operatorname{Cov}(Z_k, Z_l) \stackrel{*}{=} \sum_{k=1}^\infty f_k(s) f_k(t) \qquad (* \operatorname{Cov}(Z_k, Z_l) = \delta_{kl})$$
$$= \sum_{k=1}^\infty (\psi_k, \chi_{[0,s]}) (\psi_k, \chi_{[0,t]}) \stackrel{**}{=} (\chi_{[0,s]}, \chi_{[0,t]}) = s \wedge t \qquad (** \operatorname{Parseval})$$

To check the continuity of  $t \mapsto B_t(\omega)$  for a.e.  $\omega \in \Omega$ , we choose the Haar basis for the Hilbert space basis of  $L^2[0,1]$ . Let  $\{\psi_{n,k}\}_{(n,k)\in I}$  be the Haar basis of  $L^2[0,1]$ , let

$$f_{n,k}(t) = \int_0^t \psi_{n,k}(s) ds.$$

Then  $f_{n,k}$  is Lipschitz with Lipschitz constant  $\operatorname{Lip}(f_{n,k}) = 2^{n/2}$ .

$$||f_{n,k}||_{\infty} \le \frac{1}{2} \frac{1}{2^n} 2^{n/2} = \frac{1}{2^{n/2+1}} \le \frac{1}{2^{n/2}}.$$

**Claim.** Let  $\{Z_{n,k}\}_{(n,k)\in I}$  be i.i.d. standard normal random variables. Then for a.e.  $\omega \in \Omega$ , the series

$$B_t(\omega) = Z_{-1,0}f_{-1,0}(t) + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} Z_{n,k}(\omega)f_{n,k}(t)$$
(25)

converges uniformly in t (and hence represents a continuous function in t).

*Proof.* Note that

$$\frac{2}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-x^{2}/2} dx \le e^{-a^{2}/2} \quad \text{for} \quad a > 0.$$

 $\operatorname{So}$ 

$$\mathbb{P}(|Z| > a) \le e^{-a^2/2} \quad \text{for} \quad a \ge 0$$

if  $Z \sim \mathcal{N}(0, 1)$ . Denote

$$A_{n,k} = \Big\{ |Z_{n,k}| > 2\sqrt{\log(2^{n/2}n)} \Big\}.$$

Then

$$\mathbb{P}(A_{n,k}) \le e^{-2\log(2^{n/2}n)} = \frac{1}{2^n n^2}$$

 $\operatorname{So}$ 

$$\sum_{n=1}^{\infty} \sum_{k=0}^{2^n - 1} \mathbb{P}(A_{n,k}) \le \sum_{n=1}^{\infty} \frac{2^n}{2^n n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

By Borel-Cantelli-I, we have  $\mathbb{P}(A_{n,k,i.o.}) = 0$ , i.e., for a.e.  $\omega \in \Omega$ , we have

$$|Z_{n,k}(\omega)| \le 2\sqrt{\log(2^{n/2}n)} \lesssim \sqrt{n} \tag{26}$$

for all sufficiently large n (depending on  $\omega),$  say for  $n\geq N(\omega).$ 

For such  $\omega$ ,

$$\sum_{n=N(\omega)}^{\infty} \left| \sum_{k=0}^{2^n-1} Z_{n,k}(\omega) f_{n,k}(t) \right| \lesssim \sum_{n=N(\omega)}^{\infty} \frac{\sqrt{n}}{2^{n/2}} < \infty.$$

So series (25) represents a continuous function in t by the Weierstrass M-test.

Actually, for such  $\omega$ ,

$$g_n(t) = \sum_{k=0}^{2^n - 1} Z_{n,k}(\omega) f_{n,k}(t) \qquad (g_{-1}(t) = Z_{-1,0}(\omega) f_{-1,0}(t))$$

is  $L_n$ -Lipschitz with  $L_n \lesssim \sqrt{n}2^{n/2}$  for all  $n \ge N(\omega)$ ; so by adjusting constants wlog for all  $n \ge 1$ . Moreover,  $\|g_n\|_{\infty} \lesssim \sqrt{n}2^{n/2}$  for all  $n \ge N(\omega)$ , wlog for all  $n \ge 1$ . Suppose  $\omega$  is "good" so that it satisfies (26). Let  $s, t \in [0, 1]$ . Pick suitable  $N = N(s, t) \in \mathbb{N}$ .

Then

$$\begin{aligned} |B_s(\omega) - B_t(\omega)| &\leq \sum_{n=-1}^{\infty} |g_n(s) - g_n(t)| \\ &\leq \sum_{n=-1}^{N} L_n |s - t| + \sum_{n=N+1}^{\infty} 2||g_n||_{\infty} \\ &\stackrel{\omega}{\lesssim} \left( 1 + \sum_{n=1}^{N} \sqrt{n} 2^{n/2} \right) |s - t| + \sum_{n=N+1}^{\infty} \sqrt{n} 2^{-n/2} \\ &\stackrel{\omega}{\lesssim} \sqrt{N} 2^{N/2} |s - t| + \sqrt{N} 2^{-N/2}. \end{aligned}$$

