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1 Koebe’s distortion theorem

Notations:
C the complex plane,
D = {z ∈ C : |z| < 1} the open unit disk,
Ĉ = C ∪ {∞} the Riemann sphere,
D̃ = Ĉ \ D = {z ∈ Ĉ : |z| > 1} the complement of the closed unit disk.

Definition 1.1. S = {f : D→ C : f holomorphic and injective (conformal map onto its image),
f(0) = 0, f ′(0) = 1}.

f(z) = z + a2z
2 + a3z

3 + · · · (1)

(Taylor series expansion).
Σ = {g : D̃→ Ĉ : g holomorphic and injective (conformal map onto its image),

g(w) = w + b0 + b1/w + b2/w
2 + · · · (2)

(Laurent series expansion at ∞)}.
g(∞) =∞, g′(w) = 1 +O(1/w2) as w →∞, and g′(∞) = limw→∞ g

′(w) = 1.

Note. If g is a holomorphic map on D̃, g(∞) =∞, g injective, then

g(1/z) = 1/z + b0 + b1z + b2z
2 + · · ·

is holomorphic in D∗ = D \ {0}, and has 1st order pole. The series in (2) converges uniformly
on compact subsets in C \ D.

Theorem 1.2. (Area Theorem) If g ∈ Σ, then

Area(Ĉ \ g(D̃)) = π
(

1−
∞∑
n=1

n|bn|2
)
≥ 0. (3)

In particular,
∞∑
n=1

n|bn|2 ≤ 1 and |b1| ≤ 1.

Here, |b1| = 1 iff

gα(w) = w + b0 +
e2iα

w
, α ∈ R.
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Proof. Pick r > 1. Define γr = g(reit), t ∈ [0, 2π]. γr is a (parameterized) Jordan curve. The
winding number

indγr(w) =

{
0,

±1,
for

w ∈ Out(γr) (outside of γr),

w ∈ In(γr) (inside of γr).

By the Jordan curve theorem

In(γr) = Ĉ \ g(D̃) ∪ g({w ∈ C : 1 < |w| < r}). (4)

Moreover, indγr(u) = 1 for u ∈ In(γr).

Figure 1: here

Proof of (4):
“⊇” part: the indγr(u) = 1 follows from the homotopy invariance of the winding number

(let r → +∞).
“⊆” part: it follows because every point on the right hand side is not on γr or the set on the

right hand side lies in the unbounded component of C \ γr.
So

Ĉ \ g(D̃) =
⋂
r>1

In(γr),

and
Area(Ĉ \ g(D̃)) = lim

r→1+
Area(In(γr)).

By Green’s theorem,

1

2i

∫
γr

udu =

∫
C

indγr(u)dA(u) = Area(In(γr)),

where dA(u) denotes the area differential. On the other hand,

1

2i

∫
γr

udu =
1

2i

∫ 2π

0
g(reit)g′(reit)rieitdt =

1

2

∫ 2π

0
g(w)g′(w)wdt,

where it has been set w = reit. From the Laurent series expansion (2)

g(w) = w +
∞∑
n=0

bn
wn

, g′(w) = 1−
∞∑
n=1

nbn
wn+1

.

Note that w = r2/w and ∫ 2π

0
wkdw =

{
0,

2πi,
for

k ∈ Z \ {0},
k = 0.
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By uniform convergence, we can integrate “term by term”, and so

Area(In(γr)) =
1

2

∫ 2π

0
g(w)g′(w)wdt

=
1

2

∫ 2π

0

(
w +

∞∑
n=0

bn
wn

)(
w −

∞∑
n=1

nbn
wn

)
dt

=
1

2

∫ 2π

0

(
|w|2 −

∞∑
n=1

n
|bn|2

|w|2n
)
dt

= π
(
r2 −

∞∑
n=1

n|bn|2r−2n
)

→ π
(

1−
∞∑
n=1

n|bn|2
)

as r → 1 (has to be justified).

The first part follows!
So |b1| ≤ 1. If |b1| = 1, then b2 = b3 = · · · = 0, and so

g(w) = gα(w) = w + b0 +
e2iα

w
, b1 = e2iα, α ∈ R.

(Joukovsky map)

Figure 2: gα, Joukovsky map

Corollary 1.3. Let

g(w) = w + b0 +
b1
w

+
b2
w2

+ · · · ∈ Σ.

If u ∈ C \ g(D̃) (i.e. u is omitted by g), then |u − b0| ≤ 2 and if we have equality then g is a
Joukovsky map.

Proof. Let

h(w) =
√
g(w2)− u = w ·

√
g(w2)

w2
− u

w2

on D̃. The function g(w2)
w2 − u

w2 is a zero-free holomorphic function on the simply connected

domain D̃. So h is well defined. So

h(w) = w
(

1 +
b0 − u
w2

+ · · ·
)1/2

= w
(

1 +
1

2

b0 − u
w2

+ · · ·
)

= w +
b̃1
w

+ · · · ,

where b̃1 = 1
2(b0−u). Note that h is holomorphic and injective on D̃. In fact, h(w1) = h(w2) =⇒

g(w2
1)−u = g(w2

2)−u =⇒ w2
1 = w2

2 =⇒ w1 = ±w2. If w1 = −w2, then h(w1) = h(w2) = −h(w1)
(h is odd), and so h(w1) =∞ (0 impossible!) =⇒ w1 = w2 =∞.
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So h ∈ Σ. By Theorem 1.2, |12(b0 − u)| = |b̃1| ≤ 1, equivalent to |u− b0| ≤ 2.

If |u−b0| = 2, then |b̃1| = 1, and so h is a Joukovsky map, which implies that g is a Joukovsky
map:

h(w) = w +
b̃1
w

= w +
1

2

b0 − u
w

.

gw2 = h(w)2 + u = w2 + b0 +
1

4

(b0 − u)2

w2
.

So

g(w) = w + b0 +
1

4

(b0 − u)2

w
= w + b0 +

b̃21
w
.

Theorem 1.4. Let f ∈ S.
f(z) = z + a2z

2 + · · · .

Then
i) |a2| ≤ 2,
ii) (Koebe 1/4-Theorem) if v ∈ C \ f(D), then |v| ≥ 1/4, i.e. B(0, 1/4) ⊆ f(D).

Figure 3: Koebe 1/4 – theorem

We have equality in i) or ii) iff f is a Koebe function, i.e.

f(z) = e−iαK(eiα), K(z) =
z

(z − 1)2
,

K(z) = z + 2z2 + 3z3 + · · · .

Figure 4: Koebe function

Remark. A long-standing open problem was Bieberbach’s conjecture: if f ∈ S, then |an| ≤ n
for n ≥ 2, proved by de Brange (early 1980’s).

Proof. If f ∈ S, then g(w) = 1/f(1/w) ∈ Σ.

g(w) =
1

1/w + a22/w2 + · · ·
= w · 1

1 + a2/w + a3/w2 + · · ·

= w
(

1−
(a2

w
+
a3

w2
+ · · ·

)
+
(a2

w
+
a3

w2
+ · · ·

)2
− · · ·

)
= w

(
1− a2

w
+
a2

2 − a3

w2
+ · · ·

)
= w − a2 +

a2
2 − a3

w
+ · · · .

Moreover, u = 0 is omitted by g!
i) By Corollary 1.3, |a2| = |0− (−a2)|(= |u− b0|) ≤ 2.
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If equality, then the proof of Corollary 1.3 shows

g(w) = w + b0 +
1

4

(b0 − u)2

w2
= w − a2 +

1

4

a2
2

w
= w

(
1− a2

2

1

w

)2
.

So

f(z) =
1

g(1/z)
=

z

(1− (a2/2)z)2
, where |a2| = 2.

f is the rotated Koebe function.
ii) If v is omitted by f , then u = 1/v is omitted by g. So by Corollary 1.3,

2 ≥ |u− b0| =
∣∣∣1
v

+ a2

∣∣∣.
So ∣∣∣1

v

∣∣∣ ≤ | − a2|+
∣∣∣1
v

+ a2

∣∣∣ ≤ 4,

equivalent to |v| ≥ 1/4.
If |v| = 1/4, then |1/v| = 4 and |a2| = 2. Again, f is a rotation of the Koebe function.

Corollary 1.5. If f ∈ S and Ω = f(D), then

1

4
≤ dist(0, ∂Ω) ≤ 1.

Proof. The first inequality follows from the 1/4 – Theorem. For the second inequality, let
d = dist(0, ∂Ω) < ∞. Define g(w) = f−1(dw), w ∈ D. Then g(D) ⊆ D, g(0) = 0; so by the
Schwarz Lemma

1 ≥ |g′(0)| = d

|f ′(0)|
= d.

Lemma 1.6. If f ∈ S, then∣∣∣∣(1− |z|2)
f ′′(z)

f ′(z)
− 2z

∣∣∣∣ ≤ 4 for z ∈ D.

Proof. Fix z0 ∈ D. Let ϕ ∈ Aut(D), ϕ(0) = z0. Then

ϕ(z) =
z + z0

1 + z0z
, ϕ′(z) =

1− |z0|2

(1 + z0z)2
, ϕ′′(z) = −2

(1− |z0|)z0

(1 + z0z)3
.

Define g = f ◦ ϕ. It is a conformal map on D, but not normalized! Let

h =
g − g(0)

g′(0)
.

Then h ∈ S and |a2(h)| ≤ 2.

a2(h) =
1

2
h′′(0) =

1

2

g′′(0)

g′(0)
.

g′ = (f ′ ◦ ϕ) · ϕ′, g′′ = (f ′′ ◦ ϕ) · ϕ′2 + (f ′ ◦ ϕ) · ϕ′′.
g(0) = z0, g′(0) = f ′(z0)(1− |z0|2),

g′′(0) = f ′′(z0)(1− |z0|2)2 + f ′(z0)(−2z0(1− |z0|2)).

So

2 ≥ |a2(h)| = 1

2

|g′′(0)|
|g′(0)|

=
1

2

∣∣∣∣f ′′(z0)

f ′(z0)
(1− |z0|2)− 2z0

∣∣∣∣ .
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Theorem 1.7. (Koebe’s Distortion Theorem) Let f ∈ S. Then for z ∈ D

i)
1− |z|

(1 + |z|)3
≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3
,

ii)
|z|

(1 + |z|)2
≤ |f(z)| ≤ |z|

(1− |z|)2
.

Estimates are sharp and the Koebe function is the only extremal (up to a rotation).

Proof. By rotational invariance, wlog, setting z = x ∈ [0, 1).

g(z) = log f ′(z) = log(1 + 2a2z + · · · ) = 2a2z + · · · ,

g(0) = 0 and g′ = f ′′/f ′. By Lemma 1.6,∣∣∣∣f ′′(x)

f ′(x)
− 2x

1− x2

∣∣∣∣ ≤ 4

1− x2
.

By integration, ∣∣∣∣g(x)− log
1

1− x2

∣∣∣∣ ≤ 2 log
1 + x

1− x
, x ∈ [0, 1).

So

log
1

1− x2
− 2 log

1 + x

1− x
≤ log |f ′(x)| ≤ log

1

1− x2
+ 2 log

1 + x

1− x
,

i.e.

log
1− x

(1 + x)3
≤ log |f ′(x)| ≤ log

1 + x

(1− x)3
.

Exponentiating, the first inequality follows.

|f(x)| =
∣∣∣∣∫ x

0
f ′(t)dt

∣∣∣∣ ≤ ∫ x

0

1 + t

(1− t)3
dt =

x

(1− x)2
.

The upper bound in ii) follows. For the lower bound, set r ∈ (0, 1), m = min|z|=r |f(z)| > 0.

Wlog, we can assume f(reiθ) = m for some θ. Let γ(t) = reit, t ∈ [0, 2π]. f ◦ γ does not meet
B(0,m). For any w ∈ B(0,m), by the Argument Principle,

# of zeros of f − w in B(0, r)

= indf◦γ(w) ≡ indf◦γ(0) = # of zeros of f − 0 = f in B(0, r) = 1.

It follows

Figure 5:

B(0,m) ⊆ f(B(0, r)), and B(0,m) ⊆ f(B(0, r)) ⊆ Ω := f(D),

and so [0,m] ⊆ Ω. Let α(t) = f−1(t), t ∈ [0,m]. Then α(t) is a path in D from 0 = f−1(0) to
reiθ = f−1(m).

f(α(t)) ≡ t =⇒ f ′(α(t))α′(t) ≡ 1.

So

m =

∫ m

0
dt =

∫ m

0
|f ′(α(t))||α′(t)|dt =

∫
α
|f ′(z)||dz| =

∫ L

0
|f ′(α̃(s))|ds,
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where α̃ : [0, L] → C is the arc-length reparametrization of α, L = `(α) := length of α ≥ r,
α̃(`(α([0, t]))) = α(t), and ∫

α
g(z)|dz| =

∫ L

0
g(α̃(s))ds.

Since α̃(0) = α(0) = 0, |α̃(s)| ≤ s. So

m =

∫ L

0
|f ′(α̃(s))|ds ≥

∫ L

0

1− |α̃(s)|
(1 + |α̃(s)|)3

ds ≥
∫ r

0

1− s
(1 + s)3

ds =
r

(1 + r)2
.

Corollary 1.8. S is a normal family, i.e. every sequence {fn} in S has a subsequence {fnk}
that converges locally uniformly in D. Moreover, every locally uniform limit of a sequence in S
also lies in S. (So S is compact with respect to the topology of locally uniform convergence.)

Proof. By Koebe’s Distortion Theorem, (up bound in ii)), S is locally uniform bounded. Hence,
S is a normal family by Montel’s Little Theorem. If {fn} is a sequence in S and fn → f locally
uniformly on D. Then f is holomorphic (Weierstrass), and constant or injective (Hurwitz).
Moreover, fn(0) → f(0) and f ′n(0) → f ′(0) which implies f(0) = 0 and f ′(0) = 1. So f is
non-constant, hence injective. So f ∈ S.

Remark 1.9. Koebe’s Distortion Theorem often gives useful (non-sharp) quantitative informa-
tion:

i) Let Ω,Ω′  C be two regions, f : Ω→ Ω′ be conformal map, z0 ∈ Ω. Then

|f ′(z0)| ' dist(f(z0), ∂Ω′)

dist(z0, ∂Ω)

with universal constant. Where A ' B means that there exists a constant C such that

1

C
A ≤ B ≤ CA.

Proof. Let d′ = dist(f(z0), ∂Ω′), d = dist(z0, ∂Ω). Then B(z0, d) ⊆ Ω. By 1/4-Theorem (applied

to u 7→ f(z0+ud)−f(z0)
f ′(z0)d ), we have

B(f(z0),
1

4
|f ′(z0)|d) ⊆ Ω′.

So

d′ ≥ 1

4
|f ′(z0)|d, and |f ′(z0)| ≤ 4

d′

d
.

For lower bound, consider f−1.

ii) Let Ω,Ω′ be two regions, f : Ω→ Ω′ be a conformal map, K ⊆ Ω be a compact set. Then

|f ′(z)| ' |f ′(w)|

for any z, w ∈ K with implicit constant only depending on Ω,K (and not on f !).

Idea of Proof. If Ω = D, then |f ′(z)| ' |f ′(0)| ' |f ′(w)| by Koebe. Generalize to Ω = disk.
General case follows from Harnack chain argument.

7



2 Boundary extensions of conformal maps

Suppose Ω ⊆ C is a bounded region. Then the following are equivalent (TFAE):
i) Ω is simply connected;
ii) Ĉ \ Ω is connected (⇐⇒ C \ Ω connected);
iii) ∂Ω is connected;
iv) Ω is conformally equivalent to D, i.e., there exists a conformal map f : D↔ Ω.

Theorem 2.1. Let f : D → Ω be a conformal map onto a bounded (simply connected) region.
TFAE

i) f has a continuous extension to D;
ii) ∂Ω can be parameterized as a loop, i.e., there exists a continuous map ϕ : ∂D → C such

that ϕ(∂D) = ∂Ω;
iii) ∂Ω is locally connected;
iv) C \ Ω is locally connected.

We will prove this in the following:

2.2. Locally connected sets
Let A ⊆ C be a closed set. A is locally connected iff for all a ∈ A and ε > 0, there exists

δ > 0 such that if b ∈ A is arbitrary and |a− b| < δ, then there exists a continuum E ⊆ A with
a, b ∈ E and diam(E) < ε.

If A ⊆ C is a compact set, then A is locally connected iff for all ε > 0 there exists δ > 0 such
that for all a, b ∈ A with |a − b| < δ, then there exists a continuum E ⊆ A with a, b ∈ E and
diam(E) < ε.

Proof. ⇐= trivial.
=⇒ By contradiction. If not, there exist ε0 > 0 (“bad ε”) and sequences {an}, {bn} in A

such that |an − bn| → 0 but no continuum E such that an, bn ∈ E and diamE < ε0. Wlog,
assume an, bn → c.

Since A is locally connected, for sufficiently large n, there exist continuums E′n, E′′n such that
an, c ∈ E′n, bn, c ∈ E′′n, diam(E′n) < ε0/2, diam(E′′n) < ε0/2. Then En = E′n ∪E′′n is a continuum
with an, bn ∈ En and diam(En) < 2 · ε0/2 = ε0, a contradiction!

A compact set A ⊆ C is locally connected, iff points that are close have a small connection,
iff there exists ω : (0,∞) → (0,∞) with limδ→0+ ω(δ) = 0 such that ∀a, b ∈ A, ∃ continuum
E ⊆ A with a, b ∈ E and diam(E) ≤ ω(|a− b|).

Boundary of comb domain is connected but not locally connected.

Figure 6: Comb domain

Let A ⊆ C be compact and locally connected, ϕ : A→ C continuous, and B := ϕ(A). Then
B is locally connected. (Continuous images of compact and locally connected sets are locally
connected.)

Proof. By contradiction! If not, then there exist ε0 > 0 and sequences {bn}, {b′n} such that
|bn − b′n| → 0 but there exist no continuum E ⊆ B with bn, b

′
n ∈ E, diam(E) < ε0. There exist
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an, a
′
n such that bn = ϕ(an), b′n = ϕ(a′n). Wlog, an → x and a′n → y. Then bn, b

′
n → z =

ϕ(x) = ϕ(y). We can find small connections E′n and E′′n between x, an and y, a′n (resp.) for n
large. Then Fn = ϕ(E′n) ∪ ϕ(E′′n) is a small connection between bn, b′n for n large, by uniform
continuity of ϕ. Contradiction!

In particular, if ϕ : ∂D→ C is conformal, then ϕ(∂D) is locally connected. (Loops or pathes
are locally connected.) So ii) =⇒ iii) in Theorem 2.1!

Lemma 2.3. (Wolff’s Lemma) Let U ⊆ C be open, f : U → V ⊆ B(0, R0) be conformal,
z0 ∈ U , C(r) := U ∩ {z ∈ C : |z − z0| = r}. Then

inf
ρ<r<

√
ρ
`(f(C(r))) ≤ 2πR0√

log(1/ρ)
, for 0 < ρ < 1.

In particular, there exists a sequence rn → 0 such that

`(f(C(rn)))→ 0 as n→∞.

(If a “thick” family of curves is confined to a set of controlled area, then one of the curves
has to be short.)

Figure 7:

Proof. Let L(r) := `(f(C(r))) (lower semi-continuous). Then

L(r)2 =

(∫
C(r)
|f ′(z)||dz|

)2

≤
(∫

C(r)
|dz|

)(∫
C(r)
|f ′(z)|2|dz|

)
(Schwarz inequality)

≤ 2πr

∫
{t∈[0,2π]:z0+reit∈U}

|f ′(z0 + reit)|2rdt

So ∫ ∞
0

L(r)2

r
dr ≤ 2π

∫
U
|f ′(z)|2dA(z) = 2πArea(V ) ≤ 2π2R2

0.

This gives
1

2
log

1

ρ
inf

ρ<r<
√
ρ
L(r)2 ≤

∫ √ρ
ρ

L(r)2dr

r
≤ 2π2R2

0.

The claim follows.

Lemma 2.4. Let γ : [0, 1)→ C be a path with the length

`(γ) = sup
0≤t0<···<tn<1

n∑
k=1

|γ(tk)− γ(tk−1)| <∞.

Then limt→1− γ(t) exists.
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(If a path has finite length, then it ends some where!)

Proof. Denote L := `(γ) <∞, L(t) := `(γ|[0, t]). Then L(t)↗ L as t→ 1−, and so `(γ|(t, 1)) =
L− L(t)→ 0 as t→ 1−. So for s, s′ ∈ (t, 1)

|γ(s)− γ(s′)| ≤ `(γ|(t, 1))→ 0 as t→ 1−.

This implies that for every sequence {sn} in [0, 1) with sn → 1, {γ(sn)} is a Cauchy sequence.
The claim follows.

Let A ⊆ C be a closed set, and x, y ∈ C. We say that A separates x and y if x, y do not lie
in one component of C \A (true if x ∈ A or y ∈ A!). It is equivalent to that every path joining
x, y meets A.

Janiszewski’s Theorem. Suppose that K,L ⊆ C are compact sets such that K ∩L connected.
If K ∪ L separates two points x, y ∈ C, then they are separated by K or by L.

Lemma 2.5. Let K ∈ D be compact, x0 ∈ C such that dist(x0,K) > diam(K), u, v ∈ C. If K
separates x0 and u, and separates x0 and v, them |u− v| ≤ diam(K).

Figure 8: Proof of the lemma, u 6= v.

Proof. Pick a ∈ K and let R = diam(K). Then K ⊆ B(a,R) and |x0 − a| > R. So x0 ∈
C \B(a,R) ⊆ C \K. This shows that x0 lies in the unbounded component of C \K.

So both u, v do not lie in the unbounded component of C\K. This implies if ` ∈ C is the line
with u, v ∈ `, then there exist u′, v′ ∈ K such that [u, v] ⊆ [u′, v′]. Hence, |u − v| ≤ |u′ − v′| ≤
diam(K).

Proof of Theorem 2.1. i) =⇒ ii).
Suppose f has a continuous extension f : D → C. By continuity, f(D) ⊆ f(D) = Ω. By

compactness of D, Ω = f(D) ⊆ f(D). So Ω = f(D). Since Ω = f(D) is open, ∂Ω = Ω \ Ω ⊆
f(∂D). Moreover, conformality implies f(∂D) ⊂ Ω \ Ω = ∂Ω. So f(∂D) = ∂Ω, which implies
that ∂Ω has a parametrization as a loop.

ii) =⇒ iii).
Continuous images of compact, locally connected sets are locally connected (see 2.2). Since

∂D is compact and locally connected, ∂Ω = f(∂D) also has these properties.
iii) =⇒ iv).
Let u, v ∈ C \ Ω be two arbitrary points. Run along [u, v]:
1) If [u, v]∩ ∂Ω = ∅, then [u, v] is a continuum in C \Ω joining u, v with diam(E) = |u− v|.

Figure 9:

By assumption, there exists a continuum E′ ⊆ ∂Ω with u′, v′ ∈ E′ and 2) If [u, v]∩ ∂Ω 6= ∅,
then we can find u′, v′ ∈ ∂Ω such that [u, u′] ⊆ C \ Ω, [v′, v] ⊆ C \ Ω. diam(E′) ≤ ω(|u′ − v′|)
where ω(δ) → 0 as δ → 0+. Then E := [u, u′] ∪ E′ ∪ [v′, v] is a continuum with E ⊆ C \ Ω,
u, v ∈ E, and

diam(E) ≤ |u− v|+ ω(|u′ − v′|) ≤ |u− v|+ ω(|u− v|) = ω̃(δ),
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where ω̃(δ) = δ + ω(δ) and δ = |u− v|. Since ω̃(δ)→ 0 as δ → 0+, the claim follows.
iv) =⇒ i).
It is sufficient to show that f is uniformly continuous on D, i.e., there exists an ω : (0,∞)→

(0,∞) with ω(δ)→ 0 as δ → 0+ such that

|f(x)− f(y)| ≤ ω(|x− y|), for all x, y ∈ D.

(then the image of every Cauchy sequence is Cauchy, bla, bla, bla, . . . )
equivalently,

diam(f(B(z0, δ) ∩ D)) ≤ ω(δ), for z0 ∈ D, δ > 0.

Here, wlog, δ > 0 is small and z0 ∈ D is close to ∂D. By translation and scaling of Ω, wlog, we
can assume f(0) = 0, z0 ∈ D, w0 = f(z0) satisfying |z0|, |w0| ≥ 1/2.

Figure 10:

By Wolff’s Lemma 2.3, there exists r ∈ (δ,
√
δ) such that

`(f(C)) ≤ ω1(δ),

where C = C ∩ {z ∈ C : |z − z0| = r}, ω1 = C0/
√

log(1/δ) → 0 as δ → 0 (for some constant
C0 > 0).

Let us assume C is not the whole circle |z − z0| = r, but an open subarc. Then Lemma 2.4
implies that f(C) has two end points u, v ∈ ∂Ω. So A := f(C) = f(C)∪{u, v} (possibly u = v).
Then |u−v| ≤ `(f(C)) ≤ ω1(δ). Since C\Ω ⊃ ∂Ω is locally connected, there exists a continuum
B ⊆ C \ Ω such that u, v ∈ B and

diam(B) ≤ ω2(|u− v|) ≤ ω3(δ).

Let K = A ∪B. Then

diam(K) ≤ diam(A) + diam(B) ≤ ω1(δ) + ω3(δ) = ω4(δ),

and K ∩ ∂Ω 6= ∅. So dist(a,K) > diam(K) if δ is small enough.

Figure 11:

Now let z ∈ B(z0, δ) ∩ D be arbitrary and w = f(z). Then C separates 0 and z in D, i.e.,
(C\D)∪C separates 0 and z. This implies (C\Ω)∪(f(C)∪B) separates 0 = f(0) and w = f(z).
Since (C \ Ω) ∩ (f(C) ∪ B) = B is connected, and C \ Ω does not separate 0 and w, we get
K = f(C)∪B separates 0 and w by Janiszewski’s Theorem. If z′ ∈ B(z0, δ)∩D is another point
and w′ = f(z′), then K separates 0 and w′ by the same argument. Lemma 2.5 implies

|w − w′| ≤ diam(K) ≤ ω4(δ),

and so
diam(f(B(z0, δ) ∩ D)) ≤ ω4(δ),

as desired.
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Remark 2.6. A similar argument shows that if f : D → Ω ⊆ Ĉ is conformal, then f has a
continuous extension f : D→ Ω ⊆ Ĉ if ∂Ω (or Ĉ\Ω) is locally connected. Here, we use spherical
or chordal distance in the target! (Versions of Wolff’s Lemma and Lemma 2.5 still true for
spherical metric.)

Let K be a continuum. A point p is a cut point of K if K \ {p} is not connected.

Proposition 2.7. Let Ω ⊆ D be a bounded simply connected region, f : D→ Ω be a conformal
map with continuous extension f : D→ Ω. Let p ∈ ∂Ω. Then #f−1(p) ≥ 2 if and only if p is a
cut point of ∂Ω.

More precisely, let A := f−1(p) ⊆ ∂D, and ∂D \ A =
⋃
k∈Λ Ik be the decomposition into

pairwise disjoint open arcs (Λ countable indexes set). Then the sets f(Ik), k ∈ Λ, form the
pairwise disjoint connected components of ∂Ω \ {p}. (Note that #Λ = #A, so #Λ ≥ 2 iff
#A ≥ 2.)

Proof. Note that ∂Ω\{p} = f(∂D\A) =
⋃
k∈Λ f(Ik), and the sets f(Ik) are connected (conformal

images of connected sets!). It suffices to show that f(Ik), k ∈ Λ, are pairwise disjoint. Let I, I ′

be two of these arcs, and C the circular arc in D with the same end points as I. Then C divides
D into two parts D and D′ such that I ⊆ ∂D, I ′ ⊆ ∂D′ and D = D ∪C ∪D′ is a disjoint union.

Figure 12:

Let J = f(C) ∪ {p}, U = f(D) and U ′ = f(D′). Then J is a Jordan curve, and U,U ′ are
open connected set in C \J . So U ⊆ In(J) or U ⊆ Out(J); and U ′ ⊆ In(J) or U ′ ⊆ Out(J). We
say U,U ′ can not lie in the same component of C \ J .

Suppose U,U ′ ⊆ In(J). By the open mapping theorem, U ∪ f(C) ∪ U ′ = Ω is an open
neighborhood of each point on f(C) ⊆ J . On the other hand, Out(J) is disjoint from U ∪
f(C)∪U ′ by the assumption. But ∂Out(J) = J which implies that Out(J) contains points near
J . A contradiction.

So U,U ′ lie in different components of C \ J , say, U ⊆ In(J), U ′ ⊆ Out(J). Then, f(I) ⊆
f(D) ⊆ U ⊆ J ∪ In(J). On the other hand, f(I) ⊆ ∂Ω \ {p}, and ∂Ω \ {p} ∩ J = ∅. So
f(I) ⊆ In(J). Similarly, f(I ′) ⊆ Out(J). Hence, f(I) ∩ f(I ′) ⊆ In(J) ∩Out(J) = ∅.

Theorem 2.8. (Carathéodory) Let f : D → Ω be a conformal map onto a bounded simply
connected region. TFAE

i) f has a homeomorphic extension to D (i.e., continuous and injective).
ii) ∂Ω is a Jordan curve.
iii) ∂Ω is locally connected and has no cut points.

