Math 245C, Real Analysis Spring 2018 Final Exam

Name:

There are five problems with a total of 50 points. The exam is due by Tuesday, June 12, 12pm.

Problem 1: We consider the Sobolev space $W^{1,p}(\mathbb{R}^n)$ for fixed $1 \leq p < \infty$. As usual,

$$||f||_{1,p} = \left(\int |f|^p + \sum_{k=1}^n \int |\partial_k f|^p\right)^{1/p}$$

denotes the Sobolev norm of a function $f \in W^{1,p}(\mathbb{R}^n)$. The purpose of this problem is to show that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{1,p}(\mathbb{R}^n)$.

(a) Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be a mollifier, and

$$\varphi_{\epsilon}(x) = \frac{1}{\epsilon^n} \varphi(x/\epsilon) \text{ for } x \in \mathbb{R}^n, \, \epsilon > 0.$$

Show that if $f \in W^{1,p}(\mathbb{R}^n)$ and we define $g_k = \varphi_{1/k} * f$ for $k \in \mathbb{N}$, then $g_k(x) \to f(x)$ for a.e. $x \in \mathbb{R}^n$ and $\|g_k - f\|_{1,p} \to 0$ as $k \to \infty$. (5pts)

(b) Show that if $f \in W^{1,p}(\mathbb{R}^n)$, then there exist functions $f_k \in C_c^{\infty}(\mathbb{R}^n)$ for $k \in \mathbb{N}$ such that $f_k(x) \to f(x)$ for a.e. $x \in \mathbb{R}^n$ and $||f_k - f||_{1,p} \to 0$ as $k \to \infty$. (5pts)

Problem 2: We fix $p \in (n, \infty)$. If $f \in L^1_{loc}(\mathbb{R}^n)$ and $B \subseteq \mathbb{R}^n$ is a ball, then we denote by

$$f_B := \frac{1}{\lambda_n(B)} \int f \, d\lambda_n$$

the average of f over B.

(a) Let $f \in C^1(\mathbb{R}^n)$, $B \subseteq \mathbb{R}^n$ be a ball with radius r > 0, and $x \in B$. Show that then

$$|f(x) - f_B| \le Cr^{1-n/p} \left(\int_B |\nabla f|^p \right)^{1/p},$$

where C = C(p, n) > 0 is a constant only depending on p and n. Hint: Express |f(x) - f(y)| for $y \in B$ in terms of ∇f and integrate over y. (4pts) (b) Show that if $f \in C^1(\mathbb{R}^n)$ and $\int |\nabla f|^p < \infty$, then f is α -Hölder continuous

with $\alpha = 1 - n/p$. More precisely, show that there exists a constant C > 0 such that

$$|f(x) - f(y)| \le C|x - y|^c$$

for all $x, y \in \mathbb{R}^n$.

(c) Prove the following version of Sobolev's embedding theorem (for the "supercritical" exponent $p \in (n, \infty)$): if $f \in W^{1,p}(\mathbb{R}^n)$, then f has an α -Hölder continuous representative with $\alpha = 1 - n/p$ in its Sobolev class. More precisely, there exists an α -Hölder continuous function $g \colon \mathbb{R}^n \to \mathbb{C}$ such that f = g a.e. on \mathbb{R}^n . Hint: Use Problem 1 and show that f is α -Hölder continuous on a dense subset of \mathbb{R}^n . (4pts)

(2pts)

Problem 3: The purpose of this problem is to determine all distributions T on \mathbb{R}^n with $\operatorname{supp}(T) = \{0\}$. In the following, T will be such a distribution. By a theorem proved in class, we know that there exists $N \in \mathbb{N}_0$ and a constant C > 0 such that

$$T(\varphi)| \le C \|\varphi\|_{N,\circ}$$

for each $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ with $\operatorname{supp}(\varphi) \subseteq B(0,1)$, where

$$\|\varphi\|_{N,\infty} = \max\{|\partial^{\alpha}\varphi(x)| : x \in \mathbb{R}^n, \, |\alpha| \le N\}.$$

(a) Suppose $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ and $\partial^{\alpha}\varphi(0) = 0$ for all multi-indices α with $|\alpha| \leq N$. Let $\epsilon > 0$ be arbitrary. Then we can find a ball $B \subseteq \mathbb{R}^n$ centered at 0 such that

$$\left|\partial^{\alpha}\varphi(x)\right| \le \epsilon$$

for $x \in B$ and all α with $|\alpha| = N$ (why?). Show that then

$$|\partial^{\alpha}\varphi(x)| \le n^{N-|\alpha|} |x|^{N-|\alpha|} \epsilon$$

for $x \in B$ and $|\alpha| \leq N$.

