Math 245B

Homework 8 (due: Fr, Mar. 9)

Problem 1: Let f and g be a functions on \mathbb{R}^n . Suppose f is locally integrable and g is C^{∞} -smooth with compact support. Show that then the convolution

$$h(x) = (f * g)(x) = \int f(x - y)g(y) \, d\lambda_n(y)$$

is defined for each $x \in \mathbb{R}^n$. Moreover, h is C^{∞} -smooth and if \mathscr{D} denotes any partial derivative of any order, then $f * \mathscr{D}g$ is everywhere defined and

$$\mathscr{D}h = f * \mathscr{D}g.$$

Problem 2:

- a) Let \mathcal{O} be the family of all sets $U \subseteq \mathbb{R}$ such that $U = \emptyset$ or $\mathbb{R} \setminus U$ is a countable set. Show that \mathcal{O} is a topology on \mathbb{R} .
- b) Find a simple necessary and sufficient condition for a sequence $\{x_n\}_{n\in\mathbb{N}}$ in \mathbb{R} to converge to a point $x\in\mathbb{R}$ in the topological space $(\mathbb{R}, \mathcal{O})$.
- c) Show that in $(\mathbb{R}, \mathcal{O})$ not every set is closed, but every set $M \subseteq \mathbb{R}$ has the following property: if $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in M and $x_n \to x$, then $x \in M$.

Problem 3:

- a) Show that in a Hausdorff space X every convergent net has a unique limit; in other words, if $\{x_{\alpha}\}_{\alpha \in A}$ is a net in X with $x_{\alpha} \to x$ and $x_{\alpha} \to y$, then x = y.
- b) Show that for nets in \mathbb{C} similar computational rules hold as for sequences: if $\{z_{\alpha}\}_{\alpha \in A}$ and $\{w_{\alpha}\}_{\alpha \in A}$ are nets in \mathbb{C} (indexed by the same directed set A) and $z_{\alpha} \to z$ and $w_{\alpha} \to w$, then $z_{\alpha} + w_{\alpha} \to z + w$ and $z_{\alpha} w_{\alpha} \to z w$.
- c) A topology on a space is uniquely determined by its convergent nets and their limits: Let X be a set with two topologies \mathcal{O}_1 and \mathcal{O}_2 . Suppose that with respect to these topologies convergent nets are the same with identical limits; more precisely, assume that for every net $\{x_{\alpha}\}_{\alpha \in A}$ in X and every point $x \in X$ we have $x_{\alpha} \to x$ in (X, \mathcal{O}_1) if and only if $x_{\alpha} \to x$ in (X, \mathcal{O}_2) . Show that then $\mathcal{O}_1 = \mathcal{O}_2$.

Problem 4: Let X be a Banach space equipped with its weak topology.

a) Show that X is a Hausdorff space.

b) Prove that vector addition is continuous in the weak topology: Consider the map $A: X \times X \to X$ given by A((x, y)) = x + y for $(x, y) \in X \times X$. Show that A is continuous. Here $X \times X$ carries the product topology induced by the weak topology on each factor.