Proof. i) =⇒ ii) Obvious, because ∂Ω = f(∂D).
ii) =⇒ iii) Clear.
iii) =⇒ i)
By Theorem 2.1, f has a continuous extension f : C → Ω. By Proposition 2.7, f |∂D is

injective. Since ∂Ω = f(∂D) and Ω = f(D) are disjoint, f is injective on D.

A region Ω ⊆ Ĉ is called an (open) Jordan region or domain if ∂Ω ⊆ Ĉ is a Jordan curve.
If ∂Ω ⊆ C (i.e., ∞ 6∈ ∂Ω), then Ω = In(∂Ω) or Ω = Out(∂Ω) ∪ {∞}. A closed Jordan region
is the closure Ω of an open Jordan region Ω ⊆ Ĉ. An open Jordan region is simply connected,
because ∂Ω is connected.
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Corollary 2.9. Let Ω,Ω′ ⊆ Ĉ be Jordan regions, f : Ω↔ Ω′ be a conformal map. Then f has
a (unique) homeomorphic extension f : Ω↔ Ω′ (w.r.t. chordal metric on Ĉ).

Proof. Wlog, Ω,Ω′ ⊆ C (use Möbius transform). There exists a conformal map g : D → Ω.
Then h := f ◦ g : D → Ω′ is a conformal map. By Theorem 2.8, g and h have homeomorphic
extensions g : D ↔ Ω, h : D ↔ Ω′ respectively. Then f := h ◦ g−1 : Ω ↔ Ω′ is a homeomorphic
extension of f .

Lemma 2.10. Let ϕ : ∂D → ∂D be a homeomorphism. Then ϕ can be extended to a homeo-
morphism ϕ : Ĉ→ Ĉ.

Proof. Use “radial” extension. Let ϕ(r ·ξ) = r ·ϕ(ξ), where 0 ≤ r <∞, ξ ∈ ∂D, and ϕ(∞) =∞.
This is a continuous bijection with continuous inverse (= radial extension of ϕ−1). Furthermore,
ϕ|D : D↔ D is a homeomorphic extension of ϕ.

Theorem 2.11. Let f : D → Ω be a conformal map onto a Jordan region Ω ⊆ Ĉ. Then f has
a homeomorphic extension f : Ĉ↔ Ĉ.

Proof. Wlog, assume J := ∂Ω ⊆ C, Ω = In(J). Then f has a homeomorphic extension f : D↔
Ω. Note that D̃ = Ĉ \ D and Ω̃ = Ĉ \ Ω are two Jordan regions. So there exists a conformal

map f̃ : D̃→ Ω̃ with homeomorphic extension f̃ : D̃↔ Ω̃. If f |∂D = f̃ |∂D, then f, f̃ would post
together to homeomorphic extension of f . However, it is not true in general!

Let ϕ := f̃−1 ◦ f |∂D (“conformal welding map induced by J”). Then ϕ is a homeomorphism
on ∂D. By Lemma 2.10, it has a homeomorphic extension ϕ : Ĉ↔ Ĉ. Define

f =

{
f(z)

f̃(ϕ(z))
for

z ∈ D,
z ∈ Ĉ \ D.

This is well-defined, and a homeomorphism Ĉ↔ Ĉ, which extends f .

Theorem 2.12. (Schönflies) Every homeomorphism ϕ : J ↔ J ′ between Jordan curves can
be extended to a homeomorphism ϕ : Ĉ ↔ Ĉ. In particular, every Jordan curve J ⊆ Ĉ is the
image of ∂D under a homeomorphism ϕ : Ĉ↔ Ĉ.

Proof. Wlog, assume J = ∂D and J ′ ⊆ C. Let Ω = In(J ′). There exists a conformal map
f : D ↔ Ω with homeomorphic extension f : Ĉ ↔ Ĉ (Theorem 2.11). Let ψ = (f |∂D)−1 ◦ ϕ.
This is a homeomorphism ψ : ∂D ↔ ∂D, and so has a homeomorphic extension ψ : Ĉ ↔ Ĉ.
Then f ◦ ψ is a homeomorphism Ĉ↔ Ĉ with f ◦ ψ|∂D = f ◦ ψ = f ◦ (f |∂D)−1 ◦ ϕ = ϕ.

2.13. Orientation
Let z1, z2, z3 ∈ ∂D be three distinct points. This triple is in positive cyclic order if in the

standard parametrization γ : R → ∂D, γ(t) = eit, whenever γ(t1) = z1 and t2, t3 ∈ (t1, t1 + 2π)
with γ(t2) = z2, γ(t3) = z3, we have t2 < t3.

Note that every ϕ ∈ Aut(D) preserves the positive cyclic order of points on ∂D.
The triple z1, z2, z3 ∈ ∂D is positive oriented iff Im(u, z1, z2, z3) < 0 for u ∈ D (D lies to the

left of ∂D).
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Positive cyclic order on boundary of Jordan region:
Let Ω ⊆ Ĉ be a Jordan region, w1, w2, w3 ∈ ∂Ω are distinct points. w1, w2, w3 are in positive

cyclic order if the following is true: If f is a conformal map f : D ↔ Ω with homeomorphic
extension f : D ↔ Ω. Let zk = f−1(wk), k = 1, 2, 3. The requirement is that z1, z2, z3 are in
positive cyclic order on ∂D.

The definition is independent of the choice of f . Let g : D ↔ Ω be another conformal map
with homeomorphic extension g : D ↔ Ω. Let z′k = g−1(wk), k = 1, 2, 3. Since ϕ = f−1 ◦ g ∈
Aut(D), we get z1, z2, z3 in positive cyclic order iff z′1, z

′
2, z
′
3 in positive cyclic order.

Theorem 2.14. Let Ω,Ω′ ⊆ Ĉ be two Jordan regions, z1, z2, z3 in positive cyclic order on ∂Ω,
w1, w2, w3 in positive cyclic order on ∂Ω′. Then there exists a unique conformal map f : Ω↔ Ω′

whose homeomorphic extension f : Ω↔ Ω′ satisfies wk = f(zk), k = 1, 2, 3.

Proof. Pull back by auxiliary conformal maps, we can assume that Ω = D, Ω′ = D (see figure)
Then the existence and the uniqueness follow from the fact that there exists a unique Möbius
transform ϕ ∈ Aut(D) with w′k = ϕ(z′k).

Figure 13: pull back

Example 2.15. Let f : D → Ω be a conformal map onto the “slit disk” Ω = D \ [0, 1). ∂Ω
is locally connected. So there exists continuous extension f : D → Ω. Since ∂Ω \ {1} has two
components, so by Proposition 2.7, #f−1(1) = 2. Let f−1 = {a, b}. ∂D \ {a, b} = I1 ∪ I2 such
that f(I1) = ∂D \ {1} and f(I2) = [0, 1). Since ∂D \ {1} has not cut points, #f−1(p) = 1 for
p ∈ ∂D \ {1}. So f : I1 → ∂D \ {1} is a homeomorphism. Since #f−1(0) = 1, so there exists
unique c ∈ I2 such that f(c) = 0.

Figure 14: example

Lemma 2.16. Let Ω ⊆ C be a simply connected region, z0 ∈ Ω be a base point, D ⊆ C be a disk
with C = ∂D such that z0 6∈ D. C ∩ Ω =

⋃
k∈{1,2,3,...}Ck, the pairwise disjoint union of circle

arcs. If z ∈ Ω∩D, then one of the arcs Ck separates z0 and z in Ω (i.e., every path in Ω joining
z0 and z meets Ck).

Proof. Suppose it is not. Then none of compact sets Ak := Ĉ \Ω∪Ck, k = 1, 2, . . ., separates z0

and z. There exists a path γ in Ω joining z0 and z. It has positive distance to ∂Ω, so it can only
meet finitely many arcs Ck (Ck ∩ ∂Ω 6= ∅, and diamCk → 0 as k → ∞ if there are infinitely
many). So there exists N ∈ N such that B := AN ∪AN+1 ∪ · · · does not meet γ, so B does not
separate z0 and z. Since A1 ∩B = Ĉ \Ω is connected, and neither A1 nor B separate z0 and z,
A1 ∪ B does not separate z0 and z either by Janikovski! Repeating this argument, we see that
A1 ∪A2 ∪B does not separate z0 and z, etc.. So A1 ∪ · · · ∪AN−1 ∪B =

⋃
k∈{1,2,...}Ak ∪ Ĉ \Ω =

C ∪ Ĉ \ Ω does not separate z0 and z. But C separates z0, z. Contradiction!

Figure 15:
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Theorem 2.17. (Fundamental distortion estimate for conformal maps into D) There
exists a function (universal distortion function) ω : (0,∞) → (0,∞), ω(δ) → 0 as δ → 0+ with
the following property: Let Ω ⊆ C be a simply connected region, g : Ω → D a conformal map,
and K ⊂ Ω be a continuum. Then

diam(g(K)) ≤ ω
(diam(K)

|f ′(0)|

)
, (5)

where f = g−1 : D→ Ω. One can take ω(δ) = c0/
√

log(1/δ).

Proof. Without lose of generality, we assume g(0) = 0 = f(0), g′(0) = 1 = f ′(0). The proof is
similar to the proof of Theorem 2.1 using Wollf’s Lemma applied to g′. Wlog, assume diam(K)
very small.

Note that f(B(0, 1/2)) ⊇ B(0, 2/9) (follows from lower bounded in Theorem 1.7 and its
proof). So g(B(0, 2/9) ⊆ B(0, 1/2). By Koebe’s Distortion Theorem, it follows that |g′| ≤ c0

on B(0, 2/9) with c0 independent of g. So g is uniformly Lipschitz on B(0, 2/9). (5) follows if
K close to 0. Pick z0 ∈ K. Let δ := diam(K). Then K ⊆ B(z0, δ). By Wolff’s Lemma, there
exists r ∈ (δ,

√
δ) such that for C0 = {|z − z0| = r} we have

`(g(C0 ∩ Ω)) ≤ ω(δ).

We may assume that 0 lies outside C0. By Lemma 2.16, there exists a circular arc C ⊆ C0 ∩ Ω
such that C separates 0 and z0 in Ω. Then C actually separates 0 and every point on K in Ω
since K is connected. Then

`(g(C)) ≤ `(g(C0 ∩ Ω)) ≤ ω(δ)� 1,

and g(C) separates 0 and g(K) in D. Hence

diam g(K) ≤ 2 diam g(C) ≤ 2ω(δ).

(Note: if d = diam(K), w0 ∈ g(K), and d is small, then g(K) ⊆ B(w0, d).)

Definition 2.18. Let Ω ⊆ C be a region, a, b ∈ Ω. We define

λΩ(a, b) = inf
γ
`(γ),

where inf is taken over all pathes in Ω joining a, b, and

ρΩ(a, b) = inf
K

diam(K),

where inf is taken over all continuum K ⊆ Ω with a, b ∈ K. Both λΩ and ρΩ are metrics on Ω,
called the inner length metric on Ω and the diameter metric on Ω, resp.

Note that ρΩ ≤ λΩ, and ρΩ, λΩ induce the Euclidean topology on Ω. If a ∈ Ω and b is close
to a, then ρΩ(a, b) = λΩ(a, b) = |a− b|. If Ω is a convex region, both ρΩ and λΩ agree with the
Euclidean metric.

Corollary 2.19. Let Ω ⊆ C be a simply connected region and g : Ω → D be a conformal map.
Then g : (Ω, ρΩ) → D and g : (Ω, λΩ) → D are uniformly continuous, where D equipped with
Euclidean metric.
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Proof. Let w1, w2 ∈ Ω be arbitrary, K ⊆ Ω be compact with w1, w2 ∈ K with diam(K) close to
ρΩ(w1, w2). Let z1 = g(w1), z2 = g(w2). By Theorem 2.17,

|z2 − z1| ≤ diam g(K) ≤ ω̃(diam(K))→ ω̃(ρΩ(w1, w2))

as diam(K)→ ρΩ(w1, w2). So

|z2 − z1| ≤ ω̃(ρΩ(w1, w2)) ≤ ω̃(λΩ(w1, w2))

(if ω̃ is increasing as we may assume).

Corollary 2.20. Let Ω ⊆ C be a simply connected region and g : Ω → D be a conformal map.
Suppose γ : [0, 1)→ Ω is a path with limt→1− γ(t) = w0 ∈ ∂Ω. Then limt→1− g(γ(t)) = z0 ∈ ∂D
exists.

Proof. Our hypothesis implies that diam γ([t, 1)) → 0 as t → 1−. By Theorem 2.17, diam g ◦
γ([t, 1)) → 0 as t → 1−. Hence, limt→1− g ◦ γ(t) = z0 ∈ D exists. Then z0 ∈ ∂D, because
otherwise z0 ∈ D, and γ(t) = g−1(g(γ(t)))→ g−1(z0) = w0 ∈ Ω. Contradiction!

Remark 2.21. For every simply connected region Ω ⊆ Ĉ, one can introduce a suitable compact-
ification Ω̂ (prime end compactification) such that every conformal map f : Ω1 ↔ Ω2 between
simply connected regions extends to a homeomorphism f̂ : Ω̂1 ↔ Ω̂2. (Carathéodory 1913)

3 Kernel convergence

Let fn : D→ Ωn, n ∈ N be conformal maps with suitable normalization. Can one characterize
when {fn} converges locally uniformly on D in term of the regions Ωn? Yes! Answer related to
kernel convergence of the sequence {Ωn}.

Definition 3.1. Let {Ωn} be a sequence of regions in C and w0 ∈ Ωn for all n ∈ N (w0 the base
point). The kernel Kernw0 w.r.t. w0 of {Ωn} consists of

i) the point w0,
ii) every point w ∈ C with the following property: there exists a region U with w0, w ∈ U

such that U ⊆ Ωn for all sufficiently large n.
So one always has w0 ∈ Kernw0 , and Kernw0 = {w0} is possible. If Kernw0 6= {w0}, then

Kernw0 is a region ( = the union of sets U in ii)).
Let Ω = {w0} or Ω ⊆ C be a region with w0 ∈ Ω. We say that {Ωn} converges to Ω in the

sense of kernel convergence (w.r.t. the base point w0), written by

Ωn → Ω, (w.r.t. w0),

if every subsequence of {Ωn} has kernel Ω.

Example 3.2. Let Ωn = C \ ((−∞,−1/n] ∪ [1/n,+∞)), H+ = {z ∈ C : Im z > 0}, and
H− = {z ∈ C : Im z < 0}. Then

⋂
Ωn = H+ ∪ {0} ∪ H−. Suppose w0 ∈ H+ ∪ {0} ∪ H− is the

base point, then

Kernw0 =


H+

{0}
H−

for

w0 ∈ H+,

w0 = 0,

w0 ∈ H−.
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Moreover,

Ωn →


H+

{0}
H−

w.r.t.

w0 ∈ H+,

w0 = 0,

w0 ∈ H−.

Lemma 3.3. Let w0 ∈ C, {Ωn} be a sequence of regions in C with w0 ∈ Ωn for all n ∈ N.
a) If {Ωn} is increasing, i.e., Ωn ⊆ Ωn+1 for all n ∈ N, then Kernw0 = Ω∞ :=

⋃
n∈N Ωn, and

Ωn → Ω∞ w.r.t. w0.
b) If {Ωn} is decreasing, i.e., Ωn ⊇ Ωn+1 for all n ∈ N, let Ω∞ be the connected component

of the interior of
⋂
n∈N Ωn containing w0 if w0 ∈ int

⋂
n∈N Ωn and Ω∞ = {w0} if not. Then

Kernw0 = Ω∞ and Ωn → Ω∞ w.r.t. w0.

Proof. a) Kernw0 ⊆ Ω∞: clear.
Ω∞ ⊆ Kernw0 : if w0 ∈ Ω∞, then w0 ∈ Ωn for some n ∈ N. Take U = Ωn in Definition 3.1,

so w0 ∈ Kernw0 .
Ωn → Ω∞ because kernel (= union) does not change by passing to subsequences.
b) Kernw0 ⊆

⋂
n∈N Ωn is {w0} or a region containing w0, so Kernw0 ⊆ Ω∞.

Ω∞ ⊆ Kernw0 : clear if Ωw0 = {w0}. Otherwise, take U = Ω∞ in Definition 3.1, so Ω∞ =
U ⊆ Kernw0 .

Ωn → Ω∞ is clear because
⋂
n∈N Ωn does not change by passing to subsequences.

Proposition 3.4. Let fn : D ↔ Ωn be conformal maps such that fn(0) = w0 and f ′n(0) > 0.
Suppose that fn → f locally uniformly on D. Then, for the kernel of {Ωn} w.r.t. w0, we have
Kernw0 = f(D).

Proof. Note that f is a constant (≡ w0) or a conformal map onto Ω = f(D) (Hurwitz), f(0) = w0.
I. f(D) ⊆ Kernw0 : Obvious if f is a constant. Assume f is not a constant. Let w ∈ f(D)

be arbitrary. There exists r ∈ (0, 1) such that w ∈ U := f(B(0, r)). U is a region such that
w0, w ∈ U (and so w ∈ Kernw0).

Claim. U ⊆ fn(D) = Ωn for large n.
Otherwise, there exists a sequence {nk} in N with nk → ∞ and points wk ∈ U such that

wk 6∈ fnk(D). Since U ⊆ f(B(0, r)) is compact, so wlog we can assume that wk → v ∈ U ⊆ f(D).
Then hk := fnk − wk is zero-free on D, and hk → f − v locally uniformly on D. However
v ∈ U ⊆ f(D), so f − v is not zero-free. So f − v ≡ 0, equivalently f ≡ v by Hurwitz.
Contradiction!

II. Kernw0 ⊆ f(D): w0 ∈ f(D). Let w ∈ Kernw0 , w 6= w0 be arbitrary. Then there
exists a region U such that w0, w ∈ U and U ⊆ Ωn for all large n, wlog for all n. Then
gn := f−1

n |U : U → D be holomorphic. By Montel’s theorem, there exists a subsequence that
converges locally uniformly to a holomorphic function g : U → D. Note that gn(w0) = 0 which
implies g(w0) = 0, and g(U) ⊆ D. So g(U) ⊆ D by Maximum principle.

Let z := g(w) ∈ D. Then fn → f locally uniformly near z, and so

w = lim
n→∞

fn(gn(w)) = f(z) ∈ f(D).

A combination of I and II gives the proposition.
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Theorem 3.5. (Main theorem about kernel convergence) Let fn : D↔ Ωn be conformal
maps such that fn(0) = w0, f ′n(0) > 0 for n ∈ N. Then

i) Ωn → {w0} (w.r.t. w0) iff fn → const. = w0 locally uniformly on D iff f ′n(0)→ 0.
ii) Ωn → Ω, where Ω ⊆ C is a region in C with w0 ∈ Ω and Ω 6= C iff fn → f 6≡ const.

locally uniformly on D.
iii) Ωn → C iff fn →∞ locally uniformly on D \ {0} iff f ′n(0)→∞.
In particular, Ωn → Ω 6= C iff {fn} converges locally uniformly on D.

Proof. By Koebe’s distortion theorem

|f ′n(0)| |z|
(1 + |z|)2

≤ |fn(z)− w0| ≤ |f ′n(0)| |z|
(1− |z|)2

, (6)

and

B
(
w0,

1

4
|f ′n(0)|

)
⊆ Ωn = fn(D). (7)

iii) First, Ωn → C =⇒ f ′n(0) → ∞. If not, then {f ′n(0)} has a bounded subsequence, wlog,
{f ′n(0)} itself is bounded. By (6), {fn} is locally uniformly bounded on D. By Montel’s theorem,
a subsequence of {fn} converges locally uniformly on D, wlog, fn → f locally uniformly. By
Proposition 3.4, Ωn = fn(D)→ f(D) w.r.t. w0, but f(D) 6= C (by Liouville). Contradiction!

Now, f ′n(0) → ∞ ⇐⇒ fn → ∞ locally uniformly on D by (6); and f ′n(0) → ∞ =⇒ Ωn → C
by (7).

i) + ii) Suppose Ωn → Ω 6= C (possibly Ω = {w0}). Then by iii), {f ′n(0)} has no subsequence
{nk} with f ′nk(0)→∞, and so {f ′n(0)} is bounded. By (6), {fn} is locally uniformly bounded,
and so a normal family by Montel. To show that {fn} converges locally uniformly on D it suffices
that any two subsequential limits g, h of {fn} agree. By Proposition 3.4,

g(D) = Kernw0 = Ω = h(D).

So if Ω = {w0}, then g = h ≡ w0, and fn → w0 locally uniformly. This shows that Ωn →
{w0} =⇒ fn → w0 locally uniformly.

If Ω 6= {w0}, then g, h are conformal maps onto Ω by Hurwitz. We have g(0) = h(0) = w0,
and g′, h′ are the subsequential limits of {f ′n} by Weierstrass. So g′(0), h′(0) > 0. By uniqueness
part of the Riemann mapping theorem, g ≡ h. This shows that Ωn → Ω 6= {w0},C =⇒ fn → f
locally uniformly, where f is the unique conformal map with Ω = f(D), f(0) = w0, f ′(0) > 0.

Conversely,
i) fn → w0 locally uniformly ⇐⇒ f ′n(0)→ 0 by (6) =⇒ Ωn → {w0} by Proposition 3.4.
ii) fn → f 6≡ const. =⇒ Ωn → Ω = f(D) by Proposition 3.4, so f is a conformal map onto

f(D) = Ω 6= C.

4 Loewner chains and the Loewner-Kufarev equation

4.1. Loewner chains (whole plane version)

Let I = [a,∞], w0 be a base point, Ωt be simply connected regions with w0 ∈ Ωt for t ∈ I
such that

i) Ω∞ = C (Ωa = {w0} is allowed as degenerate case),
ii) Ωs  Ωt for s, t ∈ I, s < t.
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We say that the family {Ωt} is a (geometric) Loewner chain if Ωt is continuous in t in the
sense of kernel convergence w.r.t. w0, i.e., Ωtn → Ωt whenever tn ∈ I → t ∈ I.

For t ∈ I, let ft : D ↔ Ωt be the unique conformal map with ft(0) = w0, f ′t(0) > 0 (f∞ is
left undefined and fa = w0 if Ωa = {w0}). Then {ft} is called an (analytic) Loewner chain if
ft is continuous in t w.r.t. locally uniform convergence on D, i.e., ftn → ft locally uniformly on
D whenever tn → t. (It is understood that this means f ′tn(0) → ∞ if tn → ∞. No problem if
Ωa = {w0} and fa = w0!)

The Loewner chain is normalized if f ′t(0) = et for t ∈ I.

Remark 4.2. a) {Ωt} continuous in t if and only if {ft} continuous in t (by Theorem 3.5).
b) For continuity of {ft}, it is enough to check left and right continuity, i.e., that ftn → ft

locally uniformly on D whenever tn is a monotone sequence in I (decreasing or increasing) with
tn → t (because every sequence has a monotone subsequence).

c) By a) and b), for continuity of {Ωt}, one only has to check that Ωtn → Ωt whenever tn is
a monotone sequence in I with tn → t. By Lemma 3.3, this is equivalent to the following two
conditions:

(i) Ωt =
⋃
s<t Ωs for t ∈ I, and

(ii) Ωt = {w0}∪ the connected component of interior of
⋂
t<r Ωr that contains w0 for t ∈ I.

Note that if
(ii’) Ωt = interior of

⋂
t<r Ωr, then (ii) is true.

d) Continuity of {Ωt} is independent of w0 ∈
⋂

Ωt = Ωa. Indeed, (i) in a) is independent of
w0. Let w0, w1 ∈

⋂
Ωt. Then w0, w1 ∈ Ωt ⊆ interior of

⋂
t<r Ωr =: Ω̃t. So w0, w1 lie in the same

connected component of Ω̃t. This shows that (ii) true for w0 iff true for w1.

Example 4.3. (Loewner chain generated by slits)
Let γ : [a,∞] → Ĉ be a simple path ending at ∞ (called it “slit”), i.e., γ : [a,∞] → Ĉ be a

continuous injective map with γ(∞) =∞. Let Ωt = C\γ([t,∞]) for t ∈ [a,∞], w0 ∈ C\γ([a,∞])
(or w0 = γ(a), in this case Ωa = {w0}). Then Ωt is a simply connected region (the complement
of an arc in Ĉ has only one component!). Ωs  Ωt if s < t, because γ([s,∞]) ! γ([t,∞]).

For continuity,
(i)
⋃
s<tC \ γ([s,∞]) = C \

⋂
s<t γ([s,∞]) = C \ γ(

⋂
s<t[s,∞]) (by continuity of γ) = C \

γ([t,∞]) = Ωt.
(ii’)

⋂
t<r C\γ([r,∞]) = C\

⋃
t<r γ([r,∞]) = C\γ(

⋃
t<r[r,∞]) = C\γ((t,∞]) = Ωt∪γ(t). So

int(
⋂
t<r C\γ([r,∞]) = Ωt. (If t = a, w0 = γ(a), Ωa = {w0}, then Ω̃ := int(

⋂
t<r C\γ([r,∞])) =

C \ γ([a,∞]). So the component of Ω̃ containing w0 = ∅, and (ii) true for t = a.)

Example 4.4. Let Ω be a bounded Jordan region. Then there exists a Loewner chain {Ωt}t∈[1,∞]

such that Ω1 = Ω (w0 ∈ Ω).

Proof. Let Ω̃ be the exterior of the Jordan curve ∂Ω in Ĉ. Then there exists a conformal map

f : D̃→ Ω̃ with f(∞) =∞. It has a homeomorphic extension f : D̃→ Ω̃.
For t ∈ [1,∞), let Ωt be the inside of the Jordan curve f({z ∈ C : |z| = t}) and Ω∞ = C.

Then {Ωt}t∈[1,∞] is a Loewner chain with Ω1 = Ω.
Ω1 = Ω is clear. Ωt is strictly increasing. Indeed,

Ωt = Ĉ \ f(D̃) ∪ f({z ∈ C : 1 < |z| < t}), for 1 < t <∞.

(shown as in the proof of Area Theorem.)
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Continuity:
For 1 ≤ t <∞,
(i)
⋃
s<t Ωs = Ĉ \ f(D̃) ∪ f({z ∈ C : 1 < |z| < t}) = Ωt.

(ii’)
⋂
s<t Ωs = Ĉ \ f(D̃) ∪ f({z ∈ C : 1 < |z| ≤ t}) = Ωt ∪ ∂Ωt = Ωt. Since Ωt is a Jordan

region, int(Ω) = Ωt.
For t =∞,

⋃
s<∞Ωs = Ĉ \ f(D̃) ∪ f({z ∈ C : 1 < |z| <∞}) = Ωt ∪ Ω̃t \ {∞} = C.

4.5. The associated semi-group

Let f, g : D→ C be two holomorphic maps. f is subordinate to g, written by f ≺ g, if there
exists a holomorphic map ϕ : D→ D with ϕ(0) = 0 such that f = g ◦ ϕ (then f(0) = g(0), and
|f ′(0)| ≤ |g′(0)|, because |ϕ′(0)| ≤ 1 by Schwarz’s Lemma).

Let {ft}t∈[a,∞] be a Loewner chain. For a ≤ s ≤ t < ∞, Ωs ⊆ Ωt, so f−1
t is defined on Ωs.

Let ϕs,t := f−1
t ◦ fs : D → D. Then ϕs,t is a conformal map onto its image. ϕs,t(D) ⊆ D and

ϕs,t(0) = 0. We have
fs = ft ◦ ϕs,t, a ≤ s ≤ t <∞, (8)

ϕt,u ◦ ϕs,t = ϕs,u, a ≤ s ≤ t ≤ u <∞, (semi-group property)

ϕt,t = idD, a ≤ t <∞.

(8) shows that fs is subordinate to ft for s < t, so

f ′s(0) ≤ f ′t(0), s < t.

Actually, we have strict inequality

f ′s(0) < f ′t(0). s < t.

Otherwise, f ′t(0) = f ′s(0) = f ′t(0) · ϕ′s,t(0), so ϕ′s,t(0) = 1. By Schwarz’s Lemma, ϕs,t = idD, and
ft = fs, Ωt = ft(D) = fs(D) = Ωs. A contradiction.

4.6. Heuristics for the Loewner equation

A family of maps ϕs,t with the semi-group property is generated by a time-dependant vector
field.

Assume ϕs,t(z) is smooth in s, t, holomorphic in z. Define

V (z, s) =
∂ϕs,t
∂t

(z)
∣∣∣
t=s

= lim
δ→0+

ϕs,s+δ(z)− z
δ

.

V (z, s) forms a time-dependent vector field. Note that ϕs,s = idD, ϕs,s+δ(z) ∼ z + δV (z, s). We
have

∂ϕs,t
∂t

(z) = lim
δ→0+

ϕs,t+δ(z)− ϕs,t(z)
δ

= lim
δ→0+

ϕt,t+δ(ϕs,t(z))− ϕs,t(z)
δ

= V (ϕs,t(z), t).

So the semi-group ϕs,t satisfies the following equations

∂ϕs,t
∂t

(z) = V (ϕs,t(z), t), t > s,

∂ϕs,t
∂t

(z)
∣∣∣
t=s

= V (z, s).
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Let γ : [s, u]→ C be a C1-smooth curve satisfying

γ(s) = z, γ̇(t) = V (γ(t), t), t ∈ [s, u].