Pick N = N(s,t) such that  $2^{N/2}|s-t| = 2^{-N/2}$ , equivalently  $|s-t| \sim 2^{-N}$ , equivalently

$$N = \log_2 \frac{1}{|s-t|} \sim \log \frac{1}{|s-t|}.$$

Then

$$|B_s(\omega) - B_t(\omega)| \lesssim |s - t|^{1/2} \sqrt{\log \frac{1}{|s - t|}}.$$

**Conclusion.** For a.e.  $\omega$ , there exists  $M(\omega) \ge 0$ , such that

$$|B_s(\omega) - B_t(\omega)| \le M(\omega)|s - t|^{1/2} \sqrt{\log \frac{1}{|s - t|}}.$$

Almost surely, the sample path  $t \mapsto B_t(\omega)$  has modulus of continuity

$$\omega(\delta) = C \delta^{1/2} \sqrt{\log(1/\delta)}.$$

So for every  $\varepsilon > 0$ ,  $t \mapsto B_t(\omega)$  is  $(1/2 - \varepsilon)$ -Hölder almost surely.

## **2.** Brownian motion on $[0, \infty)$ .

Idea. Let a Brownian motion run until time 1, start a "new" Brownian motion at endpoint, let it run until time 2, etc.

Let  $B_t^n$ ,  $n \in \mathbb{N}_0$ , be independent copies of Brownian motion on [0, 1]. Define

$$B_{t}(\omega) = \sum_{k=0}^{\lfloor t \rfloor - 1} B_{1}^{k}(\omega) + B_{t-\lfloor t \rfloor}^{\lfloor t \rfloor}(\omega).$$
  
(e.g.  $B_{1.5}(\omega) = B_{1}^{0}(\omega) + B_{0.5}^{1}(\omega).$ )

Then  $\{B_t\}_{t\in[0,\infty)}$  is a Gaussian process,  $B_t$  centered, and for  $s \leq t$ ,

$$\operatorname{Cov}(B_s, B_t) = \mathbb{E}\left[\left(\sum_{k=0}^{\lfloor s \rfloor - 1} B_1^k + B_{s-\lfloor s \rfloor}^{\lfloor s \rfloor}\right) \left(\sum_{k=0}^{\lfloor t \rfloor - 1} B_1^k + B_{t-\lfloor t \rfloor}^{\lfloor t \rfloor}\right)\right]$$
$$= \sum_{k=0}^{\lfloor s \rfloor - 1} 1 + (s - \lfloor s \rfloor) = s = s \wedge t.$$

For each  $n \in \mathbb{N}_0$ ,  $t \mapsto B_t^n(\omega)$  on [0, 1] is continuous a.s., so for a.e.  $\omega, t \mapsto B_t^n(\omega)$  are continuous for all  $n \in \mathbb{N}_0$ . Hence  $t \mapsto B_t(\omega)$  is continuous a.s..

### 8.21. $\pi$ -systems

Let X be a set,  $\mathscr{S}$  be a family of subsets of X.  $\mathscr{S}$  is called a  $\pi$ -system if  $A \cap B \in \mathscr{S}$  whenever  $A, B \in \mathscr{S}$ . (i.e., a  $\pi$ -system is "stable" under the finite intersection.)

**Facts.** 1) Let  $\mathscr{S}$  be a  $\pi$ -system, let  $\mathscr{A} = \sigma(\mathscr{S})$  be a  $\sigma$ -algebra generated by  $\mathscr{S}$ , and let  $\mu, \nu$  be probability measures on  $\mathscr{A}$ . If  $\mu(A) = \nu(A)$  for all  $A \in \mathscr{S}$ , then  $\mu = \nu$ . (i.e.,  $\mu(A) = \nu(A)$  for all  $A \in \mathscr{A}$ .) (Exercise!)

2) Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space. Let  $\mathscr{S}, \mathscr{T}$  be two  $\pi$ -systems, and let  $\mathscr{B} = \sigma(\mathscr{S}), \mathscr{C} = \sigma(\mathscr{T}) \subseteq \mathscr{A}$ . If  $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$  whenever  $A \in \mathscr{S}, B \in \mathscr{T}$ , then  $\mathscr{B}$  and  $\mathscr{C}$  are independent. (i.e.,  $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$  for all  $A \in \mathscr{B}, B \in \mathscr{C}$ .) (Exercise!)

# 8.22. The space $X = C([0, \infty))$

Let

$$X := C([0,\infty)) = \{f : [0,\infty) \to \mathbb{R} \text{ continuous}\}\$$

equipped with "topology of locally uniform convergence":  $f_n \to f$  iff  $f_n \to f$  locally uniformly on  $\mathbb{R}$ .

This is a metrizable topology: Let

$$d_n(f,g) = \sup_{x \in [0,n] \cap \mathbb{Q}} |f(x) - g(x)|, \qquad d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(f,g)}{1 + d_n(f,g)}.$$

Then d is a metric on X.  $d(f_n, f) \to 0$  iff  $f_n \to f$  locally uniformly on  $[0, \infty)$ . (X, d) forms a separable space.

