
Math 245C Spring 2018

Homework 3 (due: Mo, April 30)

Problem 1: For n ∈ N0 and t ∈ R we consider the Dirichlet kernel

Dn(t) =
sin((n+ 1)t/2)

sin(t/2)

and the Fejér kernel

Kn(t) =
1

n+ 1
(D0(t) + · · ·+Dn(t)) =

1

n+ 1

(
sin((n+ 1)t/2)

sin(t/2)

)2

.

a) Show that the kernels Kn have the following properties:

(i) Kn for n ∈ N0 is a non-negative, 2π-periodic, and measurable function

on R with
1

2π

∫
[−π,π]

Kn(t) dt = 1.

(ii) for each δ > 0 we have lim
n→∞

∫
[−π,π]\[−δ,δ]

Kn(t) dt = 0.

b) Show that a sequence Pn, n ∈ N0, of kernels with the properties (i) and
(ii) as in (a) forms an approximate identity on T in the following sense: for
each f ∈ C(T) we have

(Pn ∗ f)(x) :=
1

2π

∫ π

−π
Pn(x− t)f(t) dt→ f(x) as n→∞

uniformly for x ∈ R.

c) Let snf denote the n-th partial sum of the Fourier series of a function
f ∈ L1(T) and consider

σnf =
1

n+ 1
(s0f + · · ·+ snf).

Show that if f ∈ C(T), then

‖σnf − f‖∞ → 0 as n→∞.

Problem 2: Let f(t) =
∑
cne

itn be a trigonometric polynomial. Then its (dis-
crete) Hilbert transform Hf is defined as

Hf(t) = −i
∑
n≤−1

cne
itn + i

∑
n≥1

cne
itn.



One can show that the Hilbert transform is bounded on Lp(T) for 1 < p <∞.
More precisely, there exists a constant Cp ≥ 0 such that

‖Hf‖p ≤ Cp‖f‖p
for each trigonometric polynomial f (this is a rather difficult theorem that you
can use without further justification in this problem).

a) Show that for 1 < p < ∞ the Hilbert transform extends uniquely to a
bounded linear operator H : Lp(T)→ Lp(T).

b) For n ∈ N let snf be the n-th partial sum of the Fourier series of the
trigonometric polynomial f . Show that one can represent snf as a sum
of four terms involving the operator H and two Fourier coefficients of f .
Hint: One of the terms is

1

2i
unH(fu−n),

where u±n(t) = e±int.

c) Use the previous facts to show that for each 1 < p < ∞ there exists a
constant C ′p ≥ 0 such that

‖snf‖p ≤ C ′p‖f‖p
for all n ∈ N0 and f ∈ Lp(T). In other words, the operators f 7→ snf have
uniformly bounded operator norms on Lp(T).

d) Use (c) to show that if f ∈ Lp(T) with 1 < p <∞, then the Fourier series
of f converges to f in Lp(T), or equivalently,

‖snf − f‖p → 0 as n→∞.

Problem 3: A function f : Rn → C is called a Schwartz function if it is C∞-
smooth and if all of its partial derivatives ∂αf(x) tend to 0 as |x| → ∞ faster than
any polynomial rate; more precisely, we require that for each multi-index α and
each N ∈ N0 we have

∂αf(x) = o((1 + |x|)−N) as |x| → ∞.

a) Show that for f ∈ C∞(Rn) the last condition is equivalent to the following
condition: for each multi-index α and each N ∈ N0 there exists a constant
C = C(α,N) ≥ 0 such that

(1 + |x|)N |∂αf(x)| ≤ C for all x ∈ Rn.

b) Show that the function x ∈ Rn 7→ e−|x|
2

is a Schwartz function.

c) Show that if f and g are Schwartz functions on Rn, then (g ∗ f)(x) is
defined for each x ∈ Rn and f ∗ g is also a Schwartz function.



Problem 4: Let f ∈ C(T) and suppose that f̂(n) ≥ 0 for each n ∈ Z. Show that

then
∑

n∈Z f̂(n) <∞.