Then γ is an integral curve of the vector field V . So t → ϕs,t(z) is an integral curve of V . In
fact, z at time s 7→ γ(t) at time t is a map ϕs,t(z) (map from time s to t).

What can we say about V (z, s) if ϕs,t comes from Loewner chain?
By Schwarz’s Lemma, ϕt,t+δ(z) ∈ B(0, |z|). So Re((ϕt,t+δ(z)− z)/z) ≤ 0, and

Re
V (z, t)

z
= Re lim

δ→0+

ϕt,t+δ(z)− z
δz

≤ 0.

So V (z, t) can be written as
V (z, t) = −zp(z, t),

where p(z, t) is holomorphic in z and Re p(z, t) ≥ 0 for z ∈ D.
Let {ft} be a Loewner chain and f(z, t) := ft(z). Assume that f(z, t) is smooth in t. Denote

f ′t(z) =
∂f

∂z
(z, t), ḟt(z) =

∂f

∂t
(z, t).

For ε > 0,
ft(z) = ft+ε ◦ ϕt,t+ε(z) = f(ϕt,t+ε(z), t+ ε).

So

0 =
∂ft(z)

∂ε

∣∣∣
ε=0

=
∂

∂ε
f(ϕt,t+ε(z), t+ ε)

∣∣∣
ε=0

= f ′t(z)
∂ϕt,t+ε(z)

∂ε
(z)
∣∣∣
ε=0

+ ḟt(z)

= f ′t(z)V (z, t) + ḟt(z)

=− zp(z, t)f ′t(z) + ḟt(z).

The equation
ḟt(z) = zp(z, t)f ′t(z), (9)

i.e.
∂f

∂t
(z, t) = zp(z, t)

∂f

∂z
(z, t)

is called the Loewner-Kufarev equation.
Have we accomplished anything?
Wlog, assume f(0, t) = w0 ≡ 0, f0 ∈ S (i.e.a1(0) = 1). Let

f(z, t) = a1(t)z + a2(t)z2 + · · · .

ḟ(z, t) = ȧ1(t)z + ȧ2(t)z2 + · · · ,

f ′(z, t) = a1(t) + 2a2(t)z + · · · ,

p(z, t) = c0(t) + c1(t)z + · · · .
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Then

(ȧ1(t)z + ȧ2(t)z2 + · · · ) = z(c0(t) + c1(t)z + · · · )(a1(t) + 2a2(t)z + · · · )
= c0a1z + (c1a1 + 2c0a2)z2 + · · · .

Comparing coefficients, we get

ȧ1 = c0a1, ȧ2 = c1a1 + 2c0a2.

Making a change of time parametrization, we can assume ȧ1 = a1, so

c0 = 1 and a1(t) = et.

Now
ȧ2 − 2a2 = c1e

t.

So

a2(t) = C(t)e2t, where C(t) =

∫ t

0
c1(s)e−sds.

Since e−tft ∈ S, we have |a2(t)e−t| is bounded. So

C(∞) = lim
t→∞

C(t) = lim
t→∞

a2(t)e−2t = 0,

−C(t) = C(∞)− C(t) =

∫ ∞
t

c1(s)e−sds.

So

a2(t) = −e2t

∫ ∞
t

c1(s)e−sds, and a2(0) = −
∫ ∞

0
c1(t)e−tdt.

Note that if f(z) = 1 + c1z+ c2z
2 + · · · holomorphic in D, and Re f(z) ≥ 0, then |c2| ≤ 2 by

Schwarz’s Lemma. So |c1(0)| ≤ 2 and

|a2(0)| ≤ 2

∫ ∞
0

e−tdt ≤ 2.

Lemma 4.7. Let {ft}t∈I , I = [a,∞], be an analytic Loewner chain. Then there exist ã ∈
[−∞,+∞), a strictly increasing homeomorphism α : Ĩ := [ã,∞] → I, and a Loewner chain
{f̃t}t∈Ĩ such that

i) f̃ ′t(0) = et for t ∈ Ĩ \ {−∞,∞},
ii) f̃t = fα(t).

(So by a homeomorphic change of time parametrization, one can normalize an analytic
Loewner chain.)

Proof. Define

β(t) =

{
f ′t(t)

∞
for

t ∈ I \ {∞}
t =∞ .

Then
i) β is strictly increasing (see 4.5).
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ii) β is continuous:
Let {tn} be a sequence in I such that tn → t∞ ∈ I. Then if t∞ = ∞, β(tn) = f ′tn(0) →

∞ = β(∞) by the definition of Loewner chain; if t∞ 6=∞, ftn → ft∞ locally uniformly on D; so
β(tn) = f ′tn(0)→ f ′t∞(0) = β(t∞) by Weierstrass theorem.

By i) + ii), β is a homeomorphism onto its image Ĩ := β(I) = [b,∞] ⊆ [0,∞]. Let ã :=
log b ∈ [−∞,∞), and α(t) := β−1(et), t ∈ [ã,∞] (e−∞ = 0, e∞ = ∞). Then α is a strictly
increasing homeomorphism from Ĩ := [ã,∞] onto I = [a,∞].

Ĩ
exp←→ [b,∞]

β−1

←→ [a,∞].

Define f̃t := fα(t). Then {f̃t}t∈Ĩ is a Loewner chain (obvious), and

f̃ ′t(0) = f ′α(t)(0) = β(α(t)) = et, for t ∈ Ĩ .

From now on, all analytic Loewner chain {tt}t∈I are normalized, i.e., f ′t(0) = et for t ∈ I.

Theorem 4.8. (Vitali’s theorem on induced convergence) Let Ω ⊆ C be a region, F be
a normal family of holomorphic functions on Ω, and {fn} be a sequence in F . Suppose there
exists a sequence {zk} of points in Ω such that

i) {fn(zk)} converges for all k ∈ N ,
ii) {zk} has a limit point in Ω.

Then {fn} converges locally uniformly on Ω (to a holomorphic limit function f).

Proof. There exists a subsequential limit f ∈ H(Ω) of {fn} (w.r.t. locally uniform convergence
on Ω).

Claim. fn → f locally uniformly on Ω.
We prove it by contradiction. If not, then there exist ε0 > 0 (“bad ε”), a compact set K ⊆ Ω,

a sequence nl ∈ N with nl →∞, and points ul ∈ K such that

|fnl(ul)− f(ul)| ≥ ε0.

Let gl denote fnl . Then {gl} is a sequence in F , so it has a convergent subsequence, wlog, gl → g
locally uniformly on Ω. Also, wlog, ul → u∞ ∈ K. Since {fn(zk)} converges for each k ∈ N, we
have g(zk) = f(zk). Since {zk} has a limit point in Ω, g ≡ f by the Uniqueness Theorem. So

0 < ε0 ≤ lim
l→∞
|gl(ul)− f(ul)| = |g(u∞)− f(u∞)| = 0.

Contradiction!

Theorem 4.9. (Holomorphic functions with positive real part) Let P = {p ∈ H(D) :
p(0) = 1,Re p ≥ 0 on D}. Then the following statements are true.

i) |p(z)| ≤ 1 + |z|
1− |z|

for all p ∈ P and z ∈ D.

ii) P is a normal family, and it is closed w.r.t. locally uniform convergence, i.e., if {pn} is a
sequence in P and pn → p locally uniformly on D, then p ∈ P.

iii) If p ∈ P, then there exists a unique Borel probability measure µ on ∂D such that

p(z) =

∫
∂D

ζ + z

ζ − z
dµ(ζ) for z ∈ D.
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(Herglotz representation). Conversely, every function of this type belongs to P.
If p(z) = 1 + c1z + c2z

2 + · · · is the Taylor expansion of p, then

cn = 2

∫
∂D
ζ−ndµ(ζ) = 2

∫ 2π

0
e−inθdµ(eiθ) for n ∈ N.

iv) Let p(z) = 1 + c1z + c2z
2 + · · · ∈ P. Then |cn| ≤ 2 and (Re c1)2 ≤ 2 + Re c2.

Proof. Note that Re p > 0 for p ∈ P by the minimal principle for holomorphic functions.
i) It can be easily obtained by Schwarz’s Lemma (details filled later).
ii) By i), P is locally uniformly bounded. The remains obtained by the Montel theorem and

the Weierstrass theorem.
iii) Let p ∈ P. For fixed r ∈ (0, 1), define pr(z) = p(rz). The pr ∈ H(D) and pr has a

continuous extension to D. Hence, by the Schwarz formula

pr(z) = Im pr(0) +
1

2π

∫ 2π

0

eit + z

eit − z
Re pr(e

it)dt =

∫
∂D

ζ + z

ζ − z
dµr(ζ),

where

dµr(ζ) = dµr(e
it) =

1

2π
Re pr(e

it)dt =
1

2π
Re p(rζ)dt.

µr is a positive Borel measure on ∂D, and

µr(∂D) =
1

2π

∫ 2π

0
Re p(reit)dt = Re p(0) = 1.

So µr is a positive Borel probability measure on ∂D.
By Banach-Alaoglu theorem, there exists a sequence rn ∈ (0, 1) with rn → 1 such that

µn := µrn → µ w.r.t. the weak-∗ topology on C(∂D)∗ = {ν : complex Borel measure on ∂D},
i.e., ∫

∂D
udµn →

∫
∂D
udµ for all u ∈ C(∂D).

µ is also a probability measure. For fixed z ∈ D, we have

p(z) = lim
n→∞

p(rnz) = lim
n→∞

prn(z)

= lim
n→∞

∫
∂D

ζ + z

ζ − z
dµn(ζ) =

∫
∂D

ζ + z

ζ − z
dµ(ζ).

This shows the existence of the Herglotz representation.
Uniqueness and converse will be the homework assignments!
For fixed z ∈ D and ζ ∈ ∂D, we have

ζ + z

ζ − z
=

1 + z/ζ

1− z/ζ
= 1 + 2

∞∑
n=1

znζ−n,
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converges uniformly in ζ. So we can integral term-by-term and conclude

p(z) = 1 +

∞∑
n=1

cnz
n =

∫
∂D

ζ + z

ζ − z
dµ(ζ)

=

∫
∂D

(
1 + 2

∞∑
n=1

znζ−n
)
dµ(ζ)

= 1 + 2
∞∑
n=1

(∫
∂D
ζ−ndµ(ζ)

)
zn, for all z ∈ D.

Comparing coefficients, we can obtain

cn = 2

∫
∂D
ζ−ndµ(ζ) for n ∈ N.

iv) In particular,

|cn| = 2
∣∣∣ ∫

∂D
ζ−ndµ(ζ)

∣∣∣ ≤ 2

∫
∂D
|ζ−n|dµ(ζ) = 2.

Here we have used ζ = eit. So

Re c1 = 2

∫
∂D

Re(e−it)dµ(ζ) = 2

∫
∂D

(cos t)dµ(ζ), and Re c2 = 2

∫
∂D

(cos 2t)dµ(ζ).

So

(Re c1)2 = 4
(∫

∂D
(cos t)dµ(ζ)

)2
≤ 4

∫
∂D

(cos2 t)dµ(ζ) (Cauchy-Schwarz)

= 4

∫
∂D

1 + cos 2t

2
dµ(ζ) = 2 + 2 Re c2.

Lemma 4.10. Let {ft}t∈[a,∞] be a normalized Loewner chain, ϕs,t = f−1
t ◦ fs for s ≤ t on

I = [a,∞]. Then for fixed z ∈ D,

i) |ϕs,t(z)− z| ≤ |t− s|
2|z|

1− |z|
, a ≤ s ≤ t <∞,

ii) |ft(z)− fs(z)| ≤ et|t− s|
4|z|

(1− |z|)4
, a ≤ s ≤ t <∞,

iii) |ϕs,u(z)− ϕt,u(z)| ≤ |t− s| 2|z|
(1− |z|)2

, a ≤ s ≤ t ≤ u <∞,

iv) |ϕs,t(z)− ϕs,u(z)| ≤ |u− t| 2|z|
1− |z|

, a ≤ s ≤ t ≤ u <∞.

So the following functions are Lipschitz:
t→ ft(z) on [a,∞), z ∈ D fixed;
t→ ϕs,t(z) on [s,∞), z ∈ D, s ∈ [a,∞) fixed;
t→ ϕt,u(z) on [a, u], z ∈ D, u ∈ [a,∞) fixed.
Moreover, the Lipschitz constants are uniform if the arguments and parameters are restricted

to suitable subdomains. For example, for each n ∈ N, there exists L = L(n) such that t→ ft(z)
is L-Lipschitz on [a, n] for each z ∈ B(0, 1− 1

n).
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Proof. Some estimates:
1. |h(z1)− h(z2)| ≤ max|u|≤r |h′(u)||z1 − z2| for h ∈ H(D), z1, z2 ∈ B(0, r), 0 < r < 1.
2. |eu − ev| ≤ |u− v|, u, v ∈ C, Reu,Re v ≤ 0.
3. ϕ ∈ Aut(D). Then

|ϕ′(z)| ≤ 1− |ϕ(z)|2

1− |z|2
≤ 1

1− |z|2
, z ∈ D. (Schwarz-Pick)

i) From s ≤ t, ft ◦ ϕs,t = fs, we have

f ′t(ϕs,t(0)) · ϕ′s,t(0) = f ′s(0).

By ϕs,t(0) = 0, f ′t(0) = et, et · ϕ′s,t(0) = es, so ϕ′s,t(0) = es−t ≤ 1. Define

Φs,t(z) = log
( z

ϕs,t(z)

)
= log

z

es−tz + · · ·
= log(et−s + · · · ) = (t− s) + · · · . (10)

Then Φs,t is holomorphic in D and Φs,t(0) = t − s. Since |z/ϕ(z)| ≥ 1, so Re Φs,t(z) ≥ 0, and
1
t−sΦs,t ∈ P. Hence, by Theorem 4.9,

|Φs,t(z)| ≤ |t− s|
1 + |z|
1− |z|

≤ |t− s| 2

1− |z|
.

From ϕs,t(z) = z · e−Φs,t(z), Re Φs,t(z) ≥ 0, we have

|ϕs,t(z)− z| = |z||e−Φs,t(z) − e0| ≤ |z||Φs,t(z)| ≤ |t− s|
2|z|

1− |z|
.

ii) |ft(z) − fs(z)| = |ft(z) − ft(ϕs,t(z))| ≤ max|u|≤|z| |f ′t(u)||z − ϕs,t(z)|, here we have used
|ϕs,t(z)| ≤ |z|. By Koebe’s and i),

|ft(z)− fs(z)| ≤ et
1 + |z|

(1− |z|)3
· |t− s| 2|z|

1− |z|
≤ et|t− s| 4|z|

(1− |z|)4
.

iii) By Schwarz lemma and i),

|ϕs,u(z)− ϕt,u(z)| = |ϕt,u(ϕs,t(z))− ϕt,u(z)| ≤ max
|a|≤|z|

|ϕ′t,u(a)| · |ϕs,t(z)− z|

≤ 1

1− |z|2
· |t− s| 2|z|

1− |z|
≤ |t− s| 2|z|

(1− |z|)2
.

iv) By i) and |ϕs,t(z)| ≤ |z|,

|ϕs,t(z)− ϕs,u(z)| = |ϕs,t(z)− ϕt,u(ϕs,t(z))|

≤ |u− t| 2|w|
1− |w|

≤ |u− t| 2|z|
1− |z|

, where w = ϕs,t(z).

Definition 4.11. Let Ω ⊆ C be a region, I ⊆ R be an interval. HL(Ω × I) is the set of all
function f : Ω× I → C satisfying

i) f(·, t) is holomorphic on Ω for all t ∈ I,
ii) f(z, ·) is uniformly Lipschitz on compact set, i.e., whenever, K ⊆ Ω compact, J ⊆ I

compact interval, then there exists L > 0 such that |f(z, s) − f(z, t)| ≤ L|s − t| for all z ∈ K
and all s, t ∈ J .
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Lemma 4.10 shows that if {ft} is a normalized Loewner chain on [a,∞], then
(z, t)→ ft(z) ∈ HL(D, [a,∞));
(z, t)→ ϕs,t(z) ∈ HL(D, [s,∞));
(z, s)→ ϕs,t(z) ∈ HL(D, [a, t]), where ϕs,t = f−1

t ◦ fs.

Proposition 4.12. Let Ω ⊆ C be a region, I ⊆ R be an interval, f ∈ HL(Ω× I). Then
i) f is continuous on Ω× I.
There exists a set E ⊆ I with |E| = 0 (the 1-dim Lebesgue measure) such that

ii)
∂f

∂t
(z, t) exists for all z ∈ Ω, t ∈ I \ E. Moreover,

∂f

∂t
(z, t) is holomorphic on Ω for all

t ∈ I \ E,
∂f

∂t
is measurable and uniformly bounded on compact subsets, i.e., whenever K ⊆ Ω

compact, J ⊆ I compact interval, then there exists M ≥ 0 such that
∣∣∣∂f
∂t

(z, t)
∣∣∣ ≤ M for all

z ∈ K, t ∈ J \ E.
iii) f is differentiable at each point (z, t) ∈ Ω× I \ E, more precisely,

f(z′, t′) = f(z, t) +
∂f

∂z
(z, t)(z′ − z) +

∂f

∂t
(z, t)(t′ − t) + o(|z′ − z|+ |t′ − t|)

as (z′, t′)→ (z, t).

iv)
∂nf

∂zn
∈ HL(Ω× I) for all n ∈ N. Moreover,

∂

∂t

(∂nf
∂zn

)
(z, t) =

∂n

∂zn

(∂f
∂t

)
(z, t) for all (z, t) ∈ Ω× I \ E. (11)

v) Let z0 ∈ Ω, and

f(z, t) =
∞∑
n=0

an(t)(z − z0)n

be the Taylor expansion of f(·, t) at z0. Then for each n ∈ N, an(t) is uniformly Lipschitz on

compact interval J ⊆ I. Moreover, ȧn(t) :=
dan
dt

(t) exists for all t ∈ I \ E, and for t ∈ I \ E,

the function
∂f

∂t
(·, t) has the Taylor expansion

∂f

∂t
(z, t) =

∞∑
n=0

ȧn(t)(z − z0)n. (12)

Proof. i) |f(z′, t′)− f(z, t)| ≤ |f(z′, t′)− f(z′, t)|+ |f(z′, t)− f(z, t)| is small if |z′ − z|+ |t′ − t|
small, since |f(z′, t′)− f(z′, t)| is uniformly small and |f(z′, t)− f(z, t) is small.

ii) Pick a sequence {ak} in Ω of distinct points such that {ak} has a limit point in Ω (e.g.
ak = a0 + δ/k, a0 ∈ Ω, δ > 0 small. Each function t 7→ f(ak, t) is locally Lipschitz on I, and so

differentiable a.e. on I. So there exists a set Ek ⊆ I with |Ek| = 0 such that
∂f

∂t
(ak, t) exists for

each t ∈ I \ Ek. Let E =
⋃
k∈NEk∪{end points of I} ⊆ I. Then |E| = 0.

Claim.
∂f

∂t
(z, t) exists for all (z, t) ∈ Ω× I \ E.
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It suffices to show that if {δn} is a sequence in R with δn 6= 0 and δn → 0, then

lim
n→∞

f(z, t+ δn)− f(z, t)

δn
(13)

exists (then the limit is independent of {δn}).
Define

Fn(z′) :=
f(z′, t+ δn)− f(z′, t)

δn
for z′ ∈ Ω.

Then {Fn} is a sequence of holomorphic functions on Ω that are locally uniformly bounded on
Ω, and so form a normal family.

Fn(ak)→
∂f

∂t
(ak, t) as n→∞

for each k ∈ N. By Vitali’s Theorem 4.8, {Fn(z′)} converges for each z′ ∈ Ω, and so also for

z′ = z; so the limit (13) exists. So
∂f

∂t
(z, t) exists for all (z, t) ∈ Ω× I \ E. Actually, by Vitali,

Fn →
∂f

∂t
(·, t) locally uniformly on Ω (t ∈ I \ E fixed).

So
∂f

∂t
(·, t) is holomorphic on Ω (Weierstrass).

∂f

∂t
is measurable as a pointwise limit of contin-

uous functions, and the boundedness property follows from the uniform Lipschitz property of
f .

iii) Let (z, t) ∈ Ω× I \ E be arbitrary, (zn, tn) ∈ Ω× I → (z, t) as n→∞. We have

f(·, tn)− f(·, t)
tn − t

→ ∂f

∂t
(·, t),

locally uniformly on Ω, and so

f(zn, tn)− f(zn, t)

tn − t
− ∂f

∂t
(zn, t) = o(1), (tn − t 6= 0).

So

f(zn, tn)− f(z, t) = f(zn, tn)− f(zn, t) + f(zn, t)− f(z, t)

=
∂f

∂t
(zn, t)(tn − t) + o(|tn − t|) +

∂f

∂z
(z, t)(zn − z) + o(|zn − z|)

=
∂f

∂t
(z, t)(tn − t) +

∂f

∂z
(zn − z) + o(|tn − t|+ |zn − z|).

iv) For any n ∈ N,
∂nf

∂zn
(·, t) is holomorphic on Ω for t ∈ I. Suppose B(a,R) ⊆ Ω, γ(t) =

a+Reit. Then
∂nf

∂zn
(z, t) =

n!

2πi

∫
γ

f(ζ, t)

(ζ − z)n+1
dζ

for z ∈ B(a,R), t ∈ I. By the Residue Theorem, if z ∈ B(a,R/2), s, t ∈ J ⊆ I compact, then
by the uniform Lipschitz property of f ,∣∣∣∣∂nf∂zn

(z, s)− ∂nf

∂zn
(z, t)

∣∣∣∣ ≤ n!

2π
· 2πR sup

ζ∈∂B(a,R)
|f(ζ, s)− f(ζ, t)| · 1

(R/2)n+1
≤ C|s− t|,
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so t → ∂nf

∂zn
(z, t) is uniform Lipschitz on B(a,R/2) × J . The uniform Lipschitz property of

∂nf

∂zn
(z, t) follows from a covering argument.

Let t ∈ I \ E, {δk} be a sequence in R with δk 6= 0, δk → 0. Then

f(·, t+ δk)− f(·, t)
δk

→ ∂f

∂t
(·, t)

locally uniformly on Ω; hence for z ∈ B(a,R).

1

δk

[
∂nf

∂zn
(z, t+ δk)−

∂nf

∂zn
(z, t)

]
=

n!

2πi

∫
γ

f(ζ, t+ δk)− f(ζ, t)

δk

dζ

(ζ − z)n+1

→ n!

2πi

∫
γ

∂f(ζ, t)

∂t

dζ

(ζ − z)n+1
=

∂n

∂zn

(∂f
∂t

)
(z, t).

This shows that
∂

∂t

(∂nf
∂zn

)
(z, t) exists, and (11) holds.

v) an(t) =
1

n!

∂nf

∂zn
(0, t) for t ∈ I;

so an is uniform Lipschitz on compact J ⊆ I for each n ∈ N by iv). Moreover,

ȧn(t) =
1

n!

∂

∂t

(∂nf
∂zn

)
(0, t) =

1

n!

∂n

∂zn

(∂f
∂t

)
(0, t) for t ∈ I \ E.

So for t ∈ I \ E, the n-th Taylor coefficient of the holomorphic function of z,
∂f

∂t
(·, t) is given

by ȧn(t). (12) follows.

Theorem 4.13. (Main Theorem of Loewner Theory) Let {ft}t∈I , I = [a,∞) be a nor-
malized Loewner chain, ϕs,t = f−1

t ◦ fs, f(z, t) := ft(z). Then there exists E ⊆ I, |E| = 0, such
that

a) V (z, t) := lim
ε→0+

ϕt,t+ε(z)− z
ε

exists for all z ∈ D, t ∈ I \ E.

b)
∂f

∂t
(z, t) exists for all z ∈ D, t ∈ I \ E, and

∂f

∂t
(z, t) = −V (z, t)

∂f

∂z
(z, t). (Loewner-Kufarev equation)

Moreover, V (z, t) has the following properties:
i) V (·, t) is holomorphic on D for each t ∈ I \ E,
ii) V is measurable on Ω×I, and has the uniform bounded property: whenever K ⊆ D, J ⊆ I

are compact, then there exists M ≥ 0 such that |V (z, t)| ≤M for (z, t) ∈ K × J \ E.
iii) V can be written in the form

V (z, t) = −zp(z, t),

where p(·, t) ∈ P for t ∈ I \ E, i.e., p(·, t) is holomorphic in D, Re p(·, t) ≥ 0 and p(0, t) = 1.
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Proof. Since f ∈ HL(D × I), there exists E ⊆ I, |E| = 0, such that
∂f

∂t
(z, t) exists for (z, t) ∈

D × I \ E. Pick (z, t) ∈ D × I \ E and ε > 0. Then ft+ε(ϕt,t+ε(z)) = ft(z). Equivalently,
f(ϕt,t+ε(z), t + ε) = f(z, t). Differentiating with respect to ε > 0 and setting ε = 0, we obtain
by the chain rule

0 =
d

dε
f(ϕt,t+ε(z), t+ ε)

∣∣∣∣
ε=0

=
∂f

∂z
(z, t) · ϕt,t+ε

∂ε
(z)

∣∣∣∣
ε=0

+
∂f

∂t
(z, t).

Actually, this is true for any sublimit of

∂ϕt,t+ε(z)

∂ε

∣∣∣∣
ε=0

= lim
ε→0

ϕt,t+ε(z)− z
ε

.

Since
∂f

∂z
(z, t) 6= 0 (ft is conformal!), such a sublimt is unique. Since ε 7→ ϕt,t+ε is Lipschitz, the

existence of

V (z, t) = lim
ε→0

ϕt,t+ε(z)− z
ε

, (z ∈ D, t ∈ I \ E),

follows, and
∂f

∂z
(z, t)V (z, t) +

∂f

∂t
(z, t) = 0,

which is equivalent to the Loewner-Kufarev equation.
by Vitali,

ϕt,t+εn(z)− z
εn

→ V (z, t)

locally uniformly for z ∈ D, whenever t ∈ I \ E fixed. So V (·, t) is holomorphic on D; V is
measurable (pointwise limit of continuous functions), and has the uniform bounded property as
follows form the uniform Lipschitz property of (z, t) 7→ ϕs,t(z).

f(z, t) has the Taylor expansion

f(z, t) = a0(t) + a1(t)z + a2(t)z2 + · · · , a0(0t) ≡ w0, a1(t) = et.

Let for fixed t ∈ I \ E, V (z, t) has the Taylor expansion

V (z, t) = c0(t) + c1(t)z + c2(t)z2 + · · · .

Then
∂f

∂z
(z, t) = a1(t) + 2a2(t)z + · · · ,

and by Proposition 4.12 iv),

∂f

∂t
(z, t) = ȧ1(t)z + ȧ2(t)z2 + · · · .

So
ȧ1z + ȧ2z

2 + · · · = −(c0 + c1z + · · · )(a1 + 2a2z + · · · ).

So 0 = −c0a1 = −c0e
t equivalent to c0 = 0, ȧ1 = −c1a1 equivalent to et = c1(t) · et equivalent

to c1(t) = −1, i.e.,
V (z, t) = −zp(z, t),
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where p(·, t) holomorphic and p(0, t) = 1. By Schwarz’s Lemma, |ϕt,t+ε(z)| ≤ |z|; so for z 6= 0,

Re
(ϕt,t+ε(z)− z

z

)
≤ 0,

and for z 6= 0,

Re p(z, t) = −Re
(V (z, t)

z

)
= − lim

ε→0+
Re
(ϕt,t+ε(z)− z

εz

)
≥ 0.

This inequality is also true for z = 0 since Re p(0, t) = 1.

Corollary 4.14. Let {ft} be a normalized Loewner chain on I = [a,∞), ϕs,t = f−1
t ◦fs, E ⊆ I,

|E| = 0, V (z, t) as in Theorem 4.13. Then

i) V (z, t) := lim
ε→0+

ϕt,t+ε(z)− z
ε

= lim
ε→0+

ϕt−ε,t(z)− z
ε

for z ∈ D, t ∈ I \ E.

ii)
∂ϕs,t(z)

∂t
= V (ϕs,t(z), t) for z ∈ D, t ∈ [s,∞) \ E, s ∈ I (left-hand derivative for t = s).

iii)
∂ϕs,t(z)

∂s
= −ϕ′s,t(z)V (z, s) for z ∈ D, s ∈ [0, t] \ E, t ∈ I (right-hand derivative for

s = t).
The existence of limits post of the statement!

Proof. i) For t ∈ I \ E, ε > 0, ft ◦ ϕt−ε,t(z) = ft−ε(z). Differentiating with respect to ε and
setting ε = 0:

f ′t(z) ·
d

dε
ϕt−ε,t(z)

∣∣∣∣
ε=0

= −ḟt(z) = V (z, t) · f ′t(z).