Let  $\mathscr{B} = \mathscr{B}_X$ , the Borel  $\sigma$ -algebra on X (i.e., the smallest  $\sigma$ -algebra containing all open sets in X). We want to find  $\pi$ -system  $\mathscr{S}$  such that  $\mathscr{B} = \sigma(\mathscr{S})$ .

For  $t \in [0, \infty)$ , let

$$\pi_t: X \to \mathbb{R}, f \mapsto f(t)$$

be the evaluation of time t. Let

$$\mathscr{S} = \{ \pi_{t_1}^{-1}(B_1) \cap \dots \cap \pi_{t_k}^{-1}(B_k) : k \in \mathbb{N}, t_1 < \dots < t_k \text{ in } [0, \infty), B_1, \dots, B_k \in \mathscr{B}_{\mathbb{R}} \}.$$

Obviously,  $\mathscr{S}$  is a  $\pi$ -system!

Claim.  $\sigma(\mathscr{S}) = \mathscr{B}$ .

*Proof.* (Outline) 1. For  $t \in [0, \infty)$ ,  $\pi_t : X \to \mathbb{R}$  is continuous. So  $\pi_t^{-1}(B) \in \mathscr{B}_X$  for each  $B \in \mathscr{B}_{\mathbb{R}}$ , and  $\mathscr{S} \subseteq \mathscr{B}_{\mathbb{R}}$ . Hence  $\sigma(\mathscr{S}) \subseteq \mathscr{B}_X$ .

2. 
$$\mathscr{B}_X \subseteq \sigma(\mathscr{S}).$$

Let  $f_0 \in X$  be arbitrary. Then  $f \mapsto |f(t) - f_0(t)|$  is  $\sigma(\mathscr{S})$ -measurable. So  $f \mapsto d_n(f, f_0) = \sup_{t \in [0,n]} |f(t) - f_0(t)|$  is  $\sigma(\mathscr{S})$ -measurable, and  $f \mapsto d(f, f_0) = \sum_{n=1}^{\infty} \frac{d_n(f, f_0)}{1 + d_n(f, f_0)}$  is  $\sigma(\mathscr{S})$ -measurable. Thus, open balls  $B_d(f_0, \varepsilon) = \{f : d(f, f_0) < \varepsilon\}$  are  $\sigma(\mathscr{S})$ -measurable. Since every open set in X is a countable union of open balls, every open set is in  $\sigma(\mathscr{S})$ . Hence,  $\mathscr{B}_X \subseteq \sigma(\mathscr{S})$ .

Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space.

**Claim.**  $Z : \Omega \to X$  is measurable (w.r.t.  $\mathscr{A}$  and  $\mathscr{B}_X$ ) iff  $Z_t := \pi_t \circ Z$  is measurable for each  $t \in [0, \infty)$ 

$$\Omega \xrightarrow{Z} X$$
$$Z_t \searrow \swarrow \pi_t$$
$$\mathbb{R}$$

*Proof.* " $\Longrightarrow$ " If Z is measurable, then  $Z_t = \pi_t \circ Z$  is measurable, because  $\pi_t$  is continuous.

"⇐ " Let  $\mathscr{C} = \{A \in X : Z^{-1}(A) \in \mathscr{A}\}$ . Then  $\mathscr{C}$  is a σ-algebra. Let  $B \subseteq \mathbb{R}$  be a Borel set,  $t \in [0, \infty)$ . Then

$$Z^{-1}(\pi_t(B)) = (\pi_t \circ Z)^{-1}(B) = Z_t^{-1}(B) \in \mathscr{A}$$
since  $Z_t$  is measurable. So  $\pi_t^{-1}(B) \in \mathscr{C}$ . Hence,  $\mathscr{S} \subseteq \mathscr{C}$  and  $\sigma(\mathscr{S}) = \mathscr{B}_X \subseteq \mathscr{C}$ .

**Theorem 8.23.** (Canonical Brownian motion) Let  $X = C([0, \infty))$ , and  $\mathscr{B} = \mathscr{B}_X$  the Borel  $\sigma$ -algebra on X. There exists a unique probability measure W on  $(X, \mathscr{B})$ , called Wiener measure, with the following properties: if we define  $B_t = \pi_t$ , then  $\{B_t\}_{t \in [0,\infty)}$  is a Brownian motion (on  $\mathbb{R}$ ). More explicitly,

i) for  $t_1 < \cdots < t_k$ , the random variables  $B_{t_1}, \ldots B_{t_k}$  have a joint Gaussian distribution. Equivalently, let  $F \subseteq [0, \infty)$  be a finite set,

$$\pi_F: X \to \mathbb{R}^F := \{ \varphi: F \to \mathbb{R} \} \cong \mathbb{R}^{|F|}, \quad f \mapsto f|_F.$$

Then

$$\mu_F := (\pi_F)_*(W)$$

is a "Gaussian measure" on  $\mathbb{R}^F$ .

