Math 245C

Homework 3 (due: Mo, April 30)

Problem 1: For $n \in \mathbb{N}_0$ and $t \in \mathbb{R}$ we consider the Dirichlet kernel

$$D_n(t) = \frac{\sin((n+1)t/2)}{\sin(t/2)}$$

and the Fejér kernel

$$K_n(t) = \frac{1}{n+1} (D_0(t) + \dots + D_n(t)) = \frac{1}{n+1} \left(\frac{\sin((n+1)t/2)}{\sin(t/2)} \right)^2.$$

a) Show that the kernels K_n have the following properties:

- (i) K_n for n ∈ N₀ is a non-negative, 2π-periodic, and measurable function on R with ¹/_{2π} ∫_[-π,π] K_n(t) dt = 1.
 (ii) for each δ > 0 we have lim_{n→∞} ∫_{[-π,π]\[-δ,δ]} K_n(t) dt = 0.
- b) Show that a sequence P_n , $n \in \mathbb{N}_0$, of kernels with the properties (i) and (ii) as in (a) forms an *approximate identity* on \mathbb{T} in the following sense: for each $f \in C(\mathbb{T})$ we have

$$(P_n * f)(x) := \frac{1}{2\pi} \int_{-\pi}^{\pi} P_n(x-t) f(t) \, dt \to f(x) \text{ as } n \to \infty$$

uniformly for $x \in \mathbb{R}$.

c) Let $s_n f$ denote the *n*-th partial sum of the Fourier series of a function $f \in L^1(\mathbb{T})$ and consider

$$\sigma_n f = \frac{1}{n+1}(s_0 f + \dots + s_n f).$$

Show that if $f \in C(\mathbb{T})$, then

$$\|\sigma_n f - f\|_{\infty} \to 0 \text{ as } n \to \infty.$$

Problem 2: Let $f(t) = \sum c_n e^{itn}$ be a trigonometric polynomial. Then its *(discrete)* Hilbert transform Hf is defined as

$$Hf(t) = -i\sum_{n \le -1} c_n e^{itn} + i\sum_{n \ge 1} c_n e^{itn}.$$

One can show that the Hilbert transform is bounded on $L^p(\mathbb{T})$ for 1 . $More precisely, there exists a constant <math>C_p \geq 0$ such that

$$||Hf||_p \le C_p ||f||_p$$

for each trigonometric polynomial f (this is a rather difficult theorem that you can use without further justification in this problem).

- a) Show that for $1 the Hilbert transform extends uniquely to a bounded linear operator <math>H: L^p(\mathbb{T}) \to L^p(\mathbb{T})$.
- b) For $n \in \mathbb{N}$ let $s_n f$ be the *n*-th partial sum of the Fourier series of the trigonometric polynomial f. Show that one can represent $s_n f$ as a sum of four terms involving the operator H and two Fourier coefficients of f. Hint: One of the terms is

$$\frac{1}{2i}u_nH(fu_{-n}),$$

where $u_{\pm n}(t) = e^{\pm int}$.

c) Use the previous facts to show that for each $1 there exists a constant <math>C'_p \ge 0$ such that

$$\|s_n f\|_p \le C'_p \|f\|_p$$

for all $n \in \mathbb{N}_0$ and $f \in L^p(\mathbb{T})$. In other words, the operators $f \mapsto s_n f$ have uniformly bounded operator norms on $L^p(\mathbb{T})$.

d) Use (c) to show that if $f \in L^p(\mathbb{T})$ with 1 , then the Fourier series of <math>f converges to f in $L^p(\mathbb{T})$, or equivalently,

$$||s_n f - f||_p \to 0 \text{ as } n \to \infty.$$

Problem 3: A function $f : \mathbb{R}^n \to \mathbb{C}$ is called a *Schwartz function* if it is C^{∞} smooth and if all of its partial derivatives $\partial^{\alpha} f(x)$ tend to 0 as $|x| \to \infty$ faster than any polynomial rate; more precisely, we require that for each multi-index α and each $N \in \mathbb{N}_0$ we have

$$\partial^{\alpha} f(x) = o((1+|x|)^{-N}) \text{ as } |x| \to \infty.$$

a) Show that for $f \in C^{\infty}(\mathbb{R}^n)$ the last condition is equivalent to the following condition: for each multi-index α and each $N \in \mathbb{N}_0$ there exists a constant $C = C(\alpha, N) \geq 0$ such that

$$(1+|x|)^N |\partial^{\alpha} f(x)| \le C$$
 for all $x \in \mathbb{R}^n$.

- b) Show that the function $x \in \mathbb{R}^n \mapsto e^{-|x|^2}$ is a Schwartz function.
- c) Show that if f and g are Schwartz functions on \mathbb{R}^n , then (g * f)(x) is defined for each $x \in \mathbb{R}^n$ and f * g is also a Schwartz function.

Problem 4: Let $f \in C(\mathbb{T})$ and suppose that $\widehat{f}(n) \ge 0$ for each $n \in \mathbb{Z}$. Show that then $\sum_{n \in \mathbb{Z}} \widehat{f}(n) < \infty$.