Hence lim
ε→0+

ϕt−ε,t(z)− z
ε

exists and is equal to V (z, t).

ii) For s ∈ I, t ∈ [s,∞) \ E, ft ◦ ϕs,t = fs, i.e, f(ϕs,t(z), t) = f(z, s). Differentiating with
respect to t gives

f ′t(ϕs,t(z)) ·
∂ϕs,t
∂t

(z) + ḟt(ϕs,t(z)) = 0,

equivalent to
∂ϕs,t(z)

∂t
= − ḟt ◦ ϕs,t

f ′t ◦ ϕs,t
= V (ϕs,t(z), t).

iii) For t ∈ I, s ∈ [a, t] \ E, ft ◦ ϕs,t = fs, i.e., f(ϕs,t(z), t) = f(z, s). Differentiating with
respect to s gives

f ′t(ϕs,t(z)) ·
∂ϕs,t
∂s

(z) = ḟs(z) = −V (z, s) · f ′s(z) = −V (z, s)ϕ′s,t(z)f
′
t(ϕs,t(z)).

So
ϕs,t
∂s

(z) = −ϕ′s,t(z) · V (z, s).

In all cases, existence of limits follows from the uniqueness of sublimits.

4.15. Geometric interpretation
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Figure 16: Geometric interpretation

ḟt(z) = −V (z, t)f ′t(z) = zp(z, t)f ′t(z).

Since Re p(z, r) > 0, zp(z, t) is a vector which points out of the disk B(0, |z|). Hence, ḟt(z) =
zp(z, t)f ′t(z) is a vector which points out of ft(B(0, |z|))

∂ϕs,t
∂t

(z) = V (ϕs,t(z), t).

So t 7→ ϕs,t(z) is an integral curve of the vector field V (z, t). z 7→ ϕs,t(z) is a map which shrinks
D for large t, with ϕ′s,t(0) = es−t.

Figure 17: Shrink

∂ϕs,t
∂s

(z) = −ϕs,t(z)V (z, s).

So
ϕs−ε,s(z) ' z + εV (z, s).

We have
ϕs−ε,t(z) ' ϕs,t(z) + εϕ′s,t(z)V (z, s).

Figure 18: transfer

5 Existence results for Loewner chains and applications

Proposition 5.1. Let {fnt } be a sequence of normalized Loewner chains on I = [a,∞), fnt (0) =
w0 ∈ C, (fnt )′(0) = et, t ∈ I. Then {fnt } subconverges to a Loewner Chain as n → ∞; more
precisely, there exists a sequence {nk} with nk →∞ as k →∞ and a normalized Loewner chain
{ft}t∈I such that fnkt → ft locally uniformly on D as k →∞, for all t ∈ I.

Proof. Wlog, w0 = 0. Let zl = 1/l, l ≥ 2. Then zl → 0 ∈ D as l→∞. For fixed l ∈ N, the maps
t ∈ [0,∞) 7→ fnt (z), n ∈ N, are uniform Lipschitz (cf. Lemma 4.10) and uniformly bounded
(Koebe) on compact set J ⊆ I. In particular, the family {t 7→ fnt (zl)}n∈N is equicontinous
and uniformly bounded at each t0 ∈ I. Hence, by the Arzela-Ascoli Theorem, there exists a
subsequence that converges locally uniformly on I and in particular pointwisely on I.

Applying this successively for each l = 2, 3, . . ., and passing to a diagonal subsequence, we
find a sequence {nk} in N with nk →∞ as k →∞ such that {fnkt (zl)} converges as k →∞ for
all t ∈ I, l ≥ 2.

Fix t ∈ I. Then e−tfnkt ∈ S, and so these functions form a normal family. Since we have
pointwise convergence at each zl ∈ D, l ≥ 2, by Vitali’s Theorem, {fnkt } converges locally
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uniformly on D to some limit function ft ∈ H(D). So fnkt → ft locally uniformly on D as k →∞
for each t ∈ I.

It is suffices to show that {ft}t∈I is a normalized Loewner chain.

ft(0) = lim
k→∞

fnkt (0) = 0

and
f ′t(0) = lim

k→∞
(fnkt )′(0) = et 6= 0 for t ∈ I. (14)

By Hurwitz, ft is a conformal map ft : D↔ Ωt = ft(D). If s, t ∈ I and s ≤ t, then

Ωnk
s := fnks (D)→ Ωs, Ωnk

t := fnkt (D)→ Ωt, w.r.t. w0,

and Ωnk
s ⊆ Ωnk

t . So
Ωs ⊆ Ωt. (15)

A combination of (14) and (15) implies the Lipschitz estimates for t 7→ ft(z) as in Lemma 4.10 ii)
(ϕs,t = f−1

t ◦fs is defined, etc.). Hence ftn → ft locally uniformly on D whenever tn ∈ I → t ∈ I.
So {ft} is a Loewner chain.

Corollary 5.2. Let f ∈ S. Then there exists a Loewner chain {ft}t∈[0,∞) with w0 = 0 such that
f0 = f .

Proof. For n ∈ N, n ≥ 2, let rn = (1− 1/n) ∈ (0, 1), and

fn(z) =
1

rn
f(rnz), z ∈ D.

Then fn(0) = 0, (fn)′(0) = 1, and so fn ∈ S. fn is a conformal map from D onto the Jordan
region Ωn = fn(D) = f(B(0, rn)). So Ωn can be embedded in a Loewner chain; equivalently,
there exists a normalized Loewner chain {fnt }t∈[0,∞) with fnt (0) = 0, (fnt )′(0) = et for t ∈ I =
[0,∞), and fn0 = fn. By Proposition 5.1, the sequence {fnt } of Loewner chains subconverges to
a normalized Loewner chain {ft}; i.e., for some sequence {nk} with nk →∞, we have fnkt → ft
locally uniformly on D for each t ∈ I. In particular, fnk0 = fnk → f0 locally uniformly on D. On
the other hand,

fnk(z) =
1

rn
f(rnz)→ f(z)

locally uniformly for z ∈ D. So f0 = f , the claim follows.

5.3. Loewner chains and Taylor coefficients

Let f ∈ S be arbitrary. f : D→ Ω = f(D) conformal, f(0) = 0, f ′(0) = 1. By Corollary 5.2,
there exists a normalized Loewner chian {ft}t∈[0,∞)} such that f0 = f , ft(0) = 0, f ′t(0) = et.

ft(z) =
∞∑
n=1

an(t)zn, t ∈ [0,∞), with a1(t) = et.

Let f(z, t) = ft(z), I = [0,∞). There exists E ⊆ [0,∞) with |E| = 0 such that

∂f

∂t
(z, t) = zp(z, t)

∂f

∂z
(z, t), z ∈ D, t ∈ I \ E,
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where f ∈ HL(D× I), p(·, t) ∈ P for t ∈ I \E, i.e., p(·, t) ∈ H(D), p(0, t) = 1, and Re p(·, t) ≥ 0,

p(z, t) = 1 +

∞∑
n=1

cn(t)zn, z ∈ D, t ∈ I \ E.

From Proposition 4.12,

∂f

∂t
(z, t) =

∞∑
n=1

ȧn(t)zn, z ∈ D, t ∈ I \ E.

Fix t ∈ I \ E. Then

∞∑
n=1

ȧn(t)zn = z

(
1 +

∞∑
n=1

cn(t)zn
)( ∞∑

n=1

nan(t)zn−1

)

=
∞∑
n=1

(
nan(t) +

n−1∑
k=1

kak(t)cn−k(t)

)
zn.

Comparing coefficients, we get

ȧn(t) = nan(t) +
n−1∑
k=1

kak(t)cn−k(t), t ∈ I \ E,n ∈ N.

Each an is locally Lipschitz (cf. Proposition 4.12), cn is measurable (homework!). Moreover,
|cn(t)| ≤ 2 for n ∈ N, t ∈ I \ E (Theorem 4.9 (iv)). Noting that ht := e−tft ∈ S and S is a
normal family, there exists Cn ≥ 0 such that

∣∣e−tan(t)
∣∣ =

∣∣∣∣h(n)
t (0)

n!

∣∣∣∣ ≤ Cn, for t ∈ I,

hence e−ntan(t)→ 0 as t→∞ for n ≥ 2.

d

dt

(
e−ntan(t)

)
= e−ntȧn(t)− e−ntnan(t) =

n−1∑
k=1

e−ntkak(t)cn−k(t), for t ∈ I \ E.

For s ≥ 0, n ≥ 2,

−e−nsan(s) = lim
u→∞

∫ u

s

d

dt

(
e−ntan(t)

)
dt =

∞∑
k=1

k

∫ ∞
s

e−ntak(t)cn−k(t)dt.

So

an(s) = −ens
n−1∑
k=1

k

∫ ∞
s

e−ntak(t)cn−k(t)dt, s ≥ 0, n ≥ 2.

Taking s = 0, n = 2,

a2 = a2(0) = −
∫ ∞

0
e−2ta1(t)c1(t)dt = −

∫ ∞
0

e−tc1(t)dt.
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Taking s = 0, n = 3,

a3 = a3(0) = −
2∑

k=1

k

∫ ∞
0

e−3tak(t)c3−k(t)dt

= −
∫ ∞

0
e−2tc2(t)dt− 2

∫ ∞
0

e−3ta2(t)c1(t)dt

= −
∫ ∞

0
e−2tc2(t)dt+ 2

∫ ∞
0

e−3te2t

(∫ ∞
t

e−uc1(u)du

)
c1(t)dt

= −
∫ ∞

0
e−2tc2(t)dt+ 2

∫ ∞
0

e−t
(∫ ∞

t
e−uc1(u)du

)
c1(t)dt

= −
∫ ∞

0
e−2tc2(t)dt+

∫ ∞
0

∫ ∞
0

e−tc1(t)e−ue1(u)dtdu

= −
∫ ∞

0
e−2tc2(t)dt+

(∫ ∞
0

e−tc1(t)dt

)2

.

Corollary 5.4. Let f ∈ S, f(z) = z + a2z
2 + a3z

3 + · · · . Then |a2| ≤ 2, |a3| ≤ 3.

Proof. Using notations from 5.3, we have

a2 = −
∫ ∞

0
e−te1(t)dt.

Now, |c1(t)| ≤ 2 (cf. Theorem 4.9 iv)), and

|a2| ≤
∫ ∞

0
e−t|c1(t)|dt ≤ 2

∫ ∞
0

e−tdt = 2.

(case of equality can be analyzed!)
By rotation invariance (f ∈ S ←→ eiθf(ze−iθ) ∈ S), wlog, we assume a3 ≥ 0. Then, using

Theorem 4.9 iv),

a3 = Re a3 ≤ −
∫ ∞

0
e−2t Re c2(t)dt+

(∫ ∞
0

e−t Re c1(t)dt

)2

≤ −
∫ ∞

0
e−2t Re c2(t)dt+

∫ ∞
0

e−t(Re c1(t))2dt (Cauchy-Schwarz)

≤ 2

∫ ∞
0

e−tdt+

∫ ∞
0

(Re c2(t))(e−t − e−2t)dt ((Re c1)2 ≤ 2 + Re c2)

≤ 2 + 2

∫ ∞
0

(e−t − e−2t)dt (|c2| ≤ 2 and e−t − e−2t ≥ 0)

= 2 + 2 + 2

[
1

2
e−2t

]∞
0

= 3.

Lemma 5.5. Let p ∈ P. Then

(i) |p′(z)| ≤ 2

(1− |z|)2
, z ∈ D,

(ii) |p(u)− p(v)| ≤ 2|u− v|
(1− r)2

. u, v ∈ B(0, r), r ∈ (0, 1).
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Proof. Let z0 ∈ D, r ∈ (0, 1) and r > |z0|, γ(t) = reit, t ∈ [0, 2π]. Then

p′(z0) =
1

2πi

∫
γ

p(ζ)

(ζ − z0)2
dζ.

On the other hand, there exists a probability measure µ on ∂D such that

p(ζ) =

∫
∂D

η + ζ

η − ζ
dµ(η), for ζ ∈ D.

Let Kη(ζ) denote (η + ζ)/(η − ζ). By Fubini,

p′(z0) =
1

2πi

∫
γ

p(ζ)

(ζ − z0)2
dζ =

1

2πi

∫
γ

∫
∂D

Kη(ζ)

(ζ − z0)2
dµ(η)dζ

=

∫
∂D

[
1

2πi

∫
γ

Kη(ζ)

(ζ − z0)2
dζ

]
dµ(η) =

∫
∂D
K ′η(z0)dµ(η),

(so we can differentiate under the integral sign in the Herglotz formula)
here

K ′η(z0) =
d

dz

(η + z

η − z

)∣∣∣∣
z=z0

=
2

(η − z0)2
, |K ′η(z0)| ≤ 2

(1− |z0|)2
,

and

|p′(z0)| ≤
∫
∂D

2

(1− |z0|)2
dµ(η) =

2

(1− |z0|)2
.

(ii) follows from (i).

Lemma 5.6. Let I = [a,∞), p : D × I → C be a.e. defined, p be measureable, p(·, t) ∈ P for
a.e.t ∈ I. Let J = [a, b] ⊆ I, and suppose u, v : J → D are absolute continuous and solutions of
the ODE

ẇ(t) = −w(t)p(w(t), t) for a.e. t. (16)

If u(t0) = v(t0) for some t0 ∈ J , then u = v.

Proof. 1) For a solution w : J → D, t 7→ |w(t)| is decreasing:

d

dt
|w(t)|2 =

d

dt
w(t)w(t) = ẇ(t)w(t) + w(t)ẇ(t)

= −|w(t)|2p(w(t), t)− |w(t)|2p(w(t), t)

= −|w(t)|2 Re p(w(t), t) ≤ 0 for a.e. t.

So |u(t)|, |v(t)| ≤ r := max{|u(a)|, |v(a)|} < 1.

2) |u(t)p(u(t), t)− v(t)p(v(t), t)|
≤ |u(t)||p((u(t), t)− p(v(t), t)|+ |u(t)− v(t)||p(v(t), t)|

≤ 1 · 2

(1− r)2
|u(t)− v(t)|+ 2

1− r
|u(t)− v(t)|

≤ K|u(t)− v(t)|,
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for a.e. t, where K is independent of t. Let D(t) := (u(t) − v(t))2, t ∈ J . Then D is absolute
continuous, and ∣∣∣ d

dt
D(t)

∣∣∣ ≤ 2|u̇(t)− v̇(t)||u(t)− v(t)|

= 2|u(t)p(u(t), t)− v(t)p(v(t), t)||u(t)− v(t)|
≤ 2K|u(t)− v(t)|2 = K ′D(t).

Hence
D(t) ≤ eK′|t−t0|D(t0) for t ∈ J. (special case of Gronwell’s inquality)

Since D(t0) = 0, we conclude D(t) ≡ 0 and so u ≡ v.

Theorem 5.7. Let I = [a, b) ⊆ R, V : D× I → C be a.e. defined measurable function such that
a) V (z, ·) is a.e defined and measurable for each z ∈ D,
b) V (·, t) is holomorphic on D for a.e. t ∈ I and

V (z, t) = −zp(z, t) for z ∈ D,

where p(·, t) ∈ P. Then for each z ∈ D, s ∈ I, there exists a unique map w : [s,∞) → D such
that

i) w is Lipschitz on [s,∞),
ii) w(s) = z (initial condition),
iii) ẇ(t) = V (w(t), t) for a.e. t ∈ I.

Proof. Need a technical lemma that will be formulated afterward!
Idea of proof: Picard-Lindelöf iteration scheme!
Le z ∈ D, s ∈ I fixed. Define w0(t) ≡ 0 and

wn+1(t) = z · exp
(
−
∫ t

s
p(wn(u), u)du

)
, for n ∈ N0, t ≥ s.

(so w1(t) = zes−t.)
i) |wn(t)| ≤ r := |z|, t ≥ s, n ∈ N (note Re p ≥ 0).
ii) wn is L-Lipschitz on [s,∞) with L = 2r/(1− r):

|wn+1(t2)− wn+1(t1)| = |z|
∣∣∣∣exp

(
−
∫ t2

s
· · ·
)
− exp

(
−
∫ t1

s
· · ·
)∣∣∣∣

≤ |z|
∣∣∣∣∫ t2

s
· · · −

∫ t1

s
· · ·
∣∣∣∣ = |z|

∣∣∣∣∫ t2

t1

p(wn(u), u)du

∣∣∣∣
≤ 2r

1− r
|t2 − t1|, t1 ≥ t1 ≥ s,

here we have used the fact |e−a − e−b| ≤ |a− b| for Re a,Re b ≥ 0, and

p(wn(u), u) ≤ 2

1− |wn(u)|
≤ 2

1− r
.

iii) |wn+1(t)− wn(t)| ≤ 2n(t− s)n

(1− r)2nn!
, for n ∈ N0, t ≥ s:
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By induction: for n = 0,

|w1(t)− w0(t)| = es−t|z| ≤ 1, OK.

n→ n+ 1,

|wn+1(t)− wn(t)| = |z|
∣∣∣∣exp

(
−
∫ t

s
p(wn(u), u)du

)
− exp

(
−
∫ t

s
p(wn−1(u), u)du

)∣∣∣∣
≤ |z|

∣∣∣∣∫ t

s
|p(wn(u), u)− p(wn−1(u), u)|du

∣∣∣∣
≤ |z| 2

(1− r)2

∫ t

s
|wn(u)− wn−1(u)|du

≤ |z| 2

(1− r)2

∫ t

s

2n(u− s)n

(1− r)2nn!
du =

2n+1

(1− r)2(n+1)
· (t− s)n+1

(n+ 1)!
.

So

w(t) := lim
n→∞

wn(t) = w0(t) +

∞∑
n=1

(wn(t)− wn+1(t))

exists for each t ∈ I, convergence uniformly on compact subsets J ⊆ I, i.e., wn → w locally
uniformly on I.

Thus, w is L-Lipschitz on I, |w(t)| ≤ r < 1 for t ∈ I, p(wn(u), u)→ p(w(u), u) for a.e. u ∈ I.
Since |p(wn(u), u)| ≤ 2/(1− r), so∫ t

s
p(wn(u), u)du→

∫ t

s
p(w(u), u)du for each t ∈ [s,∞)

by the Lebesgue dominated convergence theorem.
For each t ∈ I,

w(t) = lim
n→∞

wn+1(t) = lim
n→∞

z exp
(
−
∫ t

s
p(wn(u), u)du

)
= z exp

(
−
∫ t

s
p(w(u), u)du

)
for t ∈ [s,∞).

So w(s) = z, ẇ(t) exists for a.e. t ∈ [s,∞), and

ẇ(t) = −z exp
(
−
∫ t

s
p(w(u), u)du

)
· p(w(t), t) = −w(t)p(w(t), t) = V (w(t), t).

Existence of w follows.
Uniqueness is clear by 5.6

Corollary 5.8. For fixed z ∈ D, s, t ∈ I with s ≤ t, let ϕs,t(z) = w(t), where w is as in Theorem
5.7. Then

i) ϕs,t(·) is holomorphic and injective on D, ϕs,t(D) ⊆ D.
ii) ϕs,t(0) = 0, ϕ′s,t(0) = es−t.
iii) ϕs,u = ϕt,u ◦ ϕs,t, 0 ≤ s ≤ t ≤ u <∞.
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iv) fs(z) := limt→∞ e
tϕs,t(z) exists for z ∈ D, s ∈ I. Moreover, etϕs,t → fs locally uniformly

on D.
v) {fs}s∈I is a Loewner chain with

ḟs(z) = V (z, s)f ′s(z) for z ∈ D and a.e. s ∈ I.

Proof. As in the proof of Theorem 5.7, define for z ∈ D, t ≥ s,

w0(z, t) ≡ 0,

wn+1(z, t) := z exp
(
−
∫ t

s
p(wn(z, u), u)du

)
.

Using induction and Morera, one shows that wn(z, t) is holomorphic on D for each t ∈ [s,∞).
Since |wn(z, t)| ≤ |z|, we have {wn(·, t)}n∈N is a normal family for each t ∈ [s,∞). Then

wn(z, t)→ w(z, t) = ϕs,t(z) pointwise on D for each t ∈ [s,∞), convergence is locally uniformly
on D by Vitali.

i) Hence w(·, t) = ϕs,t is holomorphic on D for s, t ∈ I, s ≤ t. Let s, t0 ∈ I, s ≤ t0,
z1, z2 ∈ D, and suppose ϕs,t0(z1) = ϕs,t0(z2), equivalently w(z1, t0) = w(z2, t0). Then by Lemma
5.6, w(z1, t) = w(z2, t) for all t ≥ s; hence z1 = w(z1, s) = w(z2, s) = z2. So ϕs,t0 is injective on
D.

ii) w(0, t) ≡ 0 solves ODE; so ϕs,t(0) = 0.

ϕs,t(z) = z exp
(
−
∫ t

s
p(ϕs,u(z), u)du

)
.

So

ϕ′s,t(0) = exp
(
−
∫ t

s
p(ϕs,u(0), u)du

)
= exp(−(t− s)) = es−t. (17)

iii) Let v(u) := ϕs,u(z), ṽ(u) := ϕt,u(ϕs,t(z)), where z ∈ D, s ≤ t ≤ u fixed. Then v(t) =
ϕs,t(z), ṽ(t) = ϕt,t(ϕs,t(z)) = ϕs,t(z), since ϕt,t(z) = z. So v, ṽ have the same initial values at
time u = t. They satisfy equations

v̇(u) = V (v(u), u), ˙̃v(u) = V (ṽ(u), u) for a.e. u.

So v(u) ≡ ṽ(u) for u ≥ t by Lemma 5.6, i.e.,

ϕs,u(z) = ϕt,u(ϕs,t(z)) for z ∈ D, s ≤ t ≤ u.

iv) By (17),

et−sϕs,t(z) = z exp
(∫ t

s
[1− p(ϕs,u(z), u)]du

)
∈ S,

so by Koebe,

|ϕs,t(z)| ≤
es−t|z|

(1− |z|)2
, z ∈ D.

So

|1− p(ϕs,u(z), u)| = |p(0, u)− p(ϕs,u(z), u)|

≤ |ϕs,u(z)| 2

(1− |z|)2
(Lemma 5.5)

≤ es−u 2|z|
(1− |z|)4

≤ Ce−u, for fixed s, z.
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So ∫ ∞
s
|1− p(ϕs,u(z), u)|du <∞

with uniform convergence in z on compact subsets of D. Hence

fs(z) := lim
t→∞

etϕs,t(z) = lim
t→∞

eset−sϕs,t(z)

= es · z exp
(∫ ∞

s
[1− p(ϕs,u(z), u)]du

)
exists with locally uniform convergence in z ∈ D. So fs ∈ H(D),

fs(0) = lim
t→∞

etϕs,t(0) = 0,

f ′s(0) = lim
t→∞

etϕ′s,t(0) = es.

Since etϕs,t is injective on D, fs is injective on D by Hurwitz.
For z ∈ D, s ≤ t,

ft(ϕs,t(z)) = lim
u→∞

euϕs,u(ϕs,t(z)) = lim
u→∞

euϕs,u(z) = fs(z).

So ft ◦ ϕs,t = fs for s ≤ t. Hence Ωt = ft(D) ⊇ ft(ϕs,t(D)) = Ωs. (Strict inclusion for s < t
comes from ϕ′s,t(0) = es−t < 1 and ϕst is a conformal map.) As in Proposition 5.1, we conclude
that {fs}s∈I is a Loewner chain.

Since {fs}s∈I is a Loewner chain, (z, t) 7→ f(z, t) ∈ HL(D × I). Since f(ϕa,t(z), t) = fa(z),
there exists E ⊆ I − [a,∞), |E| = 0, such that

0 =
d

dt
fa(z) =

d

dt
f(ϕa,t(z), t)

= f ′t(ϕa,t(z)) ·
d

dt
ϕa,t(z) + ḟt(ϕa,t(z)).

Since d
dtϕa,t(z) = V (ϕa,t(z), t),

ḟt(w) = −V (w, t) · f ′t(w), for t ∈ I \ E,w ∈ ϕa,t(D) ⊆ D.

We may assume that ḟt(·) and V (·, t) are holomorphic for t ∈ I \ E. Then by the uniqueness
Theorem,

ḟt(z) = −V (z, t) · f ′t(z), for z ∈ D, t ∈ I \ E.

Continuity of wn(z, t) in z for t fixed:

w0(z, t) ≡ 0;

wn+1(z, t) = z exp
(
−
∫ t

s
p(wn(z, u), u)du

)
.

By induction on n. n→ n+ 1:
zk ∈ D → z0 ∈ D, |zk| ≤ r < 1, wn(zk, u) → wn(z0, u) as n → ∞ for each u ∈ [s, t].

Moreover, |wn(zk, u)| ≤ r and so

p(wn(zk, u), u) ≤ 1 + r

1− r
.
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So ∫ t

s
p(wn(zk, u), u)du→

∫ t

s
p(wn(z0, u), u)du

by the Lebesgue dominated convergence theorem.
In the proof of Theorem 5.7, the following fact was used.

Lemma 5.9. Let U ⊆ Rd be open, M ⊆ Rd be measurable, g : U ×M → C be a.e. defined such
that

i) g(·, t) is continuous on U for a.e. t ∈M ,
ii) g(z, ·) is a.e. defined on M and measurable.
Let φ : M → U be measurable. Then h : M → C a.e. defined by h(t) := g(φ(t), t) for t ∈M

is measurable.

Outline of Proof. I. For each n ∈ N, pick a countable open covers Un = {Un,k : k ∈ N} of U such
that Un,k b U and

mesh(Un) = sup{diam(Un,k) : k ∈ N} → 0 as n→∞.

Pick zn,k ∈ Un,k and let {ϕn,k : k ∈ N} be a partition of unity subordinate to Un. For f ∈ C(U),
define

Tnf :=
∑
k∈N

f(zn,k)ϕn,k ∈ C(U).

Then Tnf → f locally uniformly on U for all f ∈ C(U).
For z ∈ U ,

|h(z)− Tnh(z)| ≤
∑
k∈N
|h(z)− h(zn,k)|ϕn,k(z)

≤ sup{|h(u)− h(u′)| : |u− u′| ≤ mesh(Un)}.

II. There exists E ⊆M , |E| = 0 such that g(·, t) ∈ C(U) for t ∈M \ E. Then

Tng(z, t) =
∑
k∈N

g(zn,k, t)ϕn,k(z)→ g(z, t) as n→∞

for z ∈ U , t ∈M \ E. So for a.e. t ∈M ,∑
k∈N

g(zn,k, t)ϕn,k(ψ(t))→ g(ψ(t), t) = h(t) as n→∞.

So h is measurable.

Lemma 5.10. Let f ∈ S. Then

|f(z)− z| ≤ C |z|2

(1− |z|)2
for z ∈ D,

where C is an absolute constant independent of f .
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Proof. Define

g(z) =
1

z2
(f(z)− z), z ∈ D.

Then g ∈ H(D) (0 is a removable singularity). Pick 0 < r < 1. Then by Koebe and Maximum
principle,

|g(z)| ≤ 1

r2

[ r

(1− r)2
+ r
]
≤ 2

r(1− r)2
for|z| ≤ r.

When |z| ≤ 1/2, r = 1/2,

|g(z)| ≤ 16 ≤ 16

(1− |z|)2
.

When 1/2 ≤ |z| < 1, r = |z|,
|g(z)| ≤ 4

(1− |z|)2
.

So C = 16 works.

Proposition 5.11. Let {ft} be normalized Loewner chain on I = [a,∞), ft(0) = 0, f ′t(0) > 0,
t ∈ I. Let ϕs,t := f−1

t ◦ fs for a ≤ s ≤ t. Then

etϕs,t → fs locally uniformly on D

as t→∞ (i.e., along any sequence tn →∞).

Proof. Suppose a ≤ s ≤ t, ϕs,t(0) = 0, ϕs,t(D) ⊆ D. So
(1) |ϕs,t(z)| ≤ |z| for z ∈ D by Schwarz.

Since ϕs,t is injective on D, ϕ′s,t(0) = es−t, so

(2) |ϕs,t(z)| ≤ es−t
|z|

(1− |z|)2
for z ∈ D by Koebe.

Since ft ◦ ϕs,t = fs, e
−tft ∈ S, so by Lemma 5.10,

|ft(w)− etw| ≤ C et|w|2

(1− |w|)2
.

Using this for w = ϕs,t(z) ∈ D and (1) + (2), we obtain

|fs(z)− etϕs,t(z)| = |ft(ϕs,t(z))− etϕs,t(z)|

≤ C e
t|ϕs,t(z)|2

(1− |z|)2
(|ϕs,t(z)| ≤ |z|)

≤ C e
te2s−2t|z|2

(1− |z|)4
= e−t

Ce2s|z|2

(1− |z|)4
→ 0

locally uniformly on D as t→∞.