Set  $\mu_t := (\pi_t)_*(W)$ .

ii)  $B_t$  is centered, equivalent to

$$\int_{\mathbb{R}} x d\mu_t(x) = 0, \quad \text{for each} \quad t \in [0, \infty).$$

iii)  $\operatorname{Cov}(B_s, B_t) = s \wedge t$ , equivalent to

$$\int_{\mathbb{R}^2} xy d\mu_{\{s,t\}}(x,y) = s \wedge t$$

*Proof.* 1. Uniqueness. Suppose  $W, \tilde{W}$  are two measures with the properties i)–iii). Then

$$(\pi_F)_*(W) = \mu_F = \tilde{\mu}_F = (\pi_F)_*(W)$$

for each finite set  $F \subseteq [0, \infty)$ , because the Fourier transforms of  $\mu_F, \tilde{\mu}_F$ , and hence  $\mu_F, \tilde{\mu}_F$  themselves are uniquely determined by i)–iii). This implies that for  $t_1 < \ldots < t_k$ ,  $F = \{t_1, \ldots, t_k\}$ , and  $B_1, \ldots, B_k \in \mathscr{B}_{\mathbb{R}}$ , we have

$$W(\pi_{t_1}^{-1}(B_1) \cap \dots \cap \pi_{t_k}^{-1}(B_k)) = W(\pi_F^{-1}(B_1 \times \dots \times B_k)$$
$$= \mu_F(B_1 \times \dots \times B_k) = \tilde{\mu}_F(B_1 \times \dots \times B_k)$$
$$= \tilde{W}(\pi_{t_1}^{-1}(B_1) \cap \dots \cap \pi_{t_k}^{-1}(B_k)),$$

i.e.,  $W(S) = \tilde{W}(S)$  for all  $S \in \mathscr{S}$ . Since  $\sigma(\mathscr{S}) = \mathscr{B}_X$ , we have  $W = \tilde{W}$ .

2. Existence. There exists Brownian motion  $\{B_t\}_{t\in[0,\infty)}$  on some probability space  $(\Omega, \mathscr{A}, \mathbb{P})$ . By disregarding a set of measure 0, we may assume that  $t \mapsto B_t(\omega)$  is continuous for every  $\omega \in \Omega$ . Define

$$B: \Omega \to X = C([0, \infty)), \quad \omega \mapsto (t \in [0, \infty) \mapsto B_t(\omega)).$$

Then for each  $t \in [0, \infty)$ , we have the commutation diagram

$$\begin{array}{ccc}
\Omega \xrightarrow{B} X \\
B_t \searrow \swarrow \pi_t \\
\mathbb{R}
\end{array}$$

Since  $B_t$  is measurable for each  $t \in [0, \infty)$ , the map B is measurable (see two Claims in 8.22). Hence,  $W := B_*(\mathbb{P})$  is a Borel probability measure on X, and if  $F \subseteq [0, \infty)$  is finite, then

$$\mu_F = (\pi_F)_*(W) = (\pi_F)_*(B_*(\mathbb{P})) = (\pi_F \circ B)_*(\mathbb{P}) = (B_F)_*(\mathbb{P}),$$

where  $B_F(\omega) := (B_{t_1}(\omega), \dots, B_{t_k}(\omega))$ . Hence  $\{\pi_t\}_{t \in [0,\infty)}$  is a Brownian motion defined on X.  $\Box$ 

#### 8.24. Brownian motion on $\mathbb{R}^n$

A  $\mathbb{R}^n$ -valued stochastic process  $\{B_t\}_{t\in[0,\infty)}$  is called a (version of) Brownian motion on  $\mathbb{R}^n$  if the following conditions are true:

(i) the process is an  $\mathbb{R}^n$ -valued Gaussian process, i.e., for all  $k \in \mathbb{N}$ ,  $t_1 < \ldots < t_k$ , the  $\mathbb{R}^{nk}$ -valued random variable  $(B_{t_1}, \ldots, B_{t_k})$  has a Gaussian distribution.

Let  $B_t = (B_t^1, \ldots, B_t^n)$ , where  $B_t^i$  is real-valued.

- (ii)  $B_t^i$  is centered for  $i \in \{1, \ldots, n\}$ , i.e.,  $\mathbb{E}[B_t^i] = 0, t \in [0, \infty)$ .
- (iii)  $\operatorname{Cov}(B_s^i, B_t^j) = \delta_{ij} s \wedge t, \ i \in \{1, \dots, n\}, \ s, t \in [0, \infty).$
- (iv) sample paths  $t \mapsto B_t(\omega)$  are continuous a.s..

**Remark 8.25.** (i) If  $B_t = (B_t^1, \ldots, B_t^n)$  is a Brownian motion on  $\mathbb{R}^n$ , then  $B_t^1, \ldots, B_t^n$  are independent Brownian motions on  $\mathbb{R}$ . Conversely, if  $B_t^1, \ldots, B_t^n$  are independent Brownian motions on  $\mathbb{R}$ , then  $B_t = (B_t^1, \ldots, B_t^n)$  is a Brownian motion on  $\mathbb{R}^n$ . (This proves existence!)

