Homework 9 (due: Fr, Mar. 16)

Problem 1: Let $1 \le p < \infty$.

a) Let $f \in L^p(\mathbb{R}^n)$. For $y \in \mathbb{R}^n$ we define $\tau_y f \colon \mathbb{R}^n \to \mathbb{C}$ as

$$\tau_y f(x) = f(x+y), \quad x \in \mathbb{R}^n.$$

Show that $\tau_y f \in L^p(\mathbb{R}^n)$ and that the operator τ_y has the following continuity property:

$$\lim_{z \to y} \|\tau_z f - \tau_y f\|_p = 0.$$

Hint: Approximate f by a function in $C_c(\mathbb{R}^n)$.

b) Let $C_c^{\infty}(\mathbb{R}^n)$ be the space of all C^{∞} -smooth functions on \mathbb{R}^n with compact support, and $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be a mollifier (see HW 7, Prob. 4). For t > 0 we define

$$\varphi_t(x) = \frac{1}{t^n} \varphi(x/t), \quad x \in \mathbb{R}^n.$$

Show that if $f \in L^p(\mathbb{R}^n)$, then $f * \varphi_t \in L^p(\mathbb{R}^n)$ and

 $f * \varphi_t \to f$ in $L^p(\mathbb{R}^n)$ as $t \to 0^+$.

c) Show that the space $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$. Hint: HW 8, Prob. 1.

Problem 2: Let X be a compact topological space. We assume that there exists a countable family $\{f_n : X \to \mathbb{C} : n \in \mathbb{N}\}$ of continuous complex-valued functions on X that separates points in the following sense: for all $x, y \in X$ with $x \neq y$ there exists $n \in \mathbb{N}$ such that $f_n(x) \neq f_n(y)$. The purpose of this problem is to show that then X is metrizable, i.e., there exists a metric d on X that induces the given topology on X.

a) We may assume that $|f_n| \leq 1$ for each $n \in \mathbb{N}$ (why?). Show that if we define

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} |f_n(x) - f_n(y)|$$

for $x, y \in X$, then d is a metric on X.

- b) Show that if $g: Y \to Z$ is a continuous bijection between a compact space Y and a Hausdorff space Z, then g is a homeomorphism.
- c) Use (a) and (b) to show that X is metrizable.
- d) Let V be a separable Banach space and $B = \{f \in V^* : ||f|| \le 1\}$ be the closed unit ball in the dual space V^* of V. Show that if we equip B with the weak-* topology, then B is metrizable.

Problem 3: Let (X, d) be a compact metric space.

a) Suppose that for each $n \in \mathbb{N}$ we have a finite set $F_n \subseteq X$ such that the open balls $B(y, 1/n), y \in F_n$, form an open cover \mathcal{U}_n of X. Let $g_y, y \in F_n$, be a the functions in a partition of unity subordinate to \mathcal{U}_n . If $f \in C(X)$ is a continuous complex-valued function on X, we define

$$f_n = \sum_{y \in F_n} f(y)g_y.$$

Show that then $f_n \to f$ uniformly on X.

- b) Show that the Banach space C(X) of all continuous complex-valued functions on X is separable.
- c) Show that if $\{\mu_n\}$ is a sequence of Borel probability measures on X, then the sequence *subconverges* (i.e., some subsequence converges) to a Borel probability measure μ on X in the weak-* topology on the space $\mathcal{M}(X)$ of all complex Borel measures on X.

Problem 4: (Analysis Qualifying Exam, Fall 2014) Let $\{f_n\}$ be a bounded sequence in $L^2(\mathbb{R})$ and suppose that $f_n(x) \to 0$ as $n \to \infty$ for almost every $x \in \mathbb{R}$. Show that then $f_n \to 0$ in the weak topology on $L^2(\mathbb{R})$.