{ft}: Loewner chain
ϕs,t=f

−1
t ◦fs
−→←−

fs= lim
t→∞

etϕs,t

ϕs,t: Semi-group
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Theorem 5.12. (Existence and uniqueness for solutions of Loewner-Kufarev equa-
tions) Let I = [a,∞) ⊆ R, V : D× I → C be a.e. defined measurable function such that

i) V (z, ·) is a.e. defined and measurable for each z ∈ D,
ii) V (·, t) is holomorphic for a.e. t ∈ I,
iii) V (z, t) = −zp(z, t) for z ∈ D, t ∈ I, where p(·, t) ∈ P.
Then there exists a unique normalized Loewner chain {ft}t∈I with ft(0) ≡ w0 ≡ 0 such that

the Loewner-Kufarev equation hold:

ḟt(z) = −V (z, t)f ′t(z) for z ∈ D, a.e. t ∈ I. (18)

Suppose g : D× I → C is a function such that
i) g(·, t) ∈ H(D), g(0, t) = 0, g′(0, t) = et for t ∈ I,
ii) g(z, ·) is uniform Lipschitz on compact subsets of D× I,
iii) g solves (18), i.e.,

∂g

∂t
(z, t) = −V (z, t)

∂g

∂z
(z, t)

for each z ∈ D and a.e. t ∈ I.
Then there exists an entire function h : C→ C with h(0) = 0, h′(0) = 1, such that gt = h◦ft

for t ∈ I.
Suppose g satisfies the following additional assumption:
iv) there exist r0 ∈ (0, 1) and C ≥ 0 such that |gt(z)| ≤ Cet for t ∈ I, z ∈ B(0, r0). Then

h = idC and so gt = ft for all t ∈ I.

Proof. We know that there exists a normalized Loewner chain {ft} solving (18). (See Corollary
5.8. Find unique ϕs,t(z) such that ϕs,s(z) = z, z ∈ D, ∂ϕs,t/∂t = V (ϕs,t(z), t) for a.e. t ≥ s.
Let fs := limt→∞ e

tϕs,t. Then ϕs,t = f−1
t ◦ fs. {ft}t∈I is a Loewner chain solving (18).)

Let g be a function as in hypotheses, gt := g(·, t).
Claim. gt ◦ ϕs,t = gs for a ≤ s ≤ t.
Fix s. Then for z ∈ D and a.e. t ≥ s. By Proposition 4.12 (iii), g is differentiable for a.e.

t ∈ I.

d

dt
gt ◦ ϕs,t(z) =

d

dt
g(ϕs,t(z), t)

=
∂g

∂z
(ϕs,t(z), t) ·

∂ϕs,t(z)

∂t
+
∂g

∂t
(ϕs,t(z), t)

= g′t ◦ ϕs,t(z) · V (ϕs,t(z), t) + ġt ◦ ϕs,t(z)
= g′t(w) · V (w, t) + ġt(w) = 0.

Since t 7→ g(ϕs,t(z), t) is local Lipschitz, we have

gt ◦ ϕs,t(z) ≡ const. in t ≥ s, and for fixed s ∈ I, z ∈ D.

For t = s,
gs ◦ ϕs,s(z) = gs(z).

The Claim follows. By Claim,

gt ◦ ϕs,t = gs, ⇐⇒ gt ◦ f−1
t = gs ◦ f−1

s
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on Ωs := fs(D) for t ≥ s. Note
⋃
t≥a Ωt = C, because Ωt ⊇ B(0, 1

4e
t) by Koebe. Define

h(z) = (gt ◦ f−1
t )(z) if z ∈ Ωt.

Then h is well-defined and holomorphic on C =
⋃
t∈I Ωt; hence entire.

By definition, gt = h ◦ ft for t ∈ I.

h(0) = h(ft(0)) = gt(0) = 0,

and
h′(0) ◦ f ′t(0) = g′t(0) =⇒ h′(0)et = et =⇒ h′(0) = 1.

Suppose that g satisfies (iv) in addition, then

|gt(z)| = |h(ft(z))| ≤ Cet for z ∈ B(0, r0).

By Koebe, ft(B(0, r0)) ⊇ B(0, 1
4e
tr0), and so

|h(w)| ≤ Cet, for w ∈ B(0,
1

4
etr0), t ∈ I.

So there exists C ′ ≥ 0 such that

|h(w)| ≤ C ′(1 + |w|), w ∈ C.

By Cauchy estimate, h(w) ≡ aw + b, a, b ∈ C. Since h(0) = 0, h′(0) = 1, we have b = 0, a = 1,
and so h(w) ≡ w, i.e., h = idC.

Suppose {f̃t} is another normalized Loewner chain with ft(0) = 0, t ∈ I, solving (18). Then

|f̃t(z)| ≤ et
|z|

(1− |z|)2
, z ∈ D, t ∈ I,

by Koebe, and so

|f̃t(z)| ≤ 2et, |z| ≤ 1

2
, t ∈ I,

i.e., (iv) is true. Moreover, (i)–(iii) are laos true and so f̃t = ft for all t ∈ I, i.e., there exists a
unique normalized Loewner chain solving (18).

Remark 5.13. It is likely that the second part of Theorem 5.12 can be proved under weaker
regularity assumptions, e.g., namely that g(·, t) ∈ H(D) for each t ∈ I, and g(z, ·) is absolutely
continuous on compact J ⊆ I for each z ∈ D. It is not clear that under those hypotheses g is
differentiable for a.e. (z, t) ∈ D× I, not even local boundedness is clear!

Figure 19: The Loewner triangle

Recent papers by Bracci, Contreras, Diaz-Madrigal, et.al.
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Theorem 5.14. Let f ∈ H(D), f ′(z) 6= 0 for z ∈ D, and

(1− |z|2)

∣∣∣∣z f ′′(z)f ′(z)

∣∣∣∣ ≤ 1 for z ∈ D. (19)

Then f is univalent on D (injective and holomorphic).
Conversely, if f is univalent on D, then f ′(z) 6= 0 for z ∈ D, and

(1− |z|2)

∣∣∣∣z f ′′(z)f ′(z)

∣∣∣∣ < 6 for z ∈ D.

Proof. I. Suppose first that f is univalent on D. Wlog f(0) = 0, f ′(0) = 1, so f ∈ S. Then
f ′(z) 6= 0 for z ∈ D, and by Lemma 1.6,∣∣∣∣(1− |z|2)

f ′′(z)

f ′(z)
− 2z

∣∣∣∣ ≤ 4 for z ∈ D.

Hence,

(1− |z|2)

∣∣∣∣z f ′′(z)f ′(z)

∣∣∣∣ ≤ 4|z|+ 2|z|2 < 6 for z ∈ D.

II. Suppose now that f satisfies the hypotheses of the first part. Wlog f(0) = 0, f ′(0) = 1.
Define

f(z, t) := f(e−tz) + (et − e−t)zf ′(e−tz), z ∈ , t ∈ I := [0,∞),

ft(z) := f(z, t).

Then f(·, t) ∈ H(D), t ∈ I, and f(z, ·) ∈ C1[0,∞), z ∈ D.

∂f

∂t
(z, t) = −e−tzf ′(e−tz) + (et + e−t)zf ′(e−tz)− (et − e−t)z2e−tf ′′(e−tz)

= etzf ′(e−tz)− (et − e−t)z2e−tf ′′(e−tz)

= etzf ′(e−tz)

[
1− (1− e−2t)

e−tzf ′′(e−tz)

f ′(e−tz)

]
.

So ∣∣∣∣∂f∂t (z, t)

∣∣∣∣ ≤M(r, T ) for |z| ≤ r < 1, 0 ≤ t ≤ T.

Hence f ∈ HL(D× I).

∂f

∂z
(z, t) = e−tf ′(e−tz) + (et − e−t)

[
f ′(e−tz) + ze−tf ′′(e−tz)

]
= etf ′(e−tz) + (et − e−t)ze−tf ′′(e−tz)

= etf ′(e−tz)

[
1 + (1− e−2t)

e−tzf ′′(e−tz)

f ′(e−tz)

]
.

Denote w = e−tz. Then |w| < e−t ≤ 1.∣∣∣∣(1− e−2t)
e−tzf ′′(e−tz)

f ′(e−tz)

∣∣∣∣ < (1− |w|2)

∣∣∣∣wf ′′(w)

f ′(w)

∣∣∣∣ ≤ 1
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So ∂f(z, t)/∂z 6= 0. Define

V (z, t) := − ḟ(z, t)

f ′(z, t)
= −zp(z, t),

where

p(z, t) =
1−B(z, t)

1 +B(z, t)
, B(z, t) = (1− e−2t)

e−tzf ′′(e−tz)

f ′(e−tz)
.

For each t ∈ I, B(·, t) ∈ H(D), B ∈ C(D × I), |B(z, t)| < 1 for (z, t) ∈ D × I, and B(0, t) ≡ 0
for all t ∈ I. Then p(0, t) ≡ 1 and Re p(·, t) ≥ 0 for all t ∈ I, i.e., p(·, t) ∈ P, or V is a “Herglotz
vector field”.

ḟ(z, t) = −V (z, t)f ′(z, t).

So ft = f(·, t) solved the Loewner-Kufarev equation.
There exist M ≥ 0 such that |f(z)| ≤M , |f ′(z)| ≤M for |z| ≤ 1/2. Then

|ft(z)| ≤ |f(e−tz)|+ et|z||f ′(e−tz)| ≤M(1 + et) ≤ 2Met, for t ≥ 0.

By Theorem 5.12, {ft}t∈[0,∞) is a Loewner chain, so ft is univalent for t ≥ 0. In particular,
f0 = f is univalent.

6 Variants and special cases of the Loewner-Kufarev equations

6.1. Slit domains
Let γ : [a,∞] → Ĉ be simple path ending at ∞ such that 0 /∈ γ[a,∞], γ(∞) = ∞. Let

Ωt = C \ γ([t,∞)) be simply connected domains. Then {Ωt} is a geometric Loewner chain.
Let ft : D → Ωt be the unique conformal map such that ft(0) = 0, f ′t(0) > 0. Then {ft} is a
Loewner chain. By a homeomorphic reparametrization of time we may wlog assume that {ft}
is a normalized Loewner chain, i.e., f ′t(0) = et, t ∈ I (cf. Lemma 4.7).

Figure 20: Slit Loewner chain

For a ≤ s < t <∞, γ([s, t)) ⊆ Ωt, lims′→t− γ(s′) = γ(t) ∈ ∂Ωt. Hence, by Corollary 2.20,

λ(t) := lim
s′→t−

f−1
t (γ(s′)) ∈ ∂D exists.

Denote
Js,t = f−1

t ([s, t)) ⊆ D, J̄s,t = Js,t ∪ {λ(t)}.

Since Ĉ \ Ωt = γ([a,∞]) is locally connected (w.r.t. chordal metric), ft has a continuous
extension f : → Ĉ (cf. Theorem 2.1 and Remark 2.6). Then

ft(λ(t)) = lim
s′→t−

ft(f
−1
t (γ(s′)) = lim

s′→t−
γ(s′) = γ(t).

So ft(λ(t)) = γ(t). λ(t) is uniquely determined by this equation (cf. Proposition 2.7).
Let ϕs,t = f−1

t ◦ fs. ϕs,t is a conformal map of D onto the slit domain D \ Js,t =: Us,t.
∂Us,t = J̄s,t ∪ ∂D is locally connected, so by Theorem 2.1, ϕs,t has a continuous extension
ϕs,t : D → U s,t. As in Example 2.15, one shows that there exists an open arc Is,t ⊆ ∂D such
that

ϕ−1
s,t (Js,t) = Is,t. (cf. Proposition 2.7)

Then λ(s) ∈ Is,t, ϕs,t(λ(s)) ∈ Js,t.
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Figure 21:

Lemma 6.2. Fix T ∈ [a,∞). Then there exists a distortion function ω : (0,∞) → (0,∞),
ω(δ)→ 0 as δ → 0+ such that

i) diam(Js,t) ≤ ω(|s− t|),
ii) diam(Is,t) ≤ ω(|s− t|), for a ≤ s ≤ t ≤ T .

Proof. By uniform continuous of γ on [a, T ] it follows that

diam(γ[s, t)) ≤ ω1(|s− t|), a ≤ s < t ≤ T,

for some distortion function ω1 (here and in what follows, we assume the distortion function
ω(δ) is monotonically increasing as δ increasing).

Set gt = f−1
t . By Theorem 2.17,

diam(Js,t) = diam(gt(γ[s, t)))

≤ ω2

(diam(γ[s, t))

f ′t(0)

)
≤ ω2(e−a diam(γ[s, t))) ≤ ω3(|s− t|).

So diam(Js,t) is uniformly small if s < t are close in [a, T ]. Wlog, assume s < t are so close that
diam(Js,t) < 1/2.

Let z0 := λ(t), r = 2 diam(Js,t). Then Js,t ⊆ B := B(z0, r) but 0 /∈ B(z0, r). So the arc
C ⊆ D ∩ ∂B separates 0 and Js,t in D. Then C̃ = ϕ−1

s,t (C) separates 0 and Is,t in D. Hence, by
Theorem 2.17,

diam(Is,t) ≤ ω4(diam(C̃)) ≤ ω5

(diam(C)

ϕ′s,t(0)

)
≤ ω5(et−s diam(C)) ≤ ω6(Js,t) ≤ ω7(|s− t|).

Let Ω ⊆ Ĉ be open, f : Ω → C be holomorphic (f holomorphic at ∞ if z 7→ f(1/z)
holomorphic at 0). Define

Cl(f,Ω) = {w ∈ Ĉ : there exists sequence {zn} in Ω

such that zn → z0 ∈ ∂Ω and f(zn)→ w},

the set of cluster values of f on Ω.

Proposition 6.3. Let Ω  Ĉ, f : Ĉ→ C holomorphic. Then
i) sup

z∈Ω
|f(z)| = sup{|w| : w ∈ Cl(f,Ω)} ∈ [0,∞] (a version of maximum principle),

ii) if Cl(f,Ω) ⊆ C, then osc(f,Ω) := sup{|f(z1) − f(z2)| : z1, z2 ∈ Ω} = sup{|w1 − w2| :
w1, w2 ∈ Cl(f,Ω)} = diam(Cl(f,Ω)).

Proof. i) The proof is standard. “≥” is clear. For “≤”: there exists a sequence {zn} in Ω such
that

|f(zn)| →M := sup
z∈Ω
|f(z)|, as n→∞.

Wlog, assume zn → z0 ∈ Ω, f(zn)→ w ∈ Ĉ with M = |w|.
Case 1: z0 ∈ ∂Ω. Then w ∈ Cl(f,Ω), and M = |w|. We have done!
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Case 2: z0 ∈ Ω. Then |f | attains a maximum at z0. By the maximum principle, f ≡ w on
the component U of Ω with z0 ∈ U . Then we also have w ∈ Cl(f,Ω) and M = |w|.

ii) “≥” is clear. For “≤”: Let z1, z2 ∈ Ω be arbitrary. Consider the map z 7→ f(z) − f(z2).
It is holomorphic on Ω, so by i) there exists w1 ∈ Cl(f,Ω) ⊆ C such that

|f(z1)− f(z2)| ≤ |w1 − f(z2)|.

Applying the same argument to z 7→ w1 − f(z), we find w2 ∈ Cl(f,Ω) ⊆ C such that

|f(z1)− f(z2)| ≤ |w1 − f(z2)| ≤ |w1 − w2|.

The result follows.

Lemma 6.4. Setup as in 6.1, T ∈ [a,∞). Then there exists a distortion function ω such that

|ϕs,t(z)− et−sz| ≤ ω(|s− t|), for z ∈ D, 0 ≤ s ≤ t ≤ T, |s− t| small.

Proof. Let R : Ĉ → Ĉ, R(z) = 1/z, be the reflection w.r.t. ∂D. Let J∗s,t = R(Js,t). By the
Schwarz reflection principle, ϕs,t has an extension to a conformal map

ϕs,t : Ω := Ĉ \ {Īs,t} → Ω′ := Ĉ \ {J̄s,t ∪ J∗s,t}.

by
ϕs,t(z) = R(ϕs,t(R(z))) for |z| > 1.

Near 0, ϕs,t has the expansion

ϕs,t(z) = es−tz + a2z
2 + · · · .

So near ∞,

ϕs,t(z) = et−sz + c0 +
c1

z
+ · · · ,

which implies that ϕs,t has a 1st order pole at ∞. Let

f(z) = ϕs,t(z)− et−sz, for z ∈ Ω.

Then f : Ω→ C is holomorphic on Ω with removable singularity at ∞.

Cl(f,Ω) = {w ∈ C : there exists {zn} in Ω, zn → z0 ∈ ∂Ω = Īs,t, f(zn)→ w}
⊆ A+B := {a+ b : a ∈ A, b ∈ B},

where A = J̄s,t ∪ J∗s,t, B = {−et−sz0 : z0 ∈ Īs,t}. Note that f(0) = 0. By Proposition 6.3,

sup
z∈D
|ϕs,t(z)− et−sz| = sup

z∈D
|f(z)| = sup

z∈D
|f(z)− f(0)|

≤ osc(f,Ω) ≤ diam(Cl(f,Ω)) ≤ diam(A) + diam(B).

If |s− t| small, diam(Js,t) is small,

diam(J∗s,t) . diam(Js,t) ≤ ω1(|s− t|).
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So diam(A) ≤ ω2(|s− t|).
If |s− t| small, et−s . 1, and

diam(B) . diam(Is,t) ≤ ω3(|s− t|).

Hence,

sup
z∈D
|ϕs,t(z)− et−sz| ≤ diam(A) + diam(B) ≤ ω(|s− t|).

Corollary 6.5. λ (as in 6.1) is a continuous function on [a,∞).

Proof. Let a ≤ s < t ≤ T for any given T . Then λ(t), ϕs,t(λ(s)) ∈ J̄s,t. We have
(1) |λ(t)− ϕs,t(λ(s))| ≤ diam(Js,t) ≤ ω1(|s− t|),
(2) |ϕs,t(λ(s))− et−sλ(s)| ≤ ω2(|s− t|), (Lemma 6.4)
(3) |et−sλ(s)− λ(s)| ≤ |et−s − 1| ≤ ω3(|s− t|).
By (1) – (3), |λ(t)− λ(s)| ≤ ω(|s− t|). So λ is continuous on [0, T ]. Since T is arbitrary, λ

is continuous on [0,∞).

Theorem 6.6. (Loewner equation for slit mappings) Let {ft} be a Loewner chain generated
by a slit (as in 6.1). Then

ḟt(z) = −V (z, t)f ′t(z) for a.e. t ∈ [a,∞), z ∈ D,

where

V (z, t) = −zλ(t) + z

λ(t)− z
, (z, t) ∈ D× I.

Here, λ : I = [a,∞)→ ∂D is continuous.

Proof. Let ϕs,t = f−1
t ◦fs. We know from Theorem 4.13 that {ft} satisfies the Loewner-Kufarev

equation with

V (z, t) = lim
ε→0

ϕt,t+ε(z)− z
ε

, z ∈ D, a.e. t ∈ I.

For a ≤ s < t <∞, define

Φs,t(z) := log
( z

ϕs,t(z)

)
= (t− s) + · · ·

which is holomorphic in D (cf. (10) in the Proof of Lemma 4.10). Actually, z 7→ z/ϕs,t(z)
has a zero-free continuous extension to D; hence this function has a continuous logarithm on D
(uniquely determined by a point normalization). Hence, Φs,t has a continuous extension to D.
By the Schwarz formula

Φs,t(z) = i Im Φs,t(0) +
1

2π

∫ 2π

0

ζ + z

ζ − z
Re Φs,t(ζ)|dζ|,

where ζ = eit, |dζ| = dt. Note Im Φs,t(0) = 0,

Re Φs,t(ζ) = log

∣∣∣∣ ζ

ϕs,t(ζ)

∣∣∣∣ = log

∣∣∣∣ 1

ϕs,t(ζ)

∣∣∣∣ ≥ 0, for ζ ∈ ∂D,
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and
|ϕs,t(ζ)| = 1 for ζ ∈ ∂D \ Is,t.

So Re Φs,t(ζ) is supported on Īs,t 3 λ(s).
Since

t− s = Φs,t(0) =
1

2π

∫ 2π

0
Re Φs,t(ζ)|dζ|,

We can define a probability measure µs,t on ∂D by

dµs,t(ζ) =
1

2π(t− s)
Re Φs,t(ζ)|dζ|.

Then supp(µs,t) ⊆ Īs,t 3 λ(s). Fix s, and let t = s+ ε, ε→ 0+. Then diam(Is,s+ε)→ 0 (Lemma
6.2). Hence,

µs,s+ε
w∗−→ δλ(s) (Dirac mass at λ(s)) as ε→ 0+.

i.e., ∫
∂D
h(ζ)dµs,s+ε(ζ)→

∫
∂D
h(ζ)dδλ(s) = h(λ(s)), for h ∈ C(∂D).

So

lim
ε→0+

Φs,s+ε(z)

ε
= lim

ε→0+

∫
∂D

ζ + z

ζ − z
dµs,s+ε(ζ)

=

∫
∂D

ζ + z

ζ − z
dδλ(s) =

λ(s) + z

λ(s)− z
, for all s ∈ I, z ∈ D.

On the other hand, ϕs,t(z) = −z exp(−Φs,t(z)). So

V (z, t) = lim
ε→0+

ϕs,s+ε(z)− z
ε

= lim
ε→0+

z
exp(−Φs,s+ε(z))− 1

ε

= z
∂

∂ε
exp(−Φs,s+ε(z))

∣∣∣∣
ε=0

= −z exp(0)
∂Φs,s+ε(z)

∂ε

∣∣∣∣
ε=0

= −zλ(s) + z

λ(s)− z
.

Here, we have used the fact

lim
ε→0+

Φs,s+ε(z) = lim
ε→0+

ε · Φs,s+ε(z)

ε
= 0.

Example 6.7. If λ(t) ≡ 1, then

ft(z) =
etz

(1 + z)2
.

In fact,

ḟt(z) =
etz

(1 + z)2
, f ′t(z) = et

1− z
(1 + z)3

.

So

ḟt(z) = z
1 + z

1− z
f ′t(z).
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Example 6.8. Stationary solutions of the Loewner-Kufarev equation.
Let f ∈ H(D) with f(0) = 0, f ′(0) = 1. Suppose that ft(z) = a(t)f(z) is a normalized

Loewner chain. Then f ′t(0) = a(t)f ′(0) = a(t) = et. So

ft(z) = etf(z).

Note
ḟt(z) = etf(z), f ′t(z) = etf ′(z).

The Loewner-Kufarev equation implies

ḟt(z) = etf(z) = −V (z, t)f ′t(z) = zp(z, t)etf ′(z),

where

p(z, t) =
f(z)

zf ′(z)
∈ P. (0 is a removable singularity)

So

Re p(z, t) > 0⇐⇒ Re
( f(z)

zf ′(z)

)
> 0⇐⇒ Re

(zf ′(z)
f(z)

)
> 0.

Theorem 6.9. Let f ∈ H(D), f(0) = 0, f ′(0) = 1. TFAE.

i) Re
(
z
f ′(z)

f(z)

)
> 0 (has removable singularities by assumption),

ii) f ∈ S and Ω = f(D) is starlike with respect to 0, i.e., [0, w] ⊆ Ω for all w ∈ Ω.

Proof. i) ⇒ ii): By Example 6.8, F (z, t) = ft(z)− etf(z) solves the Loewner-Kufarev equation.
F is C∞-smooth on R× D and |ft(z)| ≤ Cet for t ∈ R, z ∈ B(0, 1/2); f ′t(0) = et, t ∈ R. Hence,
{ft} is a normalized Loewner chain; so f = f0 is a conformal map and

Ωt := ft(D) = etΩ ⊆ Ω0 = Ω

for all t < 0. So f ∈ S and Ω is starlike w.r.t. 0.
ii) ⇒ i): If f ∈ S and Ω is starlike w.r.t. 0, then {Ωt}t∈R with Ωt = etΩ forms a geometric

Loewner chain, corresponding to the analytic Loewner chain {ft}t∈R with ft(z) = etf(z). Hence,
Re(zf ′(z)/f(z)) > 0 by Example 6.8.

7 The radial and chordal versions of the Loewner-Kufarev equa-
tion

7.1. Radial Loewner chains (disk version of Loewner chain).
Let I = [0, b] with b ∈ (0,∞]. The sequence of regions {Ωt}t∈I is called a (geometric) radial

Loewner chain if
i) Ωt ⊆ D is a simply connected region with 0 ∈ Ωt for t ∈ I,
ii) Ω0 = D,
iii) Ωs ! Ωt for s < t, s, t ∈ I,
iv) {Ωt} is continuous in t in sense of kernel convergence with respect to w0 = 0.

If ft : D←→ Ωt be the unique conformal map with ft(0) = 0, f ′t(0) > 0, then {ft}t∈I is the
corresponding (analytic) radial Loewner chain. It is normalized if f ′t(0) = e−t for t ∈ I.
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Simplest situation: Ωt = D \ [1/t, 1), “a radius grows out of ∂D towards 0”.
Study of radial Loewner chain can be reduced to whole plane version. If {Ωt}t∈[0,b] is a radial

Loewner chian, define

Ω̃t =

{
Ω−t

etD
for

t ∈ [−b, 0],

t ≥ 0.

(continuity clear, also at t = 0.) Then {Ωt}t∈[−b,∞) is a (whole plane) Loewner chain. If the {Ωt}
is normalized (i.e., the corresponding analytic Loewner chain is), then {Ω̃t} is normalized. {Ωt}
can be obtained from {Ω̃t} by “time reversed and restriction of time interval. So the regularity
theory for whole plane Loewner chains remains valid in radial case, in particular, if {ft}t∈[0,b] is
a normalized radial Loewner chain, then

ḟt(z) = V (z, t)f ′t(z) for a.e. t ∈ I, all z ∈ D,

where V is a Herglotz vector field (radial Loewner-Kufarev equation). Note the sign change in
comparison to Loewner-Kufarev equation due to time reversal!.

7.2. Radial Loewner chains generated by slits.
Let γ : [0, b] → C be a simple path, γ(0) = 1, γ(t) ∈ D, t ∈ (0, b], 0 /∈ γ[0, b]. Let

Ωt = D \ γ([0, t]) ⊆ D be a simply connected region with 0 ∈ Ωt, Ω0 = D, Ωt ⊆ Ωs, t < s. Then
{Ωt}t∈[0,b] is a geometric radial Loewner chain. We can assume that the corresponding analytic
radial Loewner chain {ft} is normalized: ft(0) = 0, f ′t(0) = e−t.

Figure 22: Radial Loewner chain and corresponding maps

ft(λ(t)) = γ(t), ϕs,t(λ(s)) ∈ Js,t.
Lemma 6.2. Js,t, Is,t are uniformly small if |s− t| is small.

Lemma 6.4. ϕs,t is uniformly close to idC if |s− t| is small.

Corollary 6.5. |λ(s)− λ(t)| is uniformly small if |s− t| is small. λ is continuous.

Proof of Theorem 6.6 shows

ḟt(z) = −zλ(t) + z

λ(t)− z
f ′t(z), (z, t) ∈ D× [0, b].

7.3. Idea of chordal Loewner chains.

Figure 23: Conformal maps

Let ft : D → Ωt be conformal maps. We want to normalize conformal maps at boundary
point, say 1 ∈ ∂D. Meaningless, unless we have additional assumptions:

Ωt ⊆ D such that B(1, r(t)) ∩ D ⊆ Ωt, Ωt ⊇ Ωs as t < s.

Figure 24: Additional assumptions for Ωt

Simplest situation: Ωt = D \ (−1, 1− t], t ∈ [0, 2]. (figure)
Mostly, one switches to upper-half plane H = {w ∈ C : Imw > 0}, ∂H = R ∪ {∞}, and

D ∪ {1} ←→ H ∪ {∞}.
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Lemma 7.4. Let Ω ⊆ D be simply connected region, g : Ω ↔ D be conformal map. Suppose
ζ ∈ ∂D ∩ ∂Ω and there exists r > 0 such that D ∩ B(ζ, r) ⊆ Ω. Then g has a holomorphic
extension to a neighborhood of ζ and g′(ζ) 6= 0.

Proof. Wlog, we assume ζ = 1 and there exists an open arc α ⊆ ∂D∩∂Ω with 1 ∈ α. By Wolff’s
lemma, g has a continuous extension to Ω∪α. Then g(α) ⊆ ∂D, and g extends to a holomorphic
function near ζ. Points in D near g(ζ) ∈ ∂D have precisely one preimage near ζ, so g is locally
injective near ζ and g′(ζ) 6= 0.

Note that f = g−1 has a locally injective extension to η = g(ζ) ∈ ∂D.

Corollary 7.5. Let Ω ⊆ H be a simply connected region such that H \ B(0, R) ⊆ Ω for some
R > 0. Then there exists a unique conformal map f : H ↔ Ω such that f has a holomorphic
extension near ∞ and

f(z) = z +
a1

z
+
a2

z2
+ · · · , for z near ∞.

Proof. Existence: By Lemma 7.4, there exists a conformal map g : Ω ↔ H such that g has a
holomorphic and locally injective extension to∞ with g(∞) ∈ R̂. Post-composition by a Möbius
transformation, we may assume g(∞) =∞. Since g is locally injective, g has the first order pole
near ∞, and so

g(z) = b1z + b0 +
b−1

z
+
b−2

z2
+ · · · ,

g(x) ∈ R̂ for x ∈ R near ∞; so

b1 = lim
x∈R→∞

g(x)

x
∈ R;

b0 = lim
x∈R→∞

g(x)− b1x ∈ R.

Since Im g(ix) > 0 for x ∈ R, so

b1 = Re b1 = lim
x→+∞

Re
(g(ix)

ix

)
≥ 0,

so b1 > 0. Then ϕ(w) = (w − b0)/b1 preserves H, and g̃ := ϕ ◦ g is a conformal map of Ω onto
H with

g̃(z) = z +
˜b−1

z
+ · · · , near ∞.

