
Math 245C Spring 2018

Homework 1 (due: Fr, April 13)

As in 245AB, the homework has to be prepared with the mathematical typesetting
system LaTeX.

Problem 1: The purpose of this problem is to fill in some of the details of the
proof of Weierstrass’s Approximation Theorem outlined in class.

For n ∈ N we define the kernel Kn : R→ [0,∞) by setting

Kn(x) = cn(1− x2)n

for |x| ≤ 1 and Kn(x) = 0 for |x| > 1. Here cn > 0 is chosen such that∫
Kn(x) dx = 1.

a) Show that for each δ > 0 we have Kn → 0 as n → ∞ uniformly on
R \ (−δ, δ).

b) Suppose that f ∈ Cc(R) and supp(f) ⊆ [0, 1]. Define

Pn(x) = (Kn ∗ f)(x) =

∫
Kn(x− u)f(u) du

for x ∈ R. Show that for x ∈ [0, 1] the expression Pn(x) is equal to a
polynomial in x.

c) Show that we have uniform convergence Pn → f as n → ∞ on each
compact set M ⊆ (0, 1).

d) Use the previous considerations to prove Weierstrass’s Approximation The-
orem: if [a, b] ⊆ R is a compact interval, then the set of polynomials is dense
in C([a, b]). Hint: First prove this for [a, b] ⊆ (0, 1).

Problem 2: Let n ∈ N, n ≥ 2, and p ∈ (1, n). For a function f ∈ Lp(Rn) we
consider the Riesz potential

I(f)(x) =

∫
Rn

|f(y)|
|x− y|n−1

dy, x ∈ Rn,

where dy indicates integration with respect to Lebesgue measure.

a) Fix x ∈ Rn and suppose that for some R > 0 we have f = 0 on Rn\B(x,R).
Show that then

I(f)(x) ≤ C1R(Mf)(x),

where C1 = C1(n) > 0 (i.e., C1 only depends on n) and Mf denotes the
(uncentered) Hardy-Littlewood maximal function of f . Hint: Decompose
B(x,R) into dyadic annuli.



b) Fix x ∈ Rn. Suppose that for some R > 0 we have f = 0 on B(x,R).
Show that then

I(f)(x) ≤ C2R
1−n/p‖f‖p,

where C2 = C2(p, n) > 0.

c) Show that
‖I(f)‖p∗ ≤ C3‖f‖p,

where p∗ = np/(n − p) and C3 = C3(p, n) > 0. Hint: Split the given
function f into two functions as suggested by (a) and (b). Optimize R to
find a good pointwise estimate for I(f)(x).

Problem 3: Let X be a complex Hilbert space.

a) Show that every orthonormal set A ⊆ X is contained in a maximal or-
thonormal set B ⊆ X.

b) Show if {xn}n∈N is an orthonormal set in X, then xn → 0 in the weak
topology on X. Hint: This follows from the more general condition in
Problem 4, but derive this from Bessel’s inequality.

c) Show that if X is separable and infinite-dimensional, then each maximal
orthonormal set A ⊆ X is countably infinite. Hint: Use the existence of
a countably infinite maximal orthonormal set (=Hilbert space basis) as
discussed in class.

d) Show that if X is separable and infinite-dimensional, then there exists a
linear isomorphism T : X → `2 that preserves the inner product (recall
that `2 is the L2-space on N equipped with the counting measure).

Problem 4: Let X be a complex separable Hilbert space with a Hilbert space
basis {xn}n∈N.

a) Show that the infinite series
∞∑
n=1

αnxn with coefficients αn ∈ C, n ∈ N,

converges in X if and only if
∞∑
n=1

|αn|2 <∞.

b) Show that for a sequence {yn}n∈N in X we have yn → y ∈ X in the weak
topology on X if and only if the following conditions are true:

(i) There exists a constant C ≥ 0 such that ‖yn‖ ≤ C for all n ∈ N.

(ii) We have 〈yn, xk〉 → 〈y, xk〉 as n→∞ for each k ∈ N.

c) Let {yn}n∈N be a sequence in X. Show that then there exists y ∈ Y such

that yn
w→ y if and only the following conditions are true:

(i) There exists a constant C ≥ 0 such that ‖yn‖ ≤ C for all n ∈ N.

(ii) The sequence {〈yn, x〉}n∈N converges for each x ∈ X.


