
Math 245C Spring 2018

Exercises

Problem 1: a) Let [a, b] ⊆ R be a compact interval and f, g : [a, b] → C be
absolutely continuous functions.

(a) Show that h = fg is also absolutely continuous on [a, b].

(b) Prove the following integration-by-parts formula:∫ b

a

f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x) dx.

Justify the existence of all derivatives and integrals involved!

Problem 2: Show that if f ∈ L1
loc(R), then there exists g ∈ L1

loc(R) such that
g′ = f in the sense of distributions.

Problem 3: Show that the following statement false in general: if f, g ∈ L1
loc(R)

and f ′ = g in the distributional sense, then f ′(x) exists in the classical sense and
f ′(x) = g(x) for almost every x ∈ R.

Problem 4: Let sk ∈ S(Rn) for k ∈ N ∪ {∞} and suppose that sk → s∞ as
k →∞ in the topology of S(Rn). Show that then for each multi-index α and for
each 1 ≤ p ≤ ∞ we have ‖∂αsk − ∂αs∞‖p → 0 as k →∞ (here ‖ · ‖p denotes the
Lp-norm).

Problem 5: Let f ∈ L1
loc(Rn) and suppose that ∂kf = 0 in the distributional

sense for all k = 1, . . . , n. Show that then there exists a constant c ∈ C such that
f = c a.e. on R. Hint: Consider a mollification ϕε ∗ f .

Problem 6: (a) Let a ∈ Rn, R > 0, and consider the sphere

Σ(a,R) = {x ∈ Rn : |x− a| = R}
of radius R centered at a. Then Σ(a,R) carries a natural Borel measure σ uniquely
determined by the relation

σ(B) = nλn(B̃)

for each Borel set B ⊆ Σ(a,R). Here B̃ is the cone with tip a and base B, i.e,

B̃ = {a+ t(b− a) : b ∈ B, t ∈ (0, 1)}.
Note that this is very similar to how we defined spherical measure on the unit
sphere Σ(0, 1).

Let f : Σ(a,R)→ [0,∞] be a Borel function.



(a) Show that ∫
Σ(a,R)

f dσ = Rn−1

∫
Σ(0,1)

f(a+Rξ) dσ(ξ).

(b) Show that∫
Σ(a,R)

f dσ = Rn−1

∫
Bn−1

1

yn
[f(a+R(y, yn))− f(a+R(y,−yn))] dλn−1(y).

Here Bn−1 is the open unit ball in Rn−1 and we set yn =
√

1− |y|2 for y ∈ Bn−1.

Problem 7: We use the notation from Problem 6. We denote by

n(x) =
1

|x− a|
(x− a)

the unit normal vector to the hypersurface Σ(a,R) at a point x ∈ Σ(a,R) =
∂B(a,R) pointing “outward”. Let v = (v1, . . . , vn) be a C1-smooth vector field
(i.e., an Rn-valued function) defined in an open neighborhood of B(a,R).

(a) Show that then ∫
B(a,R)

div v dλn =

∫
Σ(a,R)

v · n dσ.

Here

div v =
∂v1

∂x1

+ · · ·+ ∂vn
∂xn

with the standard coordinate functions x1, . . . , xn. This is a special case of Gauss’s
Theorem. Hint: First consider vector fields of the form v = (0, . . . , 0, vn) and use
Problem 6.

(b) Prove the following more general version of Gauss’s Theorem. Consider the
an open set Ω ⊆ Rn of the form Ω = B0\(B1 ∪ · · · ∪ Bk), where B0 is an open
ball in Rn and B1, . . . , Bk are pairwise disjoint closed balls in Rn contained in B0.
Suppose v is a C1-smooth vector field defined in an open neighborhood of Ω. Then∫

Ω

div v dλn =

∫
∂Ω

v · n dσ.

Here n again denotes the “outward” normal unit vector defined on

∂Ω = ∂B0 ∪ · · · ∪ ∂Bk.

So on ∂B0 it is equal to the surface normal defined in (a), but on ∂B1, . . . , ∂Bk it
differs by a sign.

Problem 8: (a) Let Ω ⊆ Rn be an open set as in Problem 7, and f, g be C2-
smooth functions defined in an open neighborhood of Ω. Use Gauss’s Theorem to



prove the Gauss-Green formula:∫
Ω

(f∆g − g∆f) dλn =

∫
∂Ω

(
f
∂g

∂n
− g∂f

∂n

)
dσ.

Here
∂h

∂n
= ∇h · n

denotes the derivative of the function h in the direction of the outward normal n
at a point x ∈ ∂Ω.

(b) Use the Gauss-Green formula to give an alternative proof of the fact that on
R2 we have

∆x log |x| = 2πδ0

in the distributional sense.

Problem 9: Find a fundamental solution of the Laplace equation in all dimensions
n ∈ N, i.e., a distribution T on Rn such that

∆T = δ0.