Let f := g̃−1. Then f : H↔ Ω is a conformal map, holomorphic near ∞, and

f(z) = z +
a1

z
+
z2

z2
+ · · · for z near ∞.

Uniqueness: Suppose f1, f2 : H↔ Ω are two conformal maps, holomorphic near ∞, and

f1(z) = z + o(1), f2(z) = z + o(1).

Then ϕ := f2 ◦f−1
1 : H↔ H is a conformal map, hence a Höbius transformation with ϕ(H) = H.

ϕ(z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc > 0.

Moreover, ϕ(∞) = ∞, so ϕ(z) = az + b, a > 0, b ∈ R. ϕ(z) = z + o(1), so a = 1, b = 0, and
ϕ = idĈ. Hence, f1 = f2.
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Theorem 7.6. (Herglotz representation for positive harmonic functions) a) (disk ver-
sion) Let h : D → (0,∞) be a positive harmonic function. Then there exists a unique positive
measure µ on ∂D with 0 < µ(∂D) <∞ such that

h(z) =

∫
∂D

Re
(ζ + z

ζ − z

)
dµ(ζ), z ∈ D.

b) (half-plane version) Let h : H→ (0,∞) be a positive harmonic function. Then there exist
a unique constant a ≥ 0 and a unique positive measure ν on R such that

0 < a+

∫
R

1

1 + t2
dν(t) <∞,

and

h(z) = a · Im z +

∫
R

Im
( 1

t− z

)
dν(t), z ∈ H.

Proof. a) h is a positive harmonic function on D if and only if there exists a unique f ∈ H(D)
such that Re f = h > 0, f(0) = h(0) > 0, if and only if there exists a unique measure µ ≥ 0 on
∂D such that

f(z) =

∫
∂D

ζ + z

ζ − z
dµ(ζ),

with 0 < µ(∂D) = f(0) <∞. The existence and uniqueness follow.
b) Let ϕ : D ∪ {1} ↔ H ∪ {∞} be conformal map with ϕ(1) =∞, say

z = ϕ(w) = i
1 + w

1− w
, w = ψ(z) = ϕ−1(z) =

z − i
z + i

.

Suppose that h : H→ (0,∞) is harmonic, ∆h = 0. Then g = h◦ϕ : D→ (0,∞) is harmonic on D,
∆g = 0. There exists a unique holomorphic function on D such that Re f = g, f(0) = g(0) > 0.
By (a),

f(w) = a · 1 + w

1− w
+

∫
∂D\{1}

ζ + w

ζ − w
dµ(ζ), where a = µ({1}) ≥ 0.

Let τ := ϕ∗µ|∂D\{1} be the measure on R, τ(A) = µ(ϕ−1(A)) for A ⊆ R.∫
R
ρdτ =

∫
∂D\{1}

(ρ ◦ ϕ)dµ, ρ ∈ L1(τ),

0 < µ(∂D) = a+ τ(R) <∞. (a, τ) are unique.
Let f̃(z) = f(ψ(z)), z ∈ H. Since (1 + w)/(1− w) = −iz,

Re
(1 + w

1− w

)
= Re(−iz) = Im z.

Set ζ = (t− i)/(t+ i), t ∈ R←→ ζ ∈ ∂D \ {1}. Then

ζ + w

ζ − w
= −i

(1 + tz

t− z

)
= −i

(1 + t2

t− z
− t
)
,

and

Re
(ζ + w

ζ − w

)
= Re

(
−i
[1 + t2

z − t

])
= (1 + t2) Im

( 1

z − t

)
.
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Define measure ν on R by
dν(t) = (1 + t2)dτ(t).

Then ∫
R

1

1 + t2
dν(t) =

∫
R
dτ(t) <∞,

and

0 < a+

∫
R

1

1 + t2
dν(t) = a+ τ(R) = µ(∂D) <∞.

Then

f̃(z) = a(−iz) +

∫
R

(−i)
(1 + t2

t− z
− t
)
dτ(t), z ∈ D.

Hence

h(z) = Re f̃(z) = a Im z +

∫
R

Im
( 1

t− z

)
dν(t), z ∈ D.

Setting z = x+ iy, y > 0, the integral converges since

Im
( 1

t− z

)
= Im

( 1

(t− x)− iy

)
=

y

(x− t)2 + y2
.

1

1 + t2

for x, y fixed, |t| large.
The uniqueness of (a, ν) is clear.

Remark 7.7. If g ∈ H(H), Im g > 0. Let f = −ig, g = if . Then Re f > 0. The proof shows
that there exist unique constants a, b ∈ R, a ≥ 0, and a Lebesgue finite measure τ ≥ 0 on R,
such that

g(z) = az + b+

∫
R

(1 + t2

t− z
− t
)
dτ(t), z ∈ H.

Theorem 7.8. (Julia’s Lemma) Let f : H→ H be holomorphic, and

c := inf
z∈H

Im f(z)

Im z
≥ 0.

Then

c = lim
y→+∞

Im f(iy)

y
. (20)

Suppose in addition that f is holomorphic near ∞, and has a Laurent expansion of the form

f(z) = z +
a1

z
+
a2

z2
+ · · · (21)

near ∞. Then c = 1 and a1 ≤ 0 (so a1 ∈ R) with equality iff f(z) = z for z ∈ H.

Note: Im f(z) ≥ Im z for z ∈ H, and so f(Ht) ⊆ Ht (t ≥ 0), where Ht = {z ∈ C : Im z > t}.

Proof. Let h := Im f . h ≥ 0, ∆h = 0. Wlog, h > 0 (otherwise, f ≡ a ∈ R, claim true). By
Theorem 7.6

h(z) = a · Im z +

∫
R

Im
( 1

t− z

)
dν(t),
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where a ≥ 0, ν ≥ 0 and

h̃(z) =

∫
R

Im
( 1

t− z

)
dν(t) ≥ 0, for z ∈ H.

So
h(z)

Im z
= a+

h̃(z)

Im z
,

which implies c ≥ a. For claim, it suffices to show that

lim
y→+∞

h̃(iy)

y
= 0, (then c = a and (1) true.)

However,

Im(
1

t− iy
) =

y

t2 + y2
≤ 1

t2 + 1
∈ L1(ν),

and 1/((t2 + y2)→ 0 as y → +∞. By the Lebesgue dominate convergence theorem,

h̃(iy)

y
=

∫
R

1

t2 + y2
dν(t)→ 0 as y → +∞.

Suppose now in addition that f has expansion as in (21). Then

c = lim
y→+∞

Im f(iy)

y
= lim

y→+∞

y + o(1)

y
= 1.

So, by the definition of c, Im f(z) ≥ Im z for all z ∈ H. Set a1 = α+ iβ, z = x+ iy ∈ H, |z|
large.

Im
(a1

z

)
= Im

(a1z

|z|2
)

=
1

|z|2
(βx− αy).

Thus

0 ≤ |z|(Im f(z)− Im z) =
1

|z|
(βx− αy) +O

( 1

|z|

)
.

So βx− αy ≥ 0 for x+ iy ∈ H. This implies that β = 0 and α ≤ 0. So a1 ∈ R and a1 ≤ 0.
Case of equality: If a1 = 0, then inductively, a2 = a3 = · · · = 0.
Let z = reiϕ, r > 0, ϕ ∈ (0, π). Suppose a1 = · = an−1 = 0, inductively,

f(z) = z +
an
zn

+ · · · .

So

0 ≤ |z|n(Im f(z)− Im z) = Im(ane
−inϕ) +O

( 1

|z|

)
.

So Im(ane
−inϕ) ≥ 0, ϕ ∈ (0, π), equivalently, Im(ane

iα) ≥ 0 for all α ∈ [0, 2π]. This implies
an = 0.
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Theorem 7.9. (Integral representation) Let Ω ⊆ H be a simply connected region such that
H \B(0, R) ⊆ Ω for some R > 0. f : H↔ Ω be unique conformal map such that

f(z) = z +
a1

z
+
a2

2
+ · · · for z near ∞.

Then there exists a unique finite Borel measure ν ≥ 0 on R with compact support such that

f(z) = z +

∫
R

1

t− z
dν(t).

Proof. Uniqueness: follows form the uniqueness of Herglotz representation of h = Im f .
Existence: Revisit proof of Herglotz representation. Let ϕ : D∪{1} ↔ H∪{∞} be conformal

Figure 25:

map defined by

z = ϕ(w) = i
1 + w

1− w
, and f̃ = f ◦ ϕ.

By the Schwarz reflection principle, f̃ has a holomorphic extension across an open arc α ⊆ ∂D
with 1 ∈ α. f̃(α) ⊆ R̂; f̃(α \ {1}) ⊆ R, Im f̃(ζ) ≡ 0 for ζ ∈ α \ {1} (c.f. proof of Lemma 7.4),
Im f̃ > 0 on H. Let g̃ = −if̃ . Then f̃ = ig̃, Re g̃ = Im f̃ > 0, and Re g̃(ζ) ≡ 0 for ζ ∈ α \{1}. So

Re g̃(rζ)→ 0 as r → 1−, (22)

locally uniformly for ζ ∈ α \ {1}. In the Herglotz representation for g̃, the measure µ on ∂D can
be obtained as w∗–limits of measure µr on ∂D as r → 1−, where

dµr(ζ) = Re g̃(rζ)
|dζ|
2π

.

Then (22) implies that

supp(µ) ⊆ ∂D \ (α \ {1}) = ∂D \ α ∪ {1}.

So

f̃(w) = b+ i

∫
∂D

ζ + w

ζ − w
dµ(ζ), for some b ∈ R.

Going back to H,

f(z) = az + b+

∫
R

(1 + t2

t− z
− t
)
dτ(t),

where a = µ({1}), b ∈ R, and τ is finite measure with support in ϕ(∂D \ α) b R. Let

dν(t) = (1 + t2)dτ(t), b̃ = b+

∫
R
tdτ(t).

Then ν ≥ 0 is a finite measure with compact support, and

f(z) = az + b̃+

∫
R

1

t− z
dν(t) = az + b̃+O

(1

z

)
.

On the other hand, f(z) = z + o(1), so a = 1, b̃ = 0.
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Remark. If f : H↔ Ω is as in Theorem 7.9, and Im f has a continuous extension to H = H∪R,
then

f(z) = z +
1

π

∫
R

1

t− z
Im f(t)dt.

So

dν(t) =
1

π
Im f(t)dt.

Note that if f has a continuous extension to R, then g̃ has a continuous extension to ∂D \ {1},
and

dµ(ζ) =
1

2π
Re g̃(ζ)|dζ| on ∂D \ {1}.

Set w = (z − i)/(z + i), ζ = (t− i)/(t+ i). Then dζ/dt = 2i/(t+ i)2, |dζ/dt| = 2/(1 + t2),

dτ(t) =
1

2π
Re g̃(ζ)|dζ| = 1

2π
Im f(t)

∣∣∣dζ
dt

∣∣∣dt =
1

π(1 + t2)
Im f(t)dt.

Note that for |z| large,∫
R

1

t− z
dν(t) = −1

z

∫
R

1

1− t/z
dν(t)

= −
∞∑
n=0

1

zn+1

∫
R
tndν(t). (uniformly converges)

If f(z) = z +
∑∞

n=1 an/z
n is the Laurent expansion of f near ∞, then

an = −
∫
R
tn−1dν(t) ≤ 0 for n ∈ N,

if a1 = 0, then ν(R) = 0, and ν = 0. So f(z) = z.

The proof shows that supp(ν) b I, if I is an interval such that f has a holomorphic extension
to R\I with f(R\I) ⊆ R. In particular, if the Laurent expansion converges outside B(0, R), then
supp(ν) ⊆ [−R,R], and conversely, the integral representation shows that if supp(ν) ⊆ [−R,R],
then the Laurent expansion converges in C \B(0, R).

Definition 7.10. a) Let K ⊆ C be a set. Then rad(K) = sup{|z| : z ∈ K}.
b) Let A be a set. A ⊆ H is called an H-hull if A is relatively closed in H, i.e., A = A ∩H,

and if ΩA = H \ A is a simply connected region, then there exists a unique conformal map
fA : H↔ ΩA with holomorphic extension near ∞ of the form

fA(z) = z +
a1

z
+
a2

z2
+ · · · .

We call hcap(A) := −a1 ≥ 0 the half-plane capacity of A.
c) Q = set of all H-hulls.

Lemma 7.11. Let A be an H-hull,

fA(z) = z +

∫
R

1

t− z
dνA(t)

be the integral representation as in 7.10. Then
a) νA(R) = hcap(A),
b) rad(supp(νA)) ' rad(A),
c) hcap(A) . rad(A)2.
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Proof. a) Suppose fA has the Laurent expansion fA(z) = z + a1/z + · · · near ∞, then

hcap(A) = −a1 =

∫
R
dνA(t) = νA(R).

b) We know that R := rad(supp(νA)) is the smallest number such that the Laurent expansion
of fA converges on C \B(0, R). Then by the Schwarz reflection principle, fA has a holomorphic
extension to a conformal map on Ĉ \B(0, R) into D̂. Define

h(w) :=
1

R
fA(Rw) = w +

ã1

w
+ · · · for w ∈ D∗ := Ĉ \ D.

Then h ∈ Σ (c.f. Section 1), and so

Ĉ \ g(D∗) ⊆ B(0, 2), (c.f. Corollary 1.3)

So 1
RA ⊆ B(0, 2), and so A ⊆ B(0, 2R), i.e., rad(A) ≤ 2R.

Conversely, let R̃ = rad(A). Then gA = f−1
A has a conformal extension to Ĉ \B(0, R̃). Let

h̃(w) :=
1

R̃
gA(R̃w) = w +

b1
w

+ · · · .

Then h̃ ∈ Σ, and h̃(D∗) ⊇ C \B(0, 2), i.e.,

gA(C \B(0, R̃)) ⊇ C \B(0, 2R̃).

So fA is holomorphic on C \B(0, 2R̃), i.e., R ≤ 2R̃ = 2 rad(A). So R ' R̃.
c) Notation as in b). fA(z) = z + a1/z + · · · ,

h(w) =
1

R
fA(Rw) = z +

a1

R2z
+ · · · ∈ Σ.

By the Area Theorem 1.2, |a1/R
2| ≤ 1, and so

hcap(A) = −a1 ≤ R2 . R̃2 = rad(A)2.

Remark 7.12. Let A be a family of H-hulls, F = {fA : A ∈ A} be corresponding family of
conformal maps fA : H↔ H \A with usual normalization fA(z) = z+ o(1) near ∞. If rad(A) is
uniformly bounded for A ∈ A (i.e., if {rad(A) : A ∈ A} bounded), then one has good “a priori”
control for the maps in F . For example,

i) fA(z) = z +

∫
R

1

t− z
dµA(t), where measures µA have uniformly bounded total mass with

supports contained in a fixed interval (follows from Lemma 7.11).
ii) F is locally uniformly bounded, and in particular, a normal family. Actually, F is uni-

formly bounded on bounded subsets of H. There exists R > 0 such that fA ∈ F has extension
to a conformal map on Ĉ \ B(0, R). Let hA(w) = 1

RfA(Rw), w ∈ D∗. Then hA ∈ Σ, and

hA(D∗) ⊇ Ĉ \B(0, 2). So fA(B(0, R) ∩H) ⊆ B(0, 2R).

7.13. Chordal Loewner chians (half-plane version of Loewner chains)
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Let I = [0, b], b ∈ (0,∞]. {Ωt}t∈I is a (geometric) chordal Loewner chain if
i) each Ωt ⊆ H is a simply connected region of the form Ωt = H \At, where At is an H-hull.
ii) Ω0 = H (A0 = ∅).
iii) Ωs  Ωt for s > t, s, t ∈ I (equivalently, As ! At).
iv) {Ωt}t∈I satisfies a continuity requirement (cf. Lemma 7.14).
If ft : H↔ Ωt be the unique conformal map such that

ft(z) = z +
a1(t)

z
+
a2(t)

z2
+ · · · , near ∞,

then {ft}t∈I is the corresponding (analytic) chordal Loewner chain. It is normalized if

ft(z) = z − 2t

z
+ · · · , near ∞ for t ∈ I,

i.e., a1(t) = −2t, t ∈ I.

Lemma 7.14. Let {Ωt}t∈I be a chordal Loewner chain corresponding to analytic Loewner chain
{ft}t∈I . Let {tn} be a sequence in I with tn → t∞ as n → ∞. Denote Ωn = Ωtn, fn = ftn,
Ωn = H \An, and

fn(z) = z +

∫
R

dµn(u)

u− z
, z ∈ H.

Then the following are equivalent:
i) fn → f∞ locally uniformly on H.

ii) µn
w∗−→ µ∞, i.e.,∫
ϕdµn →

∫
ϕdµ∞ for all ϕ ∈ Cc(R) (equivalently, for all ϕ ∈ C(R)).

iii) hcap(An)→ hcap(A∞).
iv) Ωn → Ω∞ in the sense of kernel convergence with respect to ∞, where the kernel of

{Ωn} with respect to ∞, Kern∞({Ωn}) = the set of all points w ∈ C for which there exists an
unbounded region U with w ∈ U and U ⊆ Ωn for all large n.

Proof. Let T =
∑
{tn : n ∈ N ∪ {∞}} ∈ I. So An ⊆ AT and rad(An) ≤ rad(AT ) < ∞ for

n ∈ N ∪ {∞}. In particular, fn, n ∈ ∪{∞}, is uniformly bounded on bounded subsets of H and
there exist C0 ≥ 0, R0 ≥ 0, such that

µn(R) ≤ C0, supp(µn) ⊆ [−R0, R0] for n ∈ N ∪ {∞}.

i) =⇒ ii).
I) If ψ ∈ Cc(R2) is arbitrary, then∫

H
fnψdA→

∫
H
f∞ψdA.

Suppose supp(ψ) ⊆ B(0, R) and let Kδ = {z ∈ B(0, R) : Im z ≥ δ} for δ > 0. Then∣∣∣∣∫
H

(fn − f∞)ψ

∣∣∣∣ ≤ ∫
H∩B(0,R)

|ψ| · |fn − f∞|dA

≤A(Kδ)‖ψ‖∞ · sup
z∈Kδ

|fn(z)− f∞(z)|

+ 4δR‖ψ‖∞ sup{|fn(z)| : n ∈ N ∪ {∞}, z ∈ B(0, R) ∩H}

≤ ε

2
+
ε

2
= ε

60



if δ > 0 is sufficiently small and n is sufficiently large.
II) Let P be an arbitrary polynomial (in z). Then∫

Pdµn →
∫
Pdµ∞.

Pick χ ∈ C∞c (C) such that χ|B(0,R) ≡ 1, and h = χ · P . Then hz = χz · P ∈ C∞c (C). Hence

h(z) = − 1

π

∫
C

hz(w)

w − z
dA(w), z ∈ C.

So ∫
R
Pdµn =

∫
R
χPdµn =

∫
R
hdµn = − 1

π

∫
R

∫
C

hz(w)

w − u
dA(w)dµn(u)

=
1

π

∫
C

(∫
R

dµn(u)

u− w

)
hz(w)dA(w) =

1

π

∫
C

(fn(w)− w)hz(w)dA(w)

→ 1

π

∫
C

(f∞(w)− w)hz(w)dA(w) =

∫
R
Pdµ∞.

III) Let ϕ ∈ C(R) be arbitrary. By the Weierstrass Approximation Theorem, there exists a
polynomial such that |P − ϕ| < ε on [−R0, R0]. Then∣∣∣∣∫ ϕdµn −

∫
ϕdµ∞

∣∣∣∣ ≤ εµn(R) + εµ∞(R) +

∣∣∣∣∫ Pdµn −
∫
Pdµ∞

∣∣∣∣ ≤ (2C0 + 1)ε

for n large.
ii) =⇒ iii)

Suppose µn
w∗−→ µ∞. Then

hcap(An) = µn(R) =

∫
R

1dµn →
∫
R

1dµ∞ = µ∞(R) = hcap(A∞).

iii) =⇒ i)
Suppose hcap(An) → hcap(A∞). We want to show that fn → f∞ locally uniformly on H.

Equivalently, for all sequence {zn} in H with zn → z∞ ∈ H, we have fn(zn)→ f∞(z∞).
Spacial case I. t∞ ≤ tn for all n ∈ N. Then A∞ ⊆ An, equivalently, Ω∞ ⊇ Ωn. Let

ϕn := f−1
∞ ◦ fn, n ∈ N, equivalently, fn = f∞ ◦ ϕn. Then ϕn(H) ⊆ H, and ϕn is conformal near

∞. Let ϕn(H) = H \Bn, where Bn is a H-hull.
Let an = hcap(An), a∞ = hcap(A∞). Then

fn(z) = z +
an
z

+ · · · , f∞(z) = z +
a∞
z

+ · · · ,

and

ϕn(z) = z +
an − a∞

z
+ · · · .

So
hcap(Bn) = an − a∞ = hcap(An)− hcap(A∞)→ 0 as n→∞.
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Write

ϕn(z) = z +

∫
R

1

u− z
dνn(u),

where νn ≥ 0, supp(νn) b R. Then νn(R) = hcap(Bn)→ 0. Since

|ϕn(z)− z| ≤ νn(R)

Im z
for z ∈ H,

we have ϕn → idH locally uniformly on H. If zn ∈ H → z∞ ∈ H, then ϕn(zn) → z∞, and so
fn(zn) = f∞(ϕn(zn))→ f∞(z∞).

Spacial case II. tn ≤ t∞ for all n ∈ N. In this case An ⊆ A∞, equivalently, Ωn ⊇ Ω∞. Let
ϕn = f−1

n ◦ f∞, equivalently, fn ◦ϕn = f∞. Then ϕn(H) ⊆ H, and ϕn is conformal near ∞. Let
ϕn(H) = H \Bn, where Bn is a H-hull. Similarly, we have

hcap(Bn) = hcap(A∞)− hcap(An)→ 0 =⇒ ϕn → idH

locally uniformly on H. If zn ∈ H→ z∞ ∈ H, then ϕn(zn)→ z∞. From Remark 7.12, {fn} is a
normal family. So {fn} is equicontinuous at z∞. We have

f∞(zn) = f∞(z∞) + o(1)

f∞(zn) = fn(ϕ(zn)) = fn(z∞) + o(1)

fn(zn) = fn(z∞) + o(1).

So
fn(zn) = f∞(z∞) + o(1).

Special case I + II imply general case.
i) =⇒ iv)
Assume fn → f∞ locally uniformly on H. We want to show that Kern∞ := Kern∞({Ωn}) =

Ω∞ (applied to all subsequences gives Ωn → Ω∞ with respect to ∞).
Note that rad(An) ≤ R̃ <∞ for n ∈ N ∪ {∞}; so U := H \B(0, R̃) ⊆ Ωn, n ∈ N ∪ {∞}.
I. Ω∞ = f∞(H) ⊆ Kern∞.
Let w ∈ Ω∞ be arbitrary. Then there exists V b Ω∞ open with w ∈ V and U ∩ V 6= ∅. It

is enough to show that V ⊆ Ωn for large n (⇒ w ∈ Kern∞). If not, there exist nk ∈ N → ∞
and wk ∈ V \Ωn (without lose of generality wk → w∞ ∈ V ⊆ Ω∞) such that fnk −wk zero free
on H. Note that fnk −wk → f∞ −w∞ locally uniformly on H. Since w∞ ∈ Ω∞, so f∞ −w∞ is
not zero free. So f∞ − w∞ ≡ 0 by Hurwitz, and f∞ ≡ w∞, contradiction!

II. Kern∞ ⊆ Ω∞.
Note that there exist R1, R

′
1 > 0 and C1, C

′
1 > 0 such that

(1) |fn(z)− z| ≤ C1 for z ∈ H \B(0, R1),
(2) |f−1

n (w)− w| ≤ C ′1 for w ∈ H \B(0, R′1).
Let w∞ ∈ Kern∞ be arbitrary. We want to show w∞ ∈ Ω∞, i.e., there exists z∞ ∈ H such

that f∞(z∞) = w∞. Since w∞ ∈ Kern∞, there exists a region V b H with V ∩U 6= ∅, w∞ ∈ V ,
and V b Ωn for large n (wlog, for all n). Then W = U ∪ V ⊆ Ωn ⊆ H. Let gn = f−1

n |W .
Claim. {gn} is locally uniformly bounded and hence a normal family.
Proof by contradiction. Suppose not. Then there exist K ⊆W compact and a sequence {wn}

in K such that {gn(wn)} is unbounded. Without lose of generality, wn → w ∈ K, gn(wn)→∞.
Then wn = fn(gn(wn)) = gn(wn) +O(1) by (1) and wn → w∞. Contradiction!
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Using claim and passing to a subsequence, we may assume gn → g∞ ∈ H(W ) locally uni-
formly on W . gn(W ) ⊆ H, so g∞(W ) ⊆ H ∪ R.

Claim. g∞(W ) ⊆ H.
Otherwise, g∞ ≡const. by open mapping theorem. But by (2), |g∞(w)−w| ≤ C ′1 for w ∈ H

with |w| large. Contradiction!
Define z∞ = g∞(w∞) ∈ H. Then

f∞(z∞) = lim
n→∞

fn(gn(w∞)) = w∞

since fn → f∞ is locally uniform convergence.
vi) =⇒ i)
Assume Ωn → Ω∞. We want to show that fn → f∞ locally uniformly on H. Since {fn}

is a normal family, it suffices to show every subsequence {f̃n} of {fn} has a subsequence that
converges to f∞ locally uniformly on H. Write

f̃n(z) = z +

∫
R

dµ̃n(u)

u− z
,

where supp(µ̃n) ⊆ [−R0, R0], µ̃n(R) ≤ C0. Passing to a subsequence, wlog, µ̃n
w∗−→ µ̃∞, where

µ̃∞ ≥ 0 is a measure supported on [−R0, R0]. Then∫
R
ϕdµ̃n −→

∫
R
ϕdµ̃∞ for all ϕ ∈ C(R).

So

f̃n(z) = z +

∫
R

dµ̃n(u)

u− z
−→ f̃∞(z) = z +

∫
R

dµ̃∞(u)

u− z

pointwise for all z ∈ H. Since {f̃n} is a normal family, f̃n → f̃∞ is locally uniformly on H.
f̃∞ is a conformal map, f̃∞(z) = z + o(1) near ∞, f̃∞(H) = H \ Ã∞, where Ã∞ is a H-hull.

By implication i) =⇒ iv), we have

Ω̃∞ = Kern∞({Ω̃n}) = Ω∞.

So both f∞, f̃∞ : H↔ Ω∞ = Ω̃∞ are conformal maps. Since

f∞(z) = z + o(1), f̃∞(z) = z + o(1), near ∞,

by uniqueness (Corollary 7.5), f̃∞ = f∞. So f̃n → f∞ locally uniformly on H.

Lemma 7.15. Let A,B be H-hulls. Then
i) hcap(A) ≥ 0 with equality if and only if A = ∅.
ii) hcap(x+A) = hcap(A), x ∈ R.
iii) hcap(λA) = λ2 hcap(A), λ > 0.
iv) Suppose A ⊆ B. Then hcap(A) ≤ hcap(B) with equality if and only if A = B.

Proof. Let fA : H↔ H \A be conformal, with

fA(z) = z +
a1

z
+ · · · = z +

∫
R

dµA(u)

u− z
near ∞.
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Then hcap(A) = −a1 = µA(R).
i) So hcap(A) ≥ 0 with equality if and only if µA ≡ 0 if and only if fA(z) ≡ z if and only if

H \A = H if and only if A = ∅.
ii) Let x ∈ R.

fx+A(z) = x+ fA(z − x) = z +
a1

z − x
+ · · · = z +

a1

z
+ · · · .

So hcap(x+A) = hcap(A).
iii) Let λ > 0.

fλA(z) = λfA(z/λ) = z +
a1λ

z/λ
+ · · · = z +

λ2a1

z
+ · · · .

So hcap(λA) = λ2 hcap(A).
iv) Let ϕ = f−1

A ◦ fB : H↔ H \C. Then hcap(C) = hcap(B)− hcap(A) ≥ 0 with equality if
and only if C = ∅ if and only if ϕ = idH if and only if fA = fB if and only if A = B.

Remark 7.16. Let {Ωt}t∈I be a chordal Loewner chain, Ωt = H\At, At ∈ H be H-hull, At  As
if t < s and A0 = ∅. The map t→ hcap(At) is continuous (Lemma 7.14) and strictly increasing
(Lemma 7.15). So t→ hcap(At) is a homeomorphism of I = [0, b] onto its image J = [0, b′]. By
reparametrizing t, we may assume that hcap(At) = 2t for t ∈ I. Then

ft(z) = z − 2t

z
+ · · · near ∞,

and {ft} is normalized. So, without lose of generality, one can assume that a chordal Loewner
chain is normalized.

7.17. The associated semi-group

Let {ft}t∈I be a chordal Loewner chain, ft : H ↔ Ωt = H \ At. For 0 ≤ t ≤ s, let
ϕs,t = f−1

t ◦ fs, or equivalently, fs = ft ◦ ϕs,t. Then ϕs,t satisfies the following semigroup
property

ϕt,u ◦ ϕs,t = ϕs,u, 0 ≤ u ≤ t ≤ s, and ϕt,t = idH .

