Math 245C, Real Analysis Spring 2018 Midterm

Name:

There are five problems with a total of 50 points. The Midterm is due on Friday, May 25, before class.

Problem 1: In the following we assume that $f \in C(\mathbb{R})$ and that $|f(x)| = O(\frac{1}{|x|^{1+\epsilon}})$ as $|x| \to \infty$ for some $\epsilon > 0$.

(a) Show that $f \in L^1(\mathbb{R})$ and that the series

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n) = \lim_{N \to \infty} \sum_{n=-N}^{N} f(x+n)$$

converges uniformly in x on each compact subset of \mathbb{R} . (4pts)

Note that by (a) the Fourier transform \widehat{f} of f is defined. We assume in addition that $|\widehat{f}(x)| = O(\frac{1}{|x|^{1+\epsilon'}})$ as $|x| \to \infty$ for some $\epsilon' > 0$.

(b) Define $G(u) = F(\frac{u}{2\pi})$ for $u \in \mathbb{R}$. Show that then G is a 2π -periodic function in $L^1(\mathbb{T})$ and express the Fourier coefficients $\widehat{G}(n)$ of G in terms of the Fourier transform \widehat{f} of f. (3pts)

(c) Show that

$$\sum_{n \in \mathbb{Z}} f(x+n) = \sqrt{2\pi} \sum_{n \in \mathbb{Z}} \widehat{f}(2\pi n) e^{2\pi i n x}$$

for all $x \in \mathbb{R}$. This is known as *Poisson's summation formula*. (4pts)

Problem 2: Use Poisson's summation formula as derived in Problem 1 to show the following identities:

(a)
$$\sum_{n \in \mathbb{Z}} \frac{a}{a^2 + n^2} = \pi \frac{e^{2a\pi} + 1}{e^{2a\pi} - 1}$$
 for all $a > 0.$ (5pts)

(b)
$$\sum_{n \in \mathbb{Z}} e^{-\pi n^2/x} = \sqrt{x} \sum_{n \in \mathbb{Z}} e^{-\pi n^2 x} \text{ for all } x > 0.$$
(5pts)

Problem 3: The purpose of this problem is to describe all distributions T on \mathbb{R} with compact support supp(T). For simplicity we assume that supp $(T) \subseteq (0, 1)$.

(a) Show that there exist constants $n \in \mathbb{N}$ and C > 0 such that

$$|T(\phi)| \le C \int_0^1 |\phi^{(n)}(x)| \, dx$$

for all $\phi \in \mathcal{D}(\mathbb{R})$ with $\operatorname{supp}(\phi) \subseteq [0, 1]$. Hint: Use a related inequality proved in class. (4pts)

(b) If $\phi \in \mathcal{D}(\mathbb{R})$ with $\operatorname{supp}(\phi) \subseteq [0, 1]$, then we set $L(\phi^{(n)}) := T(\phi)$. Show that L is well-defined and can be extended to a bounded linear functional on $L^1([0, 1])$. (3pts)

(c) Show that there exists $g \in L^1_{loc}(\mathbb{R})$ such that $T = g^{(n)}$. Here $g^{(n)}$ is the *n*-th distributional derivative of g. (3pts)

Problem 4: (a) The Laplacian $\Delta \phi$ of a sufficiently smooth function $\phi = \phi(x, y)$ on \mathbb{R}^2 is defined as

$$\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2},$$

where x and y are the standard coordinate functions on \mathbb{R}^2 .

If we introduce polar coordinates r and α on \mathbb{R}^2 by setting $x = r \cos \alpha$ and $y = r \sin \alpha$, then we can consider ϕ as a function of r and α . Express $\Delta \phi$ in terms of partial derivatives with respect to r and α . (4 pts)

(b) Define $f(u) = \log |u|$ for $u = (x, y) \in \mathbb{R}^2$ and consider this as a distribution on \mathbb{R}^2 . Show that the distribution Δf is a (non-trivial) measure on \mathbb{R}^2 . (6 pts)

Problem 5: We denote by \hat{f} the Fourier-Plancherel transform of a function $f \in L^2(\mathbb{R}^n)$.

(a) Show that

$$\int f\widehat{g} = \int \widehat{f}g$$

for all $f, g \in L^2(\mathbb{R}^n)$.

(b) Let $f \in W^{1,2}(\mathbb{R}^n)$, and $\partial_k f$ be the weak k-th partial derivative of f, where $k \in \{1, \ldots, n\}$. Show that

$$\int \partial_k fs = -\int f \partial_k s$$

for all Schwartz functions $s \in \mathcal{S}(\mathbb{R}^n)$.

(c) Show that if $f \in W^{1,2}(\mathbb{R}^n)$, then $\widehat{\partial_k f}(\xi) = i\xi_k \widehat{f}(\xi)$ for all $k \in \{1, \ldots, n\}$ and almost every $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$. Hint: Use (a) and (b). (2 pts)

(d) Show that if $f \in L^2(\mathbb{R}^n)$, then $f \in W^{1,2}(\mathbb{R}^n)$ if and only if

$$\int (1+|\xi|^2) |\widehat{f}(\xi)|^2 d\xi < \infty.$$
(3 pts)

(2 pts)

(3 pts)