(ii) Uniqueness. One can show (as in Theorem 8.23) that there exists a unique Wiener measure W on  $X = C([0,\infty), \mathbb{R}^n) = \{f : [0,\infty) \to \mathbb{R}^n \text{ continuous}\}$  such that  $\{\pi_t\}_{t \in [0,\infty)}$  is a Brownian motion, where  $\pi_t: X \to \mathbb{R}^n, f \mapsto f(t)$ . Described by "marginal" on  $\mathbb{R}^{|F| \times n}$ , where  $F \subseteq [0,\infty)$  finite,  $\mu_F := (\pi_F)_*(W), \pi_F : X \to (\mathbb{R}^n)^F, f \mapsto f|_F.$ 

(iii)  $B_t = (B_t^1, \ldots, B_t^n)$  is an  $\mathbb{R}^n$ -valued Brownian motion iff  $W_t := \lambda_1 B_t^1 + \cdots + \lambda_n B_t^n$  is a 1-dimensional Brownian motion for each unit vector  $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ .

" $\Longrightarrow$ " Clear:

$$\operatorname{Cov}(W_s, W_t) = \lambda_1^2 s \wedge t + \dots + \lambda_n^2 s \wedge t = s \wedge t.$$

" $\Leftarrow$ " Need fact: "Let  $Z_1, \ldots, Z_n$  be  $\mathbb{R}^k$ -valued random variables. Then they have a joint Gaussian distribution iff  $\lambda_1 Z_1 + \cdots + \lambda_n Z_n$  is Gaussian for all  $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ . Details left as exercise!

#### 8.26. Basic properties of Brownian motion

Let  $\{B_t\}_{t\in[0,\infty)}$  be a Brownian motion on  $\mathbb{R}^n$ . Then the following processes are also Brownian motions.

(i)  $W_t = B_{t+s} - B_s$  for fixed  $s \in [0, \infty)$  (Markov property). That is, Brownian motion is memoryless!

(ii)  $W_t = AB_t$ , if A is an orthogonal transformation.

- (iii)  $W_t = (1/a)B_{a^2t}$ , a > 0 fixed (Brownian scaling). (iv)  $W_t = \begin{cases} B_0, & t = 0, \\ tB_{1/t}, & t > 0 \end{cases}$  (time inversion).

*Proof.* All processes  $W_t$  in (i)–(iv) are Gaussian, and  $W_t$  is centered. One checks covariance: for example in (iii) and (iv).

$$Cov(W_{s}^{i}, W_{t}^{j}) = Cov\left(\frac{1}{a}B_{a^{2}s}^{i}, \frac{1}{a}B_{a^{2}t}^{j}\right) = \frac{1}{a^{2}}\delta_{ij}(a^{2}s) \wedge (a^{2}t) = \delta_{ij}s \wedge t.$$
$$Cov(W_{s}^{i}, W_{t}^{j}) = st Cov(B_{1/s}^{i}, B_{1/t}^{j}) = st \delta_{ij}\frac{1}{s} \wedge \frac{1}{t} = \delta_{ij}t \wedge s, \qquad s, t > 0.$$

Almost sure continuity of sample paths are clear for (i)–(iii), and on  $(0,\infty)$  for (iv) (up to measure 0). Continuity of  $W_t$  at 0 is the following event:

$$A = \bigcap_{\substack{\varepsilon > 0 \\ \varepsilon \in \mathbb{Q}}} \bigcup_{\delta > 0} \bigcap_{\substack{0 < t < \delta \\ t \in \mathbb{Q}}} \{\omega : |W_t(\omega) - W_0(\omega)| < \varepsilon\}.$$

If we replace  $W_t$  by  $B_t$ , then this is an almost sure event. Since  $W_t$  and  $B_t$  have the same marginals, it follows that A is almost sure. (Note: this shows that  $\lim_{s\to\infty} |B_s|/s = 0$  a.s..)

#### 8.27. The stochastic Loewner equation (SLE)

Chordal Loewner equation: Let  $\{f_t\}_{t\in[0,\infty)}$  be a normalized chordal Loewner chain.

$$f_t(z) = z - \frac{2t}{z} + \cdots$$
 near  $\infty$ .

The Loewner-Kufarev equation gives

$$\frac{\partial f}{\partial t}(z,t) = V(z,t)\frac{\partial f}{\partial z},$$

where

$$V(z,t) = 2 \int_{\mathbb{R}} \frac{d\nu_t(u)}{u-z},$$

 $\nu_t$  is a probability measure with  $\operatorname{supp}(\nu_t) \in \mathbb{R}$ .

One obtains  $SLE_{\kappa}$ ,  $\kappa \geq 0$ , if one take a probabilistic driving term here

$$\nu_t = \delta_{\sqrt{\kappa}B_t(\omega)},$$

where  $B_t$  is the 1-dimensional Brownian motion. Then

$$V(z,t) = \frac{2}{\sqrt{\kappa}B_t(\omega) - z}.$$

Depending on  $\omega$ , one gets a "random" Loewner chain and corresponding random hulls  $A_t(\omega)$ .

One is interested in these hulls, because they can be used to study many conformally invariant processes in the plane.

# Problems.

1) What are the characterizing properties of SLE?

(i.i.d. increments, Markov (= memoryless) property, conformal invariance, etc.)

2) What are the techniques to study SLE?

(Martingales method, etc.)

# 9 Survey of martingale theory

# 9.1. Conditional expectation

**Example.** Random expectation in two stages: Assume roll two dices with outcomes  $X_1, X_2 \in \{1, 2, 3, 4, 5, 6\}$ . Let  $Z = X_1 + X_2$ ,  $\Omega = \{1, \ldots, 6\} \times \{1, \ldots, 6\}$ . Then  $\mathbb{E}[Z] = 7$ .