Lemma 7.18. Let {ft}t∈I be a normalized chordal Loewner chain with associated semigroup
ϕs,t. Then for t, s ∈ I, t ≤ s, ϕs,t is a conformal map H↔ H \Bs,t, where Bs,t is a H-hull, and

ϕs,t(z) = z − 2(s− t)
z

+ · · · near ∞.

There exists a measure µs,t ≥ 0, supp(µs,t) b R such that

ϕs,t(z) = z +

∫
R

dνs,t(u)

u− z
, z ∈ H.

νs,t(R) = 2(s− t). Moreover, if t ≤ s ≤ T , then rad(Bs,t) ≤ C0 (and so supp(νs,t) is uniformly
bounded).
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Proof. Clear that ϕs,t = f−1
t ◦ fs has a conformal extension near ∞ that maps real axis near ∞

into itself. So ϕs,t is conformal map of H onto H\compact set, i.e., ϕs,t(H) = H \ Bs,t, where
Bs,t is a H-hull.

hcap(Bs,t) = hcap(As)− hcap(At) = 2(s− t).

So

ϕs,t(z) = z − 2(s− t)
z

+ · · · near ∞,

and

ϕs,t(z) = z +

∫
R

dνs,t(u)

u− z
, z ∈ H. (Theorem 7.9)

We know νs,t ≥ 0, supp(νs,t) b R, and νs,t(R) = hcap(Bs,t) = 2(s − t). Finally, rad(Bs,t) ≤
2 rad(As) ≤ C0 for t, s ≤ T .

Lemma 7.19. Let {ft}t∈I be a normalized chordal Loewner chain. ϕs,t = f−1
t ◦ fs, t ≤ s,

s, t ∈ I. Then for fixed z ∈ H,

i) |ϕs,t(z)− z| ≤
2(s− t)

Im z
.

ii) |ft(z)− fs(z)| ≤
2(s− t)
(Im z)3

[2t+ (Im z)2].

iii) |ϕs,t(z)− ϕs,u(z)| ≤ 2(t− u)

Im z
, for u ≤ t ≤ s, u, t, s ∈ I.

iv) |ϕs,u(z)− ϕt,u(z)| ≤ 2(s− t)
(Im z)3

[2t+ (Im z)2], for u ≤ t ≤ s, u, t, s ∈ I.

So the maps (z, t) 7→ ft(z), (z, t) 7→ ϕs,t(z), (z, t) 7→ ϕt,u(z) belong to HL(H × I), HL(H ×
[0, s]), HL(H× [u, b]), respectively, where I = [0, b].

Proof. Recall

ft(z) = z +

∫
R

dµt(u)

u− z
, µt(R) = 2t,

ϕs,t(z) = z +

∫
R

dνs,t(u)

u− z
, νs,t(R) = 2(s− t).

By Julia’s Lemma on integral representation, Imϕs,t(z) ≥ Im z.

i) |ϕs,t(z)− z| ≤
∫
R

dνs,t(u)

|u− z|
≤ νs,t(R)

Im z
=

2(s− t)
Im z

.

ii) f ′t(z) = 1−
∫
R

dµt(u)

(u− z)2
, |f ′t(z)| ≤ 1 +

2t

(Im z)2
.

|ft(z)− fs(z)| ≤ |ft(z)− ft(ϕs,t(z))|

≤ |z − ϕs,t(z)| ·
(

1 +
2t

(Im z)2

)
≤ 2(s− t)

(Im z)3
[2t+ (Im z)2].

iii) ϕt,u ◦ ϕs,t = ϕs,u. So

|ϕs,t(z)− ϕs,u(z)| = |ϕs,t(z)− ϕt,u(ϕs,t(z))|
i)

≤ 2(t− u)

Imϕs,t(z)
≤ 2(t− u)

Im z
.
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iv) |ϕ′t,u(z)| =
∣∣∣∣1− ∫

R

dνt,u(x)

(x− z)2

∣∣∣∣ ≤ 1 +
2(t− u)

(Im z)2
≤ 1 +

2t

(Im z)2
. So

|ϕs,u(z)− ϕt,u(z)| = |ϕt,u(ϕs,t(z))− ϕt,u(z)|

≤ |ϕs,t(z)− z| ·
(

1 +
2t

(Im z)2

)
≤ 2(s− t)

(Im z)3
[2t− (Im z)2].

Corollary 7.20. Let {ft}t∈I be a normalized chordal Loewner chain, ϕs,t = f−1
t ◦ fs, t ≤ s,

s, t ∈ I. Denote f(z, t) = ft(z). Then there exists a set E ⊆ I with |E| = 0 such that
i) f is differentiable at each point (z, t) ∈ H× I \ E, i.e.,

f(z′, t′) = f(z, t) +
∂f

∂z
(z, t)(z′ − z) +

∂f

∂t
(z, t)(t′ − t) + o(|t′ − t|+ |z′ − z|) near (z, t).

In particular, ∂f(z, t)/∂t exists for all (z, t) ∈ H× I \ E.

ii) V (z, t) = lim
ε→0+

ϕt,t−ε(z)− z
ε

exists for all (z, t) ∈ H× I \ E, and

∂f

∂t
(z, t) = V (z, t) · ∂f

∂z
(z, t).

Proof. i) follows from Lemma 7.19 and Proposition 4.12.
ii) Let (z, s) ∈ H× I \ E, t ≤ s, t near s. ft ◦ ϕs,t = fs, z

′ = ϕs,t(z).

|z′ − z| = |ϕs,t(z)− z| ≤ C|s− t|, (Lemma 7.19).

0 = ft(ϕs,t(z))− fs(z) = f(z′, t)− f(z, s)

=
∂f

∂z
(z, s)(z′ − z) +

∂f

∂t
(z, s)(t− s) + o(|t− s|+ |z′ − z|)

=
∂f

∂z
(z, s)(z′ − z) +

∂f

∂t
(z, s)(t− s) + o(|t− s|)

Note that ∂f(z, s)/∂z 6= 0. So

V (z, s) = lim
t→s−

ϕs,t(z)− z
s− t

= lim
t→s−

z′ − z
s− t

= lim
t→s−

ḟ(z, s)

f ′(z, s)
+ o(1) =

ḟ(z, s)

f ′(z, s)
.

Theorem 7.21. (Loewner-Kufarev equation for chordal case) Let {ft}t∈I be a normalized
chordal Loewner chain, ϕs,t = f−1

t ◦ fs, t ≤ s, s, t ∈ I. Denote f(z, t) = ft(z). Then there eixsts
E ⊆ I with |E| = 0 such that

(a) V (z, t) = lim
ε→0+

ϕt,t−ε(z)− z
ε

exists for all (z, t) ∈ H× I \ E.

(b) ∂f(z, t)/∂t exists for all z ∈ H, t ∈ I \ E, and

∂f

∂t
(z, t) = V (z, t)

∂f

∂t
(z, t). (Loewner-Kufarev equation)

Moreover, V (z, t) has the following properties:
i) V (·, t) is holomorphic on H for each t ∈ I \ E,
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ii) V is measurable on H× I,
iii) for each t ∈ I \ E, there exists a probability measure νt on R, supp(νt) b R such that

V (z, t) = 2

∫
R

dνt(u)

u− z
, t ∈ I \ E, z ∈ H.

Proof. We know that there exists E ⊆ I, |E| = 0, such that

V (z, t) := lim
ε→0+

ϕt,t−ε(z)− z
ε

exists for all z ∈ H, t ∈ I \ E, ∂f(z, t)/∂t exists for all z ∈ H, t ∈ I \ E, and

∂f

∂t
(z, t) = V (z, t)

∂f

∂z
(z, t).

We know ∂f(z, t)/∂z 6= 0, ∂f(·, t)/∂t ∈ H(H) for t ∈ I \ E (Proposition 4.12). So

V (·, t) =
ḟ(·, t)
f ′(·, t)

∈ H(H) for t ∈ I \ E,

and V is measurable on H× I.

ϕt,t−ε(z)− z
ε

=
1

ε

∫
R

dνt,t−ε(u)

u− z
.

Here νt,t−ε(R) = 2ε, supp(νt,t−ε) b R. Actually, the supports of νt,t−ε are uniformly bounded
for ε > 0, t fixed (Lemma 7.18), say supp(νt,t−ε) ⊆ [−R0, R0]. Let

τε :=
1

2ε
νt,t−ε.

Then τε subconverges to a probability measure νt on [−R0, R0] as ε → 0 with respect to w∗-
convergence. So

V (z, t) := lim
ε→0+

ϕt,t−ε(z)− z
ε

= lim
ε→0+

2

∫
[−R0,R0]

1

u− z
dτε = 2

∫
[−R0,R0]

dνt(u)

u− z
, z ∈ H, t ∈ I \ E.

Remark 7.22. The following are equivalent:

i) V (z) =

∫
R

dν(u)

u− z
for z ∈ H

where ν ≥ 0, ν(R) = 1, and supp(ν) ≥ 0.
ii) V is holomorphic on H, ImV (z) ≥ 0 for z ∈ H, V has a holomorphic extension near ∞

such that

V (z) = −1

z
+ · · · near ∞,

and Im f(x) = 0 for x ∈ R, |x| large.
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Proof. i) =⇒ ii) Let z = x+ iy.

Im
( 1

u− z

)
=

y

(u− x)2 + y2
> 0, for z ∈ H.

ii) =⇒ i) Follows as in the proof of Theorem 7.9 from Herglotz representation. Note that if
ImV has a continuous extension to R, then

dν(u) =
1

π
ImV (u)du.

Example 7.23. Ωs = H \ [0, is]

Figure 26:

z = i
√
−w2 − s2 =

√
w2 + s2 = w

√
1 +

s2

w2
= w +

s2

2w
+ · · · near ∞.

Let 2t = s2/2, s2 = 4t. Then z =
√
w2 + 4t or z2 = w2 + 4t or w = ft(z) =

√
z2 − 4t, which is

the normalized Loewner chain.

ḟt(z) = − 2√
z2 − 4t

, f ′t(z) =
z√

z2 − 4t
,

V (z, t) =
ḟt(z)

f ′t(z)
= −2

z
= 2

∫
R

dδ0(u)

u− z
.

So νt = δ0 for all t ≥ 0.

ft(z) = z +
1

π

∫
R

Im ft(z)

u− z
du,

Im ft(z) =

{√
4t− u2

0
for

u ∈ [−2
√
t, 2
√
t]

elsewhere

ft(z) = z +

∫
R

dµt(u)

u− z
,

where

dµt(u) =
1

π

√
4t− u2χ[−2

√
t,2
√
t](u)du, t ≥ 0. (semi-circle law)

µt(R) = µt(2t) =
1

π

π

2
(2
√
t)2 = 2t.

Example 7.24. Ωs = H \B(0, s). Using Joukowski function v = u+ 1/u.

z = s
(w
s

+
s

w

)
= w +

s2

w

2t=s2
= w +

2t

w
.

w2 − zw + 2t = 0, w =
z

2
+

√
z2

4
− 2t =

1

2

(
z +

√
z2 − 8t

)
.

So

ft(z) =
1

2

(
z +

√
z2 − 8t

)
, (normalized Loewner chain)
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ḟt(z) = − 2√
z2 − 8t

, f ′t(z) =
1

2

(
1 +

z√
z2 − 8t

)
.

V (z, t) =
ḟt(z)

f ′t(z)
= · · · = − 1

2t

(
z −

√
z2 − 8t

)
,

ImV (u, t) =

{
1
2t

√
8t− u2

0
for

u ∈ [−
√

8t,
√

8t]

elsewhere
.

V (z, t) = 2

∫
R

dνt(u)

u− z
, dνt(u) =

1

4πt

√
8t− u2χ[−

√
8t,
√

8t](u)du,

Im ft(u) =

{
1
2

√
8t− u2

0
for

u ∈ [−
√

8t,
√

8t]

elsewhere

ft(z) = z +

∫
R

dµt(u)

u− z
, dµt(u) =

1

2π

√
8t− u2χ[−

√
8t,
√

8t](u)du,

µt(R) = 2t,
1

2t
µt = νt.

8 Basic probabilistic concepts

8.1. Probability space

Let (Ω,A ,P) be a probability space, where
Ω is a sample space, the space of outcomes. ω ∈ Ω is a elementary outcome or event.
A is a σ-algebra or “σ-field”. A ∈ A is an event.
P is a probability measure defined on A , P ≥ 0 and P(Ω) = 1.

Example 8.2. Let Ω = {1, 2, 3, 4, 5, 6}, A = ℘(Ω), P = 1/6 · counting measure. Pick ω ∈ Ω “at
random” = roll a dice.

8.3. random variables

A measurable map X : Ω→ R is called a random variable (i.e., X−1(B) ∈ A for each Borel
set B ⊆ R).

E[X] :=

∫
Ω
X(ω) dP(ω)

is called the expectation or mean of X.

Var(X) = E[(X − E[X])2] =

∫
Ω

(X − E[X])2dP = E[X2]− [X]2

is called the variance of X.

Lemma 8.4. (Borel-Cantelli-I) Let An, n ∈ N, be events. If
∑∞

n=1 P(An) <∞, then

P(An,i.o.) = 0,

where An,i.o. means that events in {An} infinitely often occur. That is,

An,i.o. = {ω ∈ Ω : ω ∈ An for infinitely many n} =

∞⋂
k=1

⋃
n≥k

An.

69



Proof. P(An,i.o.) = lim
k→∞

P(
⋃
n≥kAn) ≤ lim sup

k→∞

∞∑
n=k

P(An) = 0.

Lemma 8.5. (Chebyshev Inequality) If X ≥ 0, then

P(X ≥ a) ≤ E[X]

a
, a > 0.

Proof. P(X ≥ a) =

∫
Ω
χ
X≥a(ω) dP(ω) ≤

∫
Ω

1

a
XdP =

E[X]

a
.

8.6. The distribution of a random variable

Let X : Ω → Rn be random variable. The distribution or law of X is the push-forward
measure PX := X∗P on Rn, i.e.,

PX(B) = P(X−1(B)) for each Borel set B ⊆ Rn.

We have

E[X] =

∫
R
x dPX(x).

The characteristic function of X : Ω→ Rn is defined by

f(u) := E[eiu·X ] for u ∈ Rn.

or

f(u) =

∫
Ω
eiu·X(ω)dP(ω) =

∫
Rn
eiu·vdPX(v)

= the Fourier transform of its distribution.

Let X1, . . . , Xn : Ω → R be random variables, and let X = (X1, . . . , Xn) : Ω → Rn. Then
the joint law of X1, . . . , Xn is defined to be the law of X.

8.7. Independence

Let A,B ∈ A be events. A and B are independent if

P(A ∩B) = P(A) · P(B).

Denote Ac := Ω \A. Then if A,B are independent, then Ac, B are independent. In fact

P(Ac ∩B) = P(B)− P(A ∩B) = P(B)(1− P(A)) = P(Ac)P(B).

If F1, . . . ,Fn ⊆ A are σ-algebras. F1, . . . ,Fn are independent if

P(A1 ∩ · · · ∩An) = P(A1) · · ·P(An)

whenever A1 ∈ F1, . . . , An ∈ Fn.
A,B are independent iff the σ-algebras generated by A and by B are independent.
LetX1, . . . , Xn are random variables. They are independent if the σ-algebras σ(X1), . . . , σ(Xn)

generated by them are independent, where for a random variable X,

σ(X) = {X−1(B) : B ⊆ Rn Borel}.

If X1, . . . , Xn are independent, and f1, . . . , fn : R → R are Borel, then f1(X1), . . . , Fn(Xn)
are independent. Note that σ(f(X)) ⊆ σ(X).
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Theorem 8.8. Let X1, . . . , Xn : Ω → R be random variables, and let X = (X1, . . . , Xn) : Ω →
Rn. then TFAE:

(i) X1, . . . , Xn are independent,
(ii) P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X1 ∈ B1) · · ·P(Xn ∈ Bn) for all Borel sets B1, . . . , Bn ⊆

R,
(iii) the law of X is a product of the laws of X1, . . . , Xn, i.e., PX = PX1 × · · · × PXn,
(iv) the characteristic function of X is the product of the characteristic functions of X1, . . . , Xn,

that is,
E[eiu·X ] = E[eiu1X1 ] · · ·E[eiunXn ]

for u = (u1, . . . , un) ∈ Rn.

Idea of proof. (i) ⇐⇒ (ii): By definition.
(iii) =⇒ (ii): Clear.
(ii) =⇒ (iii): Follows from fact: if two Borel probability measures ν, µ on Rn agree on sets

of form B1 × · · · ×Bn, Bi Borel, then ν = µ.
(iii) =⇒ (iv): Clear.
(iv) =⇒ (iii): Follows from fact that a measure is uniquely determined by its Fourier trans-

form.

Corollary 8.9. If X,Y are integrable and independent, then

E[XY ] = E[X] · E[Y ].

Proof. Let Z = (X,Y ) : Ω→ R2.

E[XY ] =

∫
R2

xy dPZ(x, y)

=

∫
R2

xy dPX(x)PY (y) (Theorem 8.8)

=

(∫
R
x dPX(x)

)(∫
R
y dPY (y)

)
= E[X] · E[Y ].

Lemma 8.10. (Borel-Cantelli-II) Let An, n ∈ N, be independent events. If
∑∞

n=1 P(An) =
∞, then

P(An,i.o.) = 1.

Proof. Note that e−x ≥ 1− x for x ∈ [0, 1]. So

P(
⋃N
n=kAn) = 1− P(

⋂N
n=kA

c
n) = 1−

∏N
n=k(1− P(An)) (independence)

≥ 1−
N∏
n=k

e−P(An) = 1− e−
∑N
n=k P(An) → 1 as N →∞.

So
P(
⋃∞
n=k An) = 1,

and

P(An,i.o.) = P(
⋂∞
k=1

⋃∞
n=k An) = limk→∞ P(

⋃∞
n=k An) = 1.
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Lemma 8.11. Let X,Y : Ω→ Rn be random variables, let Z = X + Y . Then

PZ = PX ∗ PY (convolution)

and
φZ(u) := E[eiu·Z ] = φX(u) · φY (u), for u ∈ Rn.

Proof. Let π : Rn×Rn → Rn, π(x, y) = x+y. Then PZ = π∗P(X,Y ). Since X,Y are independent,
P(X,Y ) = PX × PY . So if A ⊆ Rn is a Borel set, then

PZ(A) = π∗P(X,Y )(A) =

∫
χA ∗ π dP(X,Y ) =

∫
χA(x+ y)dPX(x)PY (y) =

∫
χAdPX ∗ PY .

Hence PZ = PX ∗ PY .

φZ(u) = E[eiu·(X+Y )] = E[eiu·Xeiu·Y ]
ind.
= E[eiu·X ] · E[eiu·Y ] = φX(u) · φY (u).

8.12. Gaussian random variables

Let X : Ω → R be a real-valued random variable. Then X is Gaussian with mean µ ∈ R
and variance σ2 > 0 if its distribution is given by

dPX(x) =
1√

2πσ2
exp
(
−(x− µ)2

2σ2

)
dx. (Gaussian or normal distribution)

We write X ∼ N (µ, σ2).
X is standard Gaussian or normal if X ∼ N (0, 1), i.e.,

dPX(x) =
1√
2π
e−x

2/2.

If X ∼ N (0, 1), then E[X] = µ and Var[x] = σ2, and σ = Var[x]1/2 the standard deviation.
Characteristic function: if X ∼ N (µ, σ), then

φX(u) = exp
(
−1

2
σ2u2 + inµ

)
.

If X ∼ N (µ1, σ
2
1), Y ∼ N (µ2, σ

2
2), and X,Y are independent, then

Z = X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

Proof. φZ(u) = φX(u) · φY (u) = exp
(
−1

2
(σ2

1 + σ2
2)u2 + iu(µ1 + µ2)

)
.

It is convenient to consider a random variable x such that X = µ a.s. as a “generalized”
Gaussian, where σ2 = 0. Namely,

PX = δµ, φX(u) = exp(−iuµ) = exp
(
−1

2
0u2 + iuµ

)
.

Definition. A random variable X = (X1, . . . , Xn) : Ω → Rn is a (generalized, vector valued)
Gaussian, if

φX(u) = E[eiu·X ] = exp
(
−1

2
utCu+ iu · µ

)
for u ∈ Rn,

where µ ∈ Rn and C is a positive semi-defined n× n-matrix.
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Let
Cov(X,Y ) := E[(X − E[X])(Y − E[Y ])]

be the covariance of X,Y . Then C is the covariance matrix of X, i.e., C = (cij), where

cij = Cov(Xi, Xj).

X is Gaussian iff X = BY , where B is a n × n-matrix and Y = (Y1, . . . , Yn) such that
Y1, . . . , Yn are real-valued independent generalized Gaussians iff X = DZ + a, where a ∈ Rn, D
is a n× k-matrix, Z = (Z1, . . . , Zk), Z1, . . . , Zk is independent Gaussians.

Let Y = AX, where A is a n× k-matrix, X : Ω→ Rn, Y : Ω→ Rk. If X is Gaussian, then
Y is Gaussian.

Proof. φY (v) = E[eiv·Y ] = E[eiv·AX ] = E[eiA
tv·X ]

= φX(Atv) = exp
(
−1

2
(Atv)tC(Atv) + i(Atv) · µ

)
= exp

(
−1

2
vt(ACAt)v + iv ·Aµ

)
.

So µ′ = Aµ, C ′ = ACAt.

If X : Ω→ Rn has a multi-normal distribution given by

dPX(x) =
|A|1/2

(2π)n/2
exp
(
−1

2
(x− µ)tA(x− µ)

)
,

where µ ∈ Rn, and A is a positive defined n× n-matrix, then X is Gaussian and

φX(u) = exp
(
−1

2
utCu+ i(u · µ)

)
,

where C = A−1.

8.13. Modes of convergence of random variables

Let Xn, n ∈ N ∪ {∞}, be real (or vector valued) random variables.
i) Xn → X∞ a.s. (almost surely) iff

P(Xn → X∞) = P({ω ∈ Ω : Xn(ω)→ X∞(ω)}) = 1,

iff Xn → X∞ for a.e. ω ∈ Ω.
ii) Xn → X∞ in probability iff

lim
n→∞

P(|Xn −X∞| ≥ ε) = 0 for all ε > 0.

(equivalent to “convergence in measure”.)
iii) Xn → X∞ in Lp, p ≥ 1, iff

E[|Xn −X∞|p]→ 0,

equivalently ∫
Ω
|Xn(ω)−X∞(ω)|pdP(ω)→ 0.
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Xn → X∞ a.s.
1

=⇒
3 ⇑ subseq.

Xn → X∞ in Lp
2

=⇒

Xn → X∞
in probability

Proof. (easy) e.g. 1: Fix ε > 0, define

En = {ω ∈ Ω : |Xn(ω)−X∞(ω)| ≥ ε}.

Then Xn → X∞ a.s. implies

0 = P(En,i.o.) = P(
⋂
n

⋃
k≥nEk) = limn→∞ P(

⋃
k≥nEk) ≥ lim supn→∞ P(En).

Lemma 8.14. Let Xn be Rd-valued Gaussian random variables, n ∈ N, Xn → X∞ in probability.
Then X∞ is Rd-valued Gaussian.

Proof. (outline) 1. If Xn → X∞ in probability, then

φXn(u)→ φX∞(u) locally uniformly on Rd. (23)

In fact,
|eiu·Xn − eiu·X∞ | ≤ |u ·Xn − u ·X∞| ≤ |u| · |Xn −X∞|.

So
|φXn(u)− φX∞(u)| ≤ E[|eiu·Xn − eiu·X∞ |] ≤ |u|δ + 2P(|Xn −X∞| ≥ δ) ≤ ε

for n large. So (23) follows.
2. Xn Gaussian, so

φXn(u) = exp
(
−1

2
utCnu+ iu · µn

)
,

where Cn ≥ 0 and µn ∈ Rd. If

φXn(u)→ φX∞(u) locally uniformly,

then φX∞ has the same form, i.e.,

φX∞(u) = exp
(
−1

2
utCu+ iu · µ

)
,

where C ≥ 0 and µ ∈ Rd.

Lemma 8.15. Let X1, . . . , Xn be real-valued random variables with joint Gaussian distribu-
tion (i.e., X = (X1, . . . , Xn) is Rn-valued Gaussian random variable). Then X1, . . . , Xn are
independent iff they are pairwise uncorrelated, i.e., Cov(Xi, Xj) = 0 for i, j = 1, . . . , n, i 6= j.

Proof. “=⇒” Clear:

Cov(Xi, Xj) = E[(Xi − E[xi])(Xj − E[X − j])] ind.
= E[Xi − E[Xi]] · E[Xj − E[Xj ]] = 0.

“⇐=” Since X Gaussian,

φX(u) = exp
(
−1

2
utCu+ iu · µ

)
, u ∈ Rn,
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where C = (Cij) is the covariance matrix. So cij = Cov(Xi, Xj), i, j = 1, . . . , n.
By assumption, cij = 0 for i 6= j, and so C is a diagonal matrix. Hence,

φX(u) = φX1(u1) · · ·φXn(un)

for u = (u1, . . . , un) ∈ Rn. This shows that X1, . . . , Xn are independent by Theorem 8.8.

8.16. Stochastic processes

A stochastic process in Rn is a collection {Xt}t∈T of random variables defined on a probability
space (Ω,A ,P), where T ⊆ R the parameter set of “times”.

If T = N0,N, it is a “discrete time stochastic process”, which is a sequence of random
variables: X1, X2, . . . , Xn, . . ..

If T = [0,∞), [a, b] etc., it is a “continuous time stochastic process”.
If t ∈ T fixed, ω 7→ Xt(ω) is a random variable on Ω. If ω fixed, t ∈ T 7→ Xt(ω) is a sample

path of the stochastic process.

Definition 8.17. (Brownian motion) A real-valued stochastic process {Bt}t∈[0,∞) is called a
(version of) Brownian motion if the following conditions are true:

(i) the process is a Gaussian process, i.e., for all n ∈ N, 0 ≤ t1 < · · · < tn, the random
variables Bt1 , . . . , Btn have a joint Gaussian distribution.

(ii) Bt for t ∈ [0,∞) is centered, i.e., E[Bt] = 0.
(iii) Cov(Bt, Bs) = E[BtBs] = s ∧ t, s, t ∈ [0,∞).
(iv) sample paths t 7→ Bt are continuous a.s., i.e., t 7→ Bt(ω) is continuous for a.e. ω.

Remark 8.18. Let {Bt}t∈[0,∞) be a Brownian motion.
1) E[Bt] = 0, Var(Bt) = Cov(Bt, Bt) = t for t ≥ 0. So Bt ∼ N (0, t) for t > 0, B0 = 0 a.s..

Brownian motion starts at 0 from time 0 a.s..
2) Brownian motion has “independent increments”. If t1 < t2 < . . . < tn, then

Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 (24)

are independent Gaussian random variables.

Xtk −Xtk−1
∼ N (0, tk − tk−1).

Indeed, the random variables in (24) are joint Gaussian, centered, and for k < l, tk−1 < tk ≤
tl−1 < tl,

Cov(Xtk −Xtk−1
, Xtl −Xtl−1

) = E[(Xtk −Xtk−1
)(Xtl −Xtl−1

)]

= tk ∧ tl − tk−1 ∧ tl − tk ∧ tl−1 + tk−1 ∧ tl−1

= tk − tk−1 − tk + tk−1 = 0.

So by Lemma 8.15, the random variables in (24) are independent.

8.19. Hilbert space bases
Let H be a separable real Hilbert space. A sequence {xn}n∈N is called a complete orthonormal

system or a Hilbert space basis if
i) the vectors are orthonormal, i.e., (xi, xj) = δij , i, j ∈ N,
ii) if x ∈ H and (x, xn) = 0 for all n ∈ N, then x = 0.
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In this case,

x =
∞∑
n=1

(x, xn)xn,

‖x‖2 =
∞∑
n=1

|(x, xn)|2, (x, y) =
∞∑
n=1

(x, xn)(y, xn). (Parseval’s identities)

Equivalent to ii) is
ii′) the set S of all (finite) linear combinations of the vectors x1, x2, . . . , xn, . . . is dense in H.

Example. Let H = L2[0, 1], with inner product (f, g) =

∫ 1

0
f(x)g(x)dx. The Hilbert space

bases:
1. trigonometric functions basis

1√
2

cos(2πnx),
1√
2

sin(2πnx), n ∈ N.

2. Haar basis

ϕn,k(x) :=


1

−1

0

for x ∈
[k/2n, (k + 1/2)/2n),

[(k + 1/2)/2n, (k + 1)/2n),

else,

where n ∈ N0, k = 0, 1, . . . , 2n − 1. ϕ−1,0 ≡ 1. Denote I the set of indices.
Obviously, ϕn,k ∈ L2[0, 1], pairwise orthogonal.

‖ϕn,k‖2 =

∫ 1

0
ϕn,k(x)2dx =

1

2n
, n ∈ N0.

Set
ψn,k = 2nϕn,k, ψ−1,0 ≡ 1.

Then {ψn,k}(n,k)∈I forms an orthonormal system. Its linear combinations are dense in L2[0, 1]
(because step functions on dyadic intervals are). So {ψn,k}(n,k)∈I is a Hilbert space basis of
L2[0, 1].