(b) We can find a function $\psi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\operatorname{supp}(\psi) \subseteq B(0,1)$ and $\psi = 1$ in a neighborhood of 0. Define $\psi_r(x) = \psi(x/r)$ for r > 0 and $x \in \mathbb{R}^n$. Show that if r > 0 is small enough, then

$$\|\psi_r\varphi\|_{N,\infty} \le \epsilon C \|\psi\|_{N,\infty}$$

where φ is as in (a) and C = C(n, N) > 0 is a constant only depending on n and N. (2pts)

(c) Show that if $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ and $\partial^{\alpha}\varphi(0) = 0$ for all α with $|\alpha| \leq N$, then $T(\varphi) = 0.$ (2pts)

(d) Show that there are constants $c_{\alpha} \in \mathbb{C}$ such that

$$T = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \delta_{\gamma}$$

where δ denotes the Dirac delta measure at 0. Hint: If a linear functional L on a vector space vanishes on the intersection of the kernels of the linear functionals L_1, \ldots, L_k , then L can be represented as a linear combination of L_1, \ldots, L_k (if you want to use this fact, you have to prove it first!). (4pts)

(2pts)

Problem 4: Let T be a tempered distribution on \mathbb{R}^n and suppose that $\Delta T = 0$, where

$$\Delta = \frac{\partial^2}{dx_1^2} + \dots + \frac{\partial^2}{dx_n^2}$$

is the Laplace operator written with the standard coordinates x_1, \ldots, x_n on \mathbb{R}^n . Show that then T is a polynomial P (in x_1, \ldots, x_n) satisfying $\Delta P = 0$. Hint: Use Problem 3. (10pts)

Problem 5: We consider the standard 1/3-Cantor set $C \subseteq \mathbb{R}$ consisting of all points $x \in \mathbb{R}$ that can be written in the form

$$x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}$$

with $a_i \in \{0, 2\}$ for $i \in \mathbb{N}$. For $n \in \mathbb{N}$ we consider the set $D_n \subseteq C$ consisting of all $x \in \mathbb{R}$ of the form

$$x = \sum_{i=1}^{n} \frac{a_i}{3^i}$$

with $a_i \in \{0, 2\}$ for $1 \le i \le n$.

(a) For $n \in \mathbb{N}$ and $f \in C_c(\mathbb{R})$ we define $I_n(f) = \frac{1}{2^n} \sum_{x \in D_n} f(x)$. Show that then the limit $I(f) := \lim_{n \to \infty} I_n(f)$ exists and that there exists a positive Borel measure μ on \mathbb{R} such that $I(f) = \int f d\mu$ for each $f \in C_c(\mathbb{R})$. (2pts)

(b) Show that μ is a probability measure concentrated on C, i.e., $\mu(C) = 1$ and $\mu(\mathbb{R}\backslash C) = 0$, and that $\mu([x, x + 1/3^n]) = 1/2^n$ for each $n \in \mathbb{N}$ and $x \in D_n$. (2pts) (c) Show that if $\alpha > \log 2/\log 3$, then $H^{\alpha}(C) = 0$ for the α -Hausdorff measure of C. Hint: Use an efficient cover of C. (2pts)

(d) Show that if $\alpha = \log 2/\log 3$, then $H^{\alpha}(C) > 0$ and conclude that $\dim_{H} C = \log 2/\log 3$ for the Hausdorff dimension of C. Hint: $\mu(B(x,r)) \lesssim r^{\alpha}$. (4pts)