Suppose the outcome of  $X_1$  is known (partial information). Then we have to adjust  $\mathbb{E}[Z]$  depending on  $X_1$ :

$$\mathbb{E}[Z|X_1 = x] = x + 3.5 = X_1(\omega) + 3.5.$$

We get a new random variable  $\mathbb{E}[Z|X_1]$ .

**Theorem and Definition 9.2. (Conditional expectation)** Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space, let X be a random variable with  $\mathbb{E}[|X|] < \infty$ , let  $\mathscr{B} \subseteq \mathscr{A}$  be a  $\sigma$ -algebra. Then there exists a random variable Y on  $\Omega$  such that

i) Y is *B*-measurable.

ii)  $\mathbb{E}[|Y|] < \infty$ .

iii) for every  $B \in \mathscr{B}$ , we have

$$\mathbb{E}[Y;B] = \int_{B} Y(\omega) d \mathbb{P}(\omega) = \int_{B} X(\omega) d \mathbb{P}(\omega) = \mathbb{E}[X;B]$$

Y is essentially unique determined: if  $\tilde{Y}$  is another random variable with properties i)–iii), then  $\tilde{Y} = Y$  a.s..

The random variable Y is called a (version of) conditional expectation of X for given  $\mathscr{B}$ , denoted by  $\mathbb{E}[X|\mathscr{B}]$ .

Idea of proof. Wlog  $X \ge 0$ . Define

$$\mu(B) := \int_B X(\omega) d \, \mathbb{P}(\omega), \qquad \text{for} \quad B \in \mathscr{B}.$$

Then  $\mu \ll \mathbb{P}|\mathscr{B}$ . So  $\mu$  has a Radon-Nikidyn derivative Y w.r.t.  $\mathbb{P}|\mathscr{B}$ . Then i)–iii) are evident. Uniqueness is also clear:

iqueness is also clear:

$$\mathbb{E}[X|Z_1,\ldots,Z_m] = \mathbb{E}[X|\sigma(Z_1,\ldots,Z_m)].$$

## 9.3. Properties of conditional expectation

Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space, all random variables X satisfies  $\mathbb{E}[|X|] < \infty$ . Let  $\mathscr{B} \subseteq \mathscr{A}$  be a  $\sigma$ -algebra.

- (i) If  $Y = \mathbb{E}[X|\mathscr{B}]$ , then  $\mathbb{E}[Y] = \mathbb{E}[X]$ .
- (ii) If X is  $\mathscr{B}$  measurable, then  $\mathbb{E}[X|\mathscr{B}] = X$  a.s..
- (iii) Linearity.
- (iv) If  $X \ge 0$ , then  $\mathbb{E}[X|\mathscr{B}] \ge 0$ .
- (v) (Monotone a.s. convergence) If  $X_n \ge 0, X_n \nearrow X$ , then

$$\mathbb{E}[X_n|\mathscr{B}] \nearrow \mathbb{E}[X|\mathscr{B}] \quad \text{a.s..}$$

(vi) (Dominated convergence) If  $|X_n(\omega)| \leq V(\omega)$ ,  $\mathbb{E}[V] < \infty$ ,  $X_n \to X$  a.s., then

 $\mathbb{E}[X_n|\mathscr{B}] \to \mathbb{E}[X|\mathscr{B}] \quad \text{a.s..}$ 

(vii) (Jensen) If  $\varphi : \mathbb{R} \to \mathbb{R}$  convex,  $\mathbb{E}[|\varphi(X)|] < \infty$ , then

$$\varphi(\mathbb{E}[X|\mathscr{B}]) \le \mathbb{E}[\varphi(X)|\mathscr{B}]$$
 a.s.

In particular,  $\left|\mathbb{E}[X|\mathscr{B}]\right| \leq \mathbb{E}[|X||\mathscr{B}]$  and  $\left||\mathbb{E}[X|\mathscr{B}]\right||_p \leq ||X||_p, p \geq 1$ .

(viii) (Tower property) If  $\mathscr{B}, \mathscr{C}$  are two  $\sigma$ -algebras satisfying  $\mathscr{C} \subseteq \mathscr{B} \subseteq \mathscr{A}$ , then

$$\mathbb{E}\big[\mathbb{E}[X|\mathscr{B}]|\mathscr{C}\big] = \mathbb{E}[X|\mathscr{C}].$$

(ix) If Z is  $\mathscr{B}$ -measurable, then

$$\mathbb{E}[ZX|\mathscr{B}] = Z\mathbb{E}[X|\mathscr{B}].$$

(x) If X and  $\mathscr{B}$  are independent, then

 $\mathbb{E}[X|\mathscr{B}] = \mathbb{E}[X] \quad \text{a.s.} \quad (\text{constant function})$ 

*Proof.* Mostly straight forward from the definitions:

(vii) Jensen:  $\varphi(x) = \sup_{L \leq \varphi} \operatorname{affine} L(x), L(X) = aX + b \leq \varphi(X)$ . So

| $L(\mathbb{E}[X \mathscr{B}]) \le \mathbb{E}[L(X) \mathscr{B}]$ | linearity    |
|-----------------------------------------------------------------|--------------|
| $\leq E[\varphi(X) \mathscr{B}]$                                | monotonicity |

Taking sup over all L gives

 $\varphi(\mathbb{E}[X|\mathscr{B}]) \le \mathbb{E}[\varphi(X)|\mathscr{B}].$ 

Incorrect proof! Because we take sup over an uncountable family. Can be corrected if we write  $\varphi = \sup_{L_n \leq \varphi} L_n$  for a countable collection  $L_n, n \in \mathbb{N}$ .