If {xn} is an orhtonormal system, then

∞∑
n=1

anxn converges iff
∞∑
n=1

a2
n <∞.

In fact, it follows from the Cauchy criterion since the partial sum sn =
∑n

k=1 akxk satisfies

‖sn − sm‖2 =

n∑
k=m+1

a2
k, n ≥ m.

8.20. Construction of Brownian motion

76



1. Brownian motion on T = [0, 1].
Let Zn, n ∈ N, be i.i.d. random variables, i.e., independent, identically distributed random

variables on the same probability space (Ω,A ,P), and Zn ∼ N (0, 1). For example, let Ω̃ =
(R,B, µ), where B is the Borel σ-algebra, and

dµ(x) =
1√
2
e−x

2/2dx.

Set Ω = Ω̃N, and Zn = the projection onto the n-th coordinate.
Zn, n ∈ N, forms an orthonormal system in L2(Ω). In fact,∫

Ω
Zn(ω)Zk(ω)dP(ω) = Cov(Zn, Zk) = δnk, n, k ∈ N.

Let ψn, n ∈ N, be a Hilbert space basis of L2[0, 1]. Let

fn(t) =

∫ t

0
ψn(u)du = (ψn, χ[0,t]), inner product in L2[0, 1].

Define

Bt =
∞∑
n=1

fn(t)Zn, for t ∈ [0, 1].

i) For each t ∈ [0, 1], the sum converges in L2[0, 1], equivalently,

∞∑
n=1

fn(t)2 =
∞∑
n=1

(ψn, χ[0,t])
2 ∗= ‖χ[0,t]‖2 = t <∞. (∗ Parseval)

ii) Each Bt is a Gaussian; actually, for t1 < t2 < · · · < tm, Bt1 , Bt2 , . . . , Btm have a joint
Gaussian distribution.

In fact,

Bn
t :=

n∑
k=1

fk(t)Zk

is Gaussian (linear combination of Gaussians), and Bn
t → Bt as n → ∞ in L2(Ω). So Bt is

Gaussian by Lemma 8.14.
Similarly, (Bn

t1 , B
n
t2 , . . . , B

n
tm) have a joint Gaussian distribution, and (Bn

t1 , B
n
t2 , . . . , B

n
tm) →

(Bt1 , Bt2 , . . . , Btm) as n→∞ in L2(Ω,Rm). So (Bt1 , Bt2 , . . . , Btm) have a joint Gaussian distri-
bution.

iii) Bt is centered.

E[Bt] =

∫
Ω
Bt(ω)dP(ω) = lim

n→∞

∫
Ω
Bn
t (ω)dP(ω) = lim

n→∞

n∑
k=1

fk(t)E[Zk] = 0,

because Zn, n ∈ N, is centered.
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iv)

Cov(Bs, Bt) =

∫
Ω
Bs(ω)Bt(ω)dP(ω) = lim

n→∞

∫
Ω
Bn
s (ω)Bn

t (ω)dP(ω)

= lim
n→∞

n∑
k,l=1

fk(s)fl(t) Cov(Zk, Zl)
∗
=

∞∑
k=1

fk(s)fk(t) (∗Cov(Zk, Zl) = δkl)

=

∞∑
k=1

(ψk, χ[0,s])(ψk, χ[0,t])
∗∗
= (χ[0,s], χ[0,t]) = s ∧ t (∗∗ Parseval)

To check the continuity of t 7→ Bt(ω) for a.e. ω ∈ Ω, we choose the Haar basis for the Hilbert
space basis of L2[0, 1]. Let {ψn,k}(n,k)∈I be the Haar basis of L2[0, 1], let

fn,k(t) =

∫ t

0
ψn,k(s)ds.

Then fn,k is Lipschitz with Lipschitz constant Lip(fn,k) = 2n/2.

‖fn,k‖∞ ≤
1

2

1

2n
2n/2 =

1

2n/2+1
.

1

2n/2
.

Claim. Let {Zn,k}(n,k)∈I be i.i.d. standard normal random variables. Then for a.e. ω ∈ Ω,
the series

Bt(ω) = Z−1,0f−1,0(t) +
∞∑
n=0

2n−1∑
k=0

Zn,k(ω)fn,k(t) (25)

converges uniformly in t (and hence represents a continuous function in t).

Proof. Note that
2√
2π

∫ ∞
a

e−x
2/2dx ≤ e−a2/2 for a > 0.

So
P(|Z| > a) ≤ e−a2/2 for a ≥ 0

if Z ∼ N (0, 1). Denote

An,k =
{
|Zn,k| > 2

√
log(2n/2n)

}
.

Then

P(An,k) ≤ e−2 log(2n/2n) =
1

2nn2
.

So
∞∑
n=1

2n−1∑
k=0

P(An,k) ≤
∞∑
n=1

2n

2nn2
=

∞∑
n=1

1

n2
<∞.

By Borel-Cantelli-I, we have P(An,k,i.o.) = 0, i.e., for a.e. ω ∈ Ω, we have

|Zn,k(ω)| ≤ 2
√

log(2n/2n) .
√
n (26)

for all sufficiently large n (depending on ω), say for n ≥ N(ω).
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For such ω,
∞∑

n=N(ω)

∣∣∣∣2n−1∑
k=0

Zn,k(ω)fn,k(t)

∣∣∣∣ . ∞∑
n=N(ω)

√
n

2n/2
<∞.

So series (25) represents a continuous function in t by the Weierstrass M-test.
Actually, for such ω,

gn(t) =

2n−1∑
k=0

Zn,k(ω)fn,k(t) (g−1(t) = Z−1,0(ω)f−1,0(t))

is Ln-Lipschitz with Ln .
√
n2n/2 for all n ≥ N(ω); so by adjusting constants wlog for all n ≥ 1.

Moreover, ‖gn‖∞ .
√
n2n/2 for all n ≥ N(ω), wlog for all n ≥ 1.

Suppose ω is “good” so that it satisfies (26). Let s, t ∈ [0, 1]. Pick suitable N = N(s, t) ∈ N.
Then

|Bs(ω)−Bt(ω)| ≤
∞∑

n=−1

|gn(s)− gn(t)|

≤
N∑

n=−1

Ln|s− t|+
∞∑

n=N+1

2‖gn‖∞

ω

.
(

1 +
N∑
n=1

√
n2n/2

)
|s− t|+

∞∑
n=N+1

√
n2−n/2

ω

.
√
N2N/2|s− t|+

√
N2−N/2.

Pick N = N(s, t) such that 2N/2|s− t| = 2−N/2, equivalently |s− t| ∼ 2−N , equivalently

N = log2

1

|s− t|
∼ log

1

|s− t|
.

Then

|Bs(ω)−Bt(ω)| . |s− t|1/2
√

log
1

|s− t|
.

Conclusion. For a.e. ω, there exists M(ω) ≥ 0, such that

|Bs(ω)−Bt(ω)| ≤M(ω)|s− t|1/2
√

log
1

|s− t|
.

Almost surely, the sample path t 7→ Bt(ω) has modulus of continuity

ω(δ) = Cδ1/2
√

log(1/δ).

So for every ε > 0, t 7→ Bt(ω) is (1/2− ε)-Hölder almost surely.

2. Brownian motion on [0,∞).
Idea. Let a Brownian motion run until time 1, start a “new” Brownian motion at endpoint,

let it run until time 2, etc.
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Let Bn
t , n ∈ N0, be independent copies of Brownian motion on [0, 1]. Define

Bt(ω) =

btc−1∑
k=0

Bk
1 (ω) +B

btc
t−btc(ω).

( e.g. B1.5(ω) = B0
1(ω) +B1

0.5(ω). )

Then {Bt}t∈[0,∞) is a Gaussian process, Bt centered, and for s ≤ t,

Cov(Bs, Bt) = E
[(bsc−1∑

k=0

Bk
1 +B

bsc
s−bsc

)(btc−1∑
k=0

Bk
1 +B

btc
t−btc

)]

=

bsc−1∑
k=0

1 + (s− bsc) = s = s ∧ t.

For each n ∈ N0, t 7→ Bn
t (ω) on [0, 1] is continuous a.s., so for a.e. ω, t 7→ Bn

t (ω) are continuous
for all n ∈ N0. Hence t 7→ Bt(ω) is continuous a.s..

8.21. π-systems

Let X be a set, S be a family of subsets of X. S is called a π-system if A∩B ∈ S whenever
A,B ∈ S . (i.e., a π-system is “stable” under the finite intersection.)

Facts. 1) Let S be a π-system, let A = σ(S ) be a σ-algebra generated by S , and let µ, ν
be probability measures on A . If µ(A) = ν(A) for all A ∈ S , then µ = ν. (i.e., µ(A) = ν(A)
for all A ∈ A .) (Exercise!)

2) Let (Ω,A ,P) be a probability space. Let S ,T be two π-systems, and let B = σ(S ),C =
σ(T ) ⊆ A . If P(A∩B) = P(A)P(B) whenever A ∈ S , B ∈ T , then B and C are independent.
(i.e., P(A ∩B) = P(A)P(B) for all A ∈ B, B ∈ C .) (Exercise!)

8.22. The space X = C([0,∞))

Let
X := C([0,∞)) = {f : [0,∞)→ R continuous}

equipped with “topology of locally uniform convergence”: fn → f iff fn → f locally uniformly
on R.

This is a metrizable topology: Let

dn(f, g) = sup
x∈[0,n]∩Q

|f(x)− g(x)|, d(f, g) =
∞∑
n=1

1

2n
dn(f, g)

1 + dn(f, g)
.

Then d is a metric on X. d(fn, f) → 0 iff fn → f locally uniformly on [0,∞). (X, d) forms a
separable space.

Let B = BX , the Borel σ-algebra on X (i.e., the smallest σ-algebra containing all open sets
in X). We want to find π-system S such that B = σ(S ).

For t ∈ [0,∞), let
πt : X → R, f 7→ f(t)
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be the evaluation of time t. Let

S = {π−1
t1

(B1) ∩ · · · ∩ π−1
tk

(Bk) : k ∈ N, t1 < · · · < tk in [0,∞), B1, . . . , Bk ∈ BR}.

Obviously, S is a π-system!

Claim. σ(S ) = B.

Proof. (Outline) 1. For t ∈ [0,∞), πt : X → R is continuous. So π−1
t (B) ∈ BX for each

B ∈ BR, and S ⊆ BR. Hence σ(S ) ⊆ BX .
2. BX ⊆ σ(S ).
Let f0 ∈ X be arbitrary. Then f 7→ |f(t) − f0(t)| is σ(S )-measurable. So f 7→ dn(f, f0) =

supt∈[0,n] |f(t) − f0(t)| is σ(S )-measurable, and f 7→ d(f, f0) =
∑∞

n=1
dn(f,f0)

1+dn(f,f0) is σ(S )-

measurable. Thus, open balls Bd(f0, ε) = {f : d(f, f0) < ε} are σ(S )-measurable. Since
every open set in X is a countable union of open balls, every open set is in σ(S ). Hence,
BX ⊆ σ(S ).

Let (Ω,A ,P) be a probability space.

Claim. Z : Ω→ X is measurable (w.r.t. A and BX) iff Zt := πt ◦Z is measurable for each
t ∈ [0,∞)

Ω
Z−→ X

Zt ↘ ↙ πt

R

Proof. “=⇒” If Z is measurable, then Zt = πt ◦ Z is measurable, because πt is continuous.
“⇐=” Let C = {A ∈ X : Z−1(A) ∈ A }. Then C is a σ-algebra. Let B ⊆ R be a Borel set,

t ∈ [0,∞). Then
Z−1(πt(B)) = (πt ◦ Z)−1(B) = Z−1

t (B) ∈ A

since Zt is measurable. So π−1
t (B) ∈ C . Hence, S ⊆ C and σ(S ) = BX ⊆ C .

Theorem 8.23. (Canonical Brownian motion) Let X = C([0,∞)), and B = BX the Borel
σ-algebra on X. There exists a unique probability measure W on (X,B), called Wiener measure,
with the following properties: if we define Bt = πt, then {Bt}t∈[0,∞) is a Brownian motion (on
R). More explicitly,

i) for t1 < · · · < tk, the random variables Bt1 , . . . Btk have a joint Gaussian distribution.
Equivalently, let F ⊆ [0,∞) be a finite set,

πF : X → RF := {ϕ : F → R} ∼= R|F |, f 7→ f |F .

Then
µF := (πF )∗(W )

is a “Gaussian measure” on RF .
Set µt := (πt)∗(W ).
ii) Bt is centered, equivalent to∫

R
xdµt(x) = 0, for each t ∈ [0,∞).

81



iii) Cov(Bs, Bt) = s ∧ t, equivalent to∫
R2

xydµ{s,t}(x, y) = s ∧ t.

Proof. 1. Uniqueness. Suppose W, W̃ are two measures with the properties i)–iii). Then

(πF )∗(W ) = µF = µ̃F = (πF )∗(W̃ )

for each finite set F ⊆ [0,∞), because the Fourier transforms of µF , µ̃F , and hence µF , µ̃F them-
selves are uniquely determined by i)–iii). This implies that for t1 < . . . < tk, F = {t1, . . . , tk},
and B1, . . . , Bk ∈ BR, we have

W (π−1
t1

(B1) ∩ · · · ∩ π−1
tk

(Bk)) = W (π−1
F (B1 × · · · ×Bk)

= µF (B1 × · · · ×Bk) = µ̃F (B1 × · · · ×Bk)
= W̃ (π−1

t1
(B1) ∩ · · · ∩ π−1

tk
(Bk)),

i.e., W (S) = W̃ (S) for all S ∈ S . Since σ(S ) = BX , we have W = W̃ .
2. Existence. There exists Brownian motion {Bt}t∈[0,∞) on some probability space (Ω,A ,P).

By disregarding a set of measure 0, we may assume that t 7→ Bt(ω) is continuous for every ω ∈ Ω.
Define

B : Ω→ X = C([0,∞)), ω 7→ (t ∈ [0,∞) 7→ Bt(ω)).

Then for each t ∈ [0,∞), we have the commutation diagram

Ω
B−→ X

Bt ↘ ↙ πt

R

Since Bt is measurable for each t ∈ [0,∞), the map B is measurable (see two Claims in 8.22).
Hence, W := B∗(P) is a Borel probability measure on X, and if F ⊆ [0,∞) is finite, then

µF = (πF )∗(W ) = (πF )∗(B∗(P)) = (πF ◦B)∗(P) = (BF )∗(P),

where BF (ω) := (Bt1(ω), . . . , Btk(ω)). Hence {πt}t∈[0,∞) is a Brownian motion defined on X.

8.24. Brownian motion on Rn

A Rn-valued stochastic process {Bt}t∈[0,∞) is called a (version of) Brownian motion on Rn
if the following conditions are true:

(i) the process is an Rn-valued Gaussian process, i.e., for all k ∈ N, t1 < . . . < tk, the
Rnk-valued random variable (Bt1 , . . . , Btk) has a Gaussian distribution.

Let Bt = (B1
t , . . . , B

n
t ), where Bi

t is real-valued.
(ii) Bi

t is centered for i ∈ {1, . . . , n}, i.e., E[Bi
t] = 0, t ∈ [0,∞).

(iii) Cov(Bi
s, B

j
t ) = δijs ∧ t, i ∈ {1, . . . , n}, s, t ∈ [0,∞).

(iv) sample paths t 7→ Bt(ω) are continuous a.s..
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Remark 8.25. (i) If Bt = (B1
t , . . . , B

n
t ) is a Brownian motion on Rn, then B1

t , . . . , B
n
t are

independent Brownian motions on R. Conversely, if B1
t , . . . , B

n
t are independent Brownian

motions on R, then Bt = (B1
t , . . . , B

n
t ) is a Brownian motion on Rn. (This proves existence!)

(ii) Uniqueness. One can show (as in Theorem 8.23) that there exists a unique Wiener
measure W on X = C([0,∞),Rn) = {f : [0,∞) → Rn continuous} such that {πt}t∈[0,∞) is a

Brownian motion, where πt : X → Rn, f 7→ f(t). Described by “marginal” on R|F |×n, where
F ⊆ [0,∞) finite, µF := (πF )∗(W ), πF : X → (Rn)F , f 7→ f |F .

(iii) Bt = (B1
t , . . . , B

n
t ) is an Rn-valued Brownian motion iff Wt := λ1B

1
t + · · ·λnBn

t is a
1-dimensional Brownian motion for each unit vector (λ1, . . . , λn) ∈ Rn.

“=⇒” Clear:
Cov(Ws,Wt) = λ2

1s ∧ t+ · · ·+ λ2
ns ∧ t = s ∧ t.

“⇐=” Need fact: “Let Z1, . . . , Zn be Rk-valued random variables. Then they have a joint
Gaussian distribution iff λ1Z1 + · · · + λnZn is Gaussian for all λ1, . . . , λn ∈ R. Details left as
exercise!

8.26. Basic properties of Brownian motion

Let {Bt}t∈[0,∞) be a Brownian motion on Rn. Then the following processes are also Brownian
motions.

(i) Wt = Bt+s − Bs for fixed s ∈ [0,∞) (Markov property). That is, Brownian motion is
memoryless!

(ii) Wt = ABt, if A is an orthogonal transformation.
(iii) Wt = (1/a)Ba2t, a > 0 fixed (Brownian scaling).

(iv) Wt =

{
B0, t = 0,
tB1/t, t > 0

(time inversion).

Proof. All processes Wt in (i)–(iv) are Gaussian, and Wt is centered. One checks covariance: for
example in (iii) and (iv).

Cov(W i
s ,W

j
t ) = Cov

(1

a
Bi
a2s,

1

a
Bj
a2t

)
=

1

a2
δij(a

2s) ∧ (a2t) = δijs ∧ t.

Cov(W i
s ,W

j
t ) = stCov(Bi

1/s, B
j
1/t) = st δij

1

s
∧ 1

t
= δijt ∧ s, s, t > 0.

Almost sure continuity of sample paths are clear for (i)–(iii), and on (0,∞) for (iv) (up to
measure 0). Continuity of Wt at 0 is the following event:

A =
⋂
ε>0
ε∈Q

⋃
δ>0
δ∈Q

⋂
0<t<δ
t∈Q

{ω : |Wt(ω)−W0(ω)| < ε}.

If we replace Wt by Bt, then this is an almost sure event. Since Wt and Bt have the same
marginals, it follows that A is almost sure. (Note: this shows that lims→∞ |Bs|/s = 0 a.s..)

8.27. The stochastic Loewner equation (SLE)

Chordal Loewner equation: Let {ft}t∈[0,∞) be a normalized chordal Loewner chain.

ft(z) = z − 2t

z
+ · · · near ∞.
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The Loewner-Kufarev equation gives

∂f

∂t
(z, t) = V (z, t)

∂f

∂z
,

where

V (z, t) = 2

∫
R

dνt(u)

u− z
,

νt is a probability measure with supp(νt) b R.
One obtains SLEκ, κ ≥ 0, if one take a probabilistic driving term here

νt = δ√κBt(ω),

where Bt is the 1-dimensional Brownian motion. Then

V (z, t) =
2√

κBt(ω)− z
.

Depending on ω, one gets a “random” Loewner chain and corresponding random hulls At(ω).
One is interested in these hulls, because they can be used to study many conformally invariant

processes in the plane.
Problems.
1) What are the characterizing properties of SLE?
(i.i.d. increments, Markov (= memoryless) property, conformal invariance, etc.)
2) What are the techniques to study SLE?
(Martingales method, etc.)

9 Survey of martingale theory

9.1. Conditional expectation

Example. Random expectation in two stages: Assume roll two dices with outcomes X1, X2 ∈
{1, 2, 3, 4, 5, 6}. Let Z = X1 +X2, Ω = {1, . . . , 6} × {1, . . . , 6}. Then E[Z] = 7.

Suppose the outcome of X1 is known (partial information). Then we have to adjust E[Z]
depending on X1:

E[Z|X1 = x] = x+ 3.5 = X1(ω) + 3.5.

We get a new random variable E[Z|X1].

Theorem and Definition 9.2. (Conditional expectation) Let (Ω,A ,P) be a probability
space, let X be a random variable with E[|X|] <∞, let B ⊆ A be a σ-algebra. Then there exists
a random variable Y on Ω such that

i) Y is B-measurable.
ii) E[|Y |] <∞.
iii) for every B ∈ B, we have

E[Y ;B] =

∫
B
Y (ω)dP(ω) =

∫
B
X(ω)dP(ω) = E[X;B]

Y is essentially unique determined: if Ỹ is another random variable with properties i)–iii),
then Ỹ = Y a.s..

The random variable Y is called a (version of) conditional expectation of X for given B,
denoted by E[X|B].
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Idea of proof. Wlog X ≥ 0. Define

µ(B) :=

∫
B
X(ω)dP(ω), for B ∈ B.

Then µ� P|B. So µ has a Radon-Nikidyn derivative Y w.r.t. P|B. Then i)–iii) are evident.
Uniqueness is also clear:

E[X|Z1, . . . , Zm] = E[X|σ(Z1, . . . , Zm)].

9.3. Properties of conditional expectation

Let (Ω,A ,P) be a probability space, all random variables X satisfies E[|X|] < ∞. Let
B ⊆ A be a σ-algebra.

(i) If Y = E[X|B], then E[Y ] = E[X].
(ii) If X is B measurable, then E[X|B] = X a.s..
(iii) Linearity.
(iv) If X ≥ 0, then E[X|B] ≥ 0.
(v) (Monotone a.s. convergence) If Xn ≥ 0, Xn ↗ X, then

E[Xn|B]↗ E[X|B] a.s..

(vi) (Dominated convergence) If |Xn(ω)| ≤ V (ω), E[V ] <∞, Xn → X a.s., then

E[Xn|B]→ E[X|B] a.s..

(vii) (Jensen) If ϕ : R→ R convex, E[|ϕ(X)|] <∞, then

ϕ(E[X|B]) ≤ E[ϕ(X)|B] a.s..

In particular,
∣∣E[X|B]

∣∣ ≤ E[|X| |B] and
∥∥E[X|B]

∥∥
p
≤ ‖X‖p, p ≥ 1.

(viii) (Tower property) If B,C are two σ-algebras satisfying C ⊆ B ⊆ A , then

E
[
E[X|B]|C

]
= E[X|C ].

(ix) If Z is B-measurable, then

E[ZX|B] = ZE[X|B].

(x) If X and B are independent, then

E[X|B] = E[X] a.s. (constant function)

Proof. Mostly straight forward from the definitions:
(vii) Jensen: ϕ(x) = supL≤ϕ affine L(x), L(X) = aX + b ≤ ϕ(X). So

L(E[X|B]) ≤ E[L(X)|B] linearity

≤ E[ϕ(X)|B] monotonicity

Taking sup over all L gives
ϕ(E[X|B]) ≤ E[ϕ(X)|B].
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Incorrect proof! Because we take sup over an uncountable family. Can be corrected if we
write ϕ = supLn≤ϕ Ln for a countable collection Ln, n ∈ N.

(vi) for dominated convergence, we need Fatou’s lemma:
If Xn ≥ 0, then

E
[
lim inf
n→∞

Xn|B
]
≤ lim inf

n→∞
E[Xn|B].

Example 9.4. Let (Ω,A ,P) be a probability space, let {An}n∈N be a countable partition of Ω
with An ∈ A , P(An) > 0. Define

B = σ({An}n∈N) =
{⋃
n∈S

An : S ⊆ N countable
}
.

Then

E[X|B] =
∑
n∈N

1

P(An)

∫
An

X(ω)dP(ω) · χAn (ω) =
∑
n∈N

E[X;An]χAn .

Check definition!

Example 9.5. (Fair games and martingales) Two players I (P1) and II (P2) roll dice. Consider
a zero-sum game: at each step, player I wins or losses 1 unit. Let Xn be winnings of P1 after n
rolls (corr. −Xn be winnings of P2 after n rolls).

Game 1. P1 wins if roll ∈ {1, 2} (so losses if ∈ {3, 4, 5, }. A not fair game!
Game 2. P1 wins if roll even. A fair game!
Game 3. P1 wins if roll even, if one of players has won ≥ 100 units, then game biased against

player as in Game 1. Game 3 is a fair game (E[Xn] = 0 for all n), but not fair at all times (or
all situations).

How to modal a game that is “fair at all times”: E[Xn+1 − Xn] = 0 (true if E[Xn+1] =
E[Xn] = 0). The better is E[Xn+1 −Xn|Xn = x] = 0, whatever x.

Let Fn be a σ-algebra of events that will be known at time n (E[Xn|Fn] = Xn). Then

E[Xn+1 −Xn|Fn] = 0 equivalent to E[Xn+1|Fn] = Xn.

Definition 9.6. (Martingales; discrete-time case) Let (Ω,A ,P) be a probability space
with filtration given by σ-algebras Fn ⊆ A for n ∈ N0, i.e., Fn ⊆ Fn+1 for n ∈ N0. Let
X = {Xn}n∈N0 be a sequence of random variables on Ω. Then X is called a martingale if

(i) Xn is Fn-measurable for n ∈ N0, and Xn ∈ L1, i.e., E[|Xn|] <∞,
(ii) E[Xn+1|Fn] = Xn (a.s.) for n ∈ N0.
If in (ii), we have ≤ or ≥, then X is called a supermartingale or submartingale, respectively.
(Submartingale: tendency to increase, supermartingale: tendency to decrease.)
Often, Fn = σ(X0, . . . , Xn), n ∈ N0, called natural filtration.

Example 9.7. a) Games as in 9.5 with natural filtration, X = {Xn}n∈N. Then Game 1, Game
3 are not martingales, Game 2 and Game 4(?) are martingales. Game 1 is a supermartingale.

b) (dyadic martingale)
Let Ω = [0, 1] with Lebesgue measure, f ∈ L1[0, 1]. Let

Dn,k =
[ k

2n
,
k + 1

2n

]
, n ∈ N0, k = 0, 1, . . . , 2n − 1.
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be the dyadic interval, let Fn be the σ-algebra generated by dyadic intervals of level ≤ n, and
let

Xn(ω) =
2n−1∑
k=0

χDn,k (ω) · 2n
∫
Dn,k

f(ω)dω, n ∈ N0.

Then X = {Xn}n∈N0 is a martingale.
(i) Xn is Fn-measurable.

(ii) E[Xn+1|Fn] =
2n−1∑
k=0

χDn,k (ω)·2n
∫
Dn,k

Xn+1(ω)dω =
2n−1∑
k=0

χDn,k (ω)·2n
∫
Dn,k

f(ω)dω = Xn.

Note that Xn(ω)→ f(ω) as n→∞ for a.e. ω. This is an instance of martingale convergence
theorem!

c) (Brownian motion)
Let Bt be a Brownian motion on R. For given 0 ≤ t0 < t1 < · · · < tn < · · · , let Xn = Btn ,

n ∈ N0. Then X = {Xn}n∈N0 (with natural filtration) is a martingale.
Note that Btn+1 −Btn is independent of Bt0 , . . . , Btn , and E[Bt] = 0. We have
(i) Xn = Btn is Fn = σ(Bt0 , . . . , Btn)-measurable.
(ii) E[Xn+1|Fn] = E[Btn+1 |Fn] = E[Btn+1 −Btn |Fn] +Btn = E[Btn+1 −Btn ] +Btn = Btn =

Xn.

Definition 9.8. (Martingale; continuous-time case) Let (Ω,A ,P) be a probability space
with filtration {Ft}t≥0, i.e., Ft ⊆ A is a σ-algebra and Fs ⊆ Ft for s ≤ t. A stochastic
(often extra technical conditions) process is called adapted if Xt is Ft-measurable for all t ≥ 0.
X = {Xt}t≥0 is a martingale if

(i) X is adapted and E[|Xt|] <∞ for all t ≥ 0.
(ii) E[Xt|Fs] = Xs for all 0 ≤ s ≤ t. The natural filtration: Ft = σ(Xs : 0 ≤ s ≤ t).

Example 9.9. a) Brownian motion {Bt}t≥0 with natural filtration is a martingale.
b) Bt is Brownian motion, Ft = σ(Bs : 0 ≤ s ≤ t). Then Xt = B2

t − t is a martingale.
(i) Xt is adapted, and E[|Xt|] <∞.
(ii) E[Xt|Fs] = E[B2

t − t|Fs] = E[(Bt −Bs +Bs)
2|Fs]− t = E[(Bt −Bs)2 + 2Bs(Bt −Bs) +

B2
s |Fs]− t = E[(Bt−Bs)2|Fs] + 2BsE[Bt−Bs|Fs] +B2

s − t = E[(Bt−Bs)2] + 2BsE[Bt−Bs] +
B2
s − t = (t− s) +B2

s − t = B2
s − s = Xs.

Conversely,

Theorem 9.10. (Lévy) Let {Xt}t≥0 be a continuous martingale (i.e., martingale with almost
surely continuous sample paths). If X2

t − t is a martingale (w.r.t. Ft = σ(Xs : 0 ≤ s ≤ t)), then
{Xt}t≥0 is a Brownian motion.

Important facts about martingales: martingale convergence theorem; Doob’s Lp-submartingale
inequalities; sub- and supermartingale decompositions; optional stopping; stochastic integrals.
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