Math 245C Spring 2018
Exercises

Problem 1: a) Let [a,b] € R be a compact interval and f,g: [a,b] — C be
absolutely continuous functions.

(a) Show that h = fg is also absolutely continuous on [a, b].

(b) Prove the following integration-by-parts formula:

b b
/ f'(x)g(x) dx = f(b)g(b) — f(a)g(a) —/ f(x)g'(x) de.
Justify the existence of all derivatives and integrals involved!

Problem 2: Show that if f € L} (R), then there exists g € L},.(R) such that

loc loc
¢’ = [ in the sense of distributions.

Problem 3: Show that the following statement false in general: if f,g € L}, (R)
and ' = g in the distributional sense, then f’(z) exists in the classical sense and

f'(z) = g(x) for almost every z € R.

Problem 4: Let s € S(R") for k € NU {oo} and suppose that s, — s, as
k — oo in the topology of S(R™). Show that then for each multi-index o and for
each 1 < p < oo we have ||0%sy, — 0%Sxo||, = 0 as k — oo (here || - ||, denotes the
LP-norm).

Problem 5: Let f € L} (R") and suppose that dyf = 0 in the distributional
sense for all £k = 1,...,n. Show that then there exists a constant ¢ € C such that
f =ca.e. on R. Hint: Consider a mollification ¢, * f.

Problem 6: (a) Let a € R”, R > 0, and consider the sphere
Y(a,R)={x e R": |z —a| = R}

of radius R centered at a. Then X(a, R) carries a natural Borel measure o uniquely
determined by the relation

o(B) = n,(B)
for each Borel set B C ¥(a, R). Here B is the cone with tip a and base B, i.e,
B={a+tlb—a):be B, te(0,1)}

Note that this is very similar to how we defined spherical measure on the unit
sphere (0, 1).
Let f: ¥(a, R) — [0, 00] be a Borel function.



(a) Show that
/ fdo = R"—l/ fla+ R¢)do(€).
Y(a,R) £(0,1)
(b) Show that

/ fdo =R / L F(a+ Ry ya)) = Fla+ Rly, —a))]) dAucs ().
¥(a,R) Bn_1 Yn

Here B,,_; is the open unit ball in R"~! and we set y, = v/1 — |y|? fory € B,_;.
Problem 7: We use the notation from Problem 6. We denote by
1
T
the unit normal vector to the hypersurface ¥(a, R) at a point z € X(a, R) =

0B(a, R) pointing “outward”. Let v = (vy,...,v,) be a C'-smooth vector field
(i.e., an R™-valued function) defined in an open neighborhood of B(a, R).

(a) Show that then
/ divvd)\n:/ v-ndo.
B(a,R) S(a,R)

n()

Here
vy v,
divo=—+---+
8:701 8xn
with the standard coordinate functions x4, ..., z,. This is a special case of Gauss’s
Theorem. Hint: First consider vector fields of the form v = (0,...,0,v,) and use
Problem 6.

(b) Prove the following more general version of Gauss’s Theorem. Consider the
an open set 2 C R™ of the form Q = By\(B; U---U By), where By is an open
ball in R" and By, ..., By are pairwise disjoint closed balls in R" contained in By.
Suppose v is a C'-smooth vector field defined in an open neighborhood of 2. Then

/divvd)\n:/ v-ndo.
Q a0

Here n again denotes the “outward” normal unit vector defined on
So on 0By it is equal to the surface normal defined in (a), but on 0By, ...,0B it
differs by a sign.

Problem 8: (a) Let {2 C R" be an open set as in Problem 7, and f,g be 2
smooth functions defined in an open neighborhood of €2. Use Gauss’s Theorem to



prove the Gauss-Green formula:

B dg  Of
/Q(ng—gAf)dAn—/m< %—g%) do.

Here

denotes the derivative of the function A in the direction of the outward normal n
at a point z € 0f).

(b) Use the Gauss-Green formula to give an alternative proof of the fact that on
R? we have

A, log |x| = 2mdy
in the distributional sense.

Problem 9: Find a fundamental solution of the Laplace equation in all dimensions
n € N, i.e., a distribution 7" on R" such that

AT = dy.