(vi) for dominated convergence, we need Fatou's lemma:

If  $X_n \ge 0$ , then

$$\mathbb{E}\left[\liminf_{n \to \infty} X_n | \mathscr{B}\right] \le \liminf_{n \to \infty} \mathbb{E}[X_n | \mathscr{B}].$$

**Example 9.4.** Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space, let  $\{A_n\}_{n \in \mathbb{N}}$  be a countable partition of  $\Omega$  with  $A_n \in \mathscr{A}, \mathbb{P}(A_n) > 0$ . Define

$$\mathscr{B} = \sigma(\{A_n\}_{n \in \mathbb{N}}) = \Big\{\bigcup_{n \in S} A_n : S \subseteq \mathbb{N} \text{ countable}\Big\}.$$

Then

$$\mathbb{E}[X|\mathscr{B}] = \sum_{n \in \mathbb{N}} \frac{1}{\mathbb{P}(A_n)} \int_{A_n} X(\omega) d \mathbb{P}(\omega) \cdot \chi_{A_n}(\omega) = \sum_{n \in \mathbb{N}} \mathbb{E}[X; A_n] \chi_{A_n}.$$

Check definition!

**Example 9.5.** (Fair games and martingales) Two players I  $(P_1)$  and II  $(P_2)$  roll dice. Consider a zero-sum game: at each step, player I wins or losses 1 unit. Let  $X_n$  be winnings of  $P_1$  after nrolls (corr.  $-X_n$  be winnings of  $P_2$  after n rolls).

Game 1.  $P_1$  wins if roll  $\in \{1, 2\}$  (so losses if  $\in \{3, 4, 5, \}$ . A not fair game!

Game 2.  $P_1$  wins if roll even. A fair game!

Game 3.  $P_1$  wins if roll even, if one of players has won  $\geq 100$  units, then game biased against player as in Game 1. Game 3 is a fair game ( $\mathbb{E}[X_n] = 0$  for all n), but not fair at all times (or all situations).

How to modal a game that is "fair at all times":  $\mathbb{E}[X_{n+1} - X_n] = 0$  (true if  $\mathbb{E}[X_{n+1}] = \mathbb{E}[X_n] = 0$ ). The better is  $\mathbb{E}[X_{n+1} - X_n | X_n = x] = 0$ , whatever x.

Let  $\mathscr{F}_n$  be a  $\sigma$ -algebra of events that will be known at time n ( $\mathbb{E}[X_n|\mathscr{F}_n] = X_n$ ). Then

 $\mathbb{E}[X_{n+1} - X_n | \mathscr{F}_n] = 0 \quad \text{equivalent to} \quad \mathbb{E}[X_{n+1} | \mathscr{F}_n] = X_n.$ 

**Definition 9.6.** (Martingales; discrete-time case) Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space with *filtration* given by  $\sigma$ -algebras  $\mathscr{F}_n \subseteq \mathscr{A}$  for  $n \in \mathbb{N}_0$ , i.e.,  $\mathscr{F}_n \subseteq \mathscr{F}_{n+1}$  for  $n \in \mathbb{N}_0$ . Let  $X = \{X_n\}_{n \in \mathbb{N}_0}$  be a sequence of random variables on  $\Omega$ . Then X is called a *martingale* if

(i)  $X_n$  is  $\mathscr{F}_n$ -measurable for  $n \in \mathbb{N}_0$ , and  $X_n \in L^1$ , i.e.,  $\mathbb{E}[|X_n|] < \infty$ ,

(ii)  $\mathbb{E}[X_{n+1}|\mathscr{F}_n] = X_n$  (a.s.) for  $n \in \mathbb{N}_0$ .

If in (ii), we have  $\leq$  or  $\geq$ , then X is called a supermartingale or submartingale, respectively. (Submartingale: tendency to increase, supermartingale: tendency to decrease.) Often,  $\mathscr{F}_n = \sigma(X_0, \ldots, X_n), n \in \mathbb{N}_0$ , called *natural filtration*.

**Example 9.7.** a) Games as in 9.5 with natural filtration,  $X = \{X_n\}_{n \in \mathbb{N}}$ . Then Game 1, Game 3 are not martingales, Game 2 and Game 4(?) are martingales. Game 1 is a supermartingale.

b) (dyadic martingale)

Let  $\Omega = [0, 1]$  with Lebesgue measure,  $f \in L^1[0, 1]$ . Let

$$D_{n,k} = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right], \quad n \in \mathbb{N}_0, \ k = 0, 1, \dots, 2^n - 1.$$

be the dyadic interval, let  $\mathscr{F}_n$  be the  $\sigma$ -algebra generated by dyadic intervals of level  $\leq n$ , and let

$$X_n(\omega) = \sum_{k=0}^{2^{n-1}} \chi_{D_{n,k}}(\omega) \cdot 2^n \int_{D_{n,k}} f(\omega) d\omega, \qquad n \in \mathbb{N}_0.$$

Then  $X = \{X_n\}_{n \in \mathbb{N}_0}$  is a martingale.

(i)  $X_n$  is  $\mathscr{F}_n$ -measurable.

(ii) 
$$\mathbb{E}[X_{n+1}|\mathscr{F}_n] = \sum_{k=0}^{2^n-1} \chi_{D_{n,k}}(\omega) \cdot 2^n \int_{D_{n,k}} X_{n+1}(\omega) d\omega = \sum_{k=0}^{2^n-1} \chi_{D_{n,k}}(\omega) \cdot 2^n \int_{D_{n,k}} f(\omega) d\omega = X_n.$$

Note that  $X_n(\omega) \to f(\omega)$  as  $n \to \infty$  for a.e.  $\omega$ . This is an instance of martingale convergence theorem!

c) (Brownian motion)

Let  $B_t$  be a Brownian motion on  $\mathbb{R}$ . For given  $0 \le t_0 < t_1 < \cdots < t_n < \cdots$ , let  $X_n = B_{t_n}$ ,  $n \in \mathbb{N}_0$ . Then  $X = \{X_n\}_{n \in \mathbb{N}_0}$  (with natural filtration) is a martingale.

Note that  $B_{t_{n+1}} - B_{t_n}$  is independent of  $B_{t_0}, \ldots, B_{t_n}$ , and  $\mathbb{E}[B_t] = 0$ . We have (i)  $X_n = B_{t_n}$  is  $\mathscr{F}_n = \sigma(B_{t_0}, \ldots, B_{t_n})$ -measurable.

(ii)  $\mathbb{E}[X_{n+1}|\mathscr{F}_n] = \mathbb{E}[B_{t_{n+1}}|\mathscr{F}_n] = \mathbb{E}[B_{t_{n+1}} - B_{t_n}|\mathscr{F}_n] + B_{t_n} = \mathbb{E}[B_{t_{n+1}} - B_{t_n}] + B_{t_n} = B_{t_n} = X_n.$ 

**Definition 9.8. (Martingale; continuous-time case)** Let  $(\Omega, \mathscr{A}, \mathbb{P})$  be a probability space with filtration  $\{\mathscr{F}_t\}_{t\geq 0}$ , i.e.,  $\mathscr{F}_t \subseteq \mathscr{A}$  is a  $\sigma$ -algebra and  $\mathscr{F}_s \subseteq \mathscr{F}_t$  for  $s \leq t$ . A stochastic (often extra technical conditions) process is called *adapted* if  $X_t$  is  $\mathscr{F}_t$ -measurable for all  $t \geq 0$ .  $X = \{X_t\}_{t>0}$  is a martingale if

(i) X is adapted and  $\mathbb{E}[|X_t|] < \infty$  for all  $t \ge 0$ .

(ii)  $\mathbb{E}[X_t|\mathscr{F}_s] = X_s$  for all  $0 \le s \le t$ . The natural filtration:  $\mathscr{F}_t = \sigma(X_s : 0 \le s \le t)$ .

**Example 9.9.** a) Brownian motion  $\{B_t\}_{t>0}$  with natural filtration is a martingale.

b)  $B_t$  is Brownian motion,  $\mathscr{F}_t = \sigma(B_s : 0 \le s \le t)$ . Then  $X_t = B_t^2 - t$  is a martingale.

(i)  $X_t$  is adapted, and  $\mathbb{E}[|X_t|] < \infty$ .

(ii)  $\mathbb{E}[X_t|\mathscr{F}_s] = \mathbb{E}[B_t^2 - t|\mathscr{F}_s] = \mathbb{E}[(B_t - B_s + B_s)^2|\mathscr{F}_s] - t = \mathbb{E}[(B_t - B_s)^2 + 2B_s(B_t - B_s) + B_s^2|\mathscr{F}_s] - t = \mathbb{E}[(B_t - B_s)^2|\mathscr{F}_s] + 2B_s\mathbb{E}[B_t - B_s|\mathscr{F}_s] + B_s^2 - t = \mathbb{E}[(B_t - B_s)^2] + 2B_s\mathbb{E}[B_t - B_s] + B_s^2 - t = (t - s) + B_s^2 - t = B_s^2 - s = X_s.$ 

Conversely,

**Theorem 9.10.** (Lévy) Let  $\{X_t\}_{t\geq 0}$  be a continuous martingale (i.e., martingale with almost surely continuous sample paths). If  $X_t^2 - t$  is a martingale (w.r.t.  $\mathscr{F}_t = \sigma(X_s : 0 \leq s \leq t)$ ), then  $\{X_t\}_{t\geq 0}$  is a Brownian motion.

Important facts about martingales: martingale convergence theorem; Doob's  $L^p$ -submartingale inequalities; sub- and supermartingale decompositions; optional stopping; stochastic integrals.