Math 245B

Homework 7 (due: Fr, Mar. 2)

Problem 1:

a) Let (X, \mathcal{A}, μ) be a σ -finite measure space, 1 , and <math>q be the conjugate exponent of p. Show that if $f: (X, \mathcal{A}) \to [0, \infty]$ is a measurable function, then

$$||f||_p = \sup\left\{\int fg \, d\mu : g \colon X \to [0,\infty] \text{ measurable, } ||g||_q \le 1\right\} \in [0,\infty].$$

Hint: This does not directly follow from $L^p - L^q$ -duality, because we allow $||f||_p = \infty$ here and pair f only with non-negative functions g.

b) Prove Minkowski's inequality for integrals: Let $1 \leq p < \infty$. Suppose that (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces and

$$h: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \to [0, \infty]$$

is measurable. Then

$$\left(\int \left(\int h(x,y) \, d\nu(y)\right)^p d\mu(x)\right)^{1/p} \leq \int \left(\int h(x,y)^p \, d\mu(x)\right)^{1/p} d\nu(y).$$

c) Show how derive the usual Minkowski inequality $||f + g||_p \le ||f||_p + ||g||_p$ from the integral version in (b).

Problem 2: Show that the L^1 -boundedness of the Hardy-Littlewood maximal function fails: If $f \in L^1(\mathbb{R}^n)$ is an arbitrary integrable function on \mathbb{R}^n with $f \neq 0$, then $Mf \notin L^1(\mathbb{R}^n)$. Hint: Find a lower bound for Mf that implies $\int Mf = +\infty$.

Problem 3: Let $f: [-1,1] \to \mathbb{C}$ be a continuous function.

- a) Show that if f is absolutely continuous on [-1, 0] and on [0, 1], then f is absolutely continuous on [-1, 1].
- b) Show (by finding a suitable counterexample) that if f is absolutely continuous on each closed subinterval of $[-1,1] \setminus \{0\}$, then f may fail to be absolutely continuous.
- c) Let $E \subseteq [-1, 1]$ be a closed set with $\lambda_1(E) = 0$. Show that if f is absolutely continuous on each closed subinterval of $[-1, 1] \setminus E$, then f'(x) exists for almost every $x \in [-1, 1]$.
- d) Assume in addition to the conditions in (c) that E is countable and that the almost everywhere defined derivative f' of f is integrable on [-1, 1]. Show that then f is absolutely continuous on [-1, 1].

e) Show that the conclusion in (d) fails if we do not assume that E is countable.

Problem 4: A function φ on \mathbb{R}^n is called a *mollifier* if it is a non-negative function in $C_c^{\infty}(\mathbb{R}^n)$ (the space of all C^{∞} -smooth functions on \mathbb{R}^n with compact support), and $\int \varphi \, d\lambda_n = 1$.

- a) Show that mollifiers on \mathbb{R}^n exist for each $n \in \mathbb{N}$ (Hint: HW 3, Prob. 3).
- b) Fix a mollifier φ on \mathbb{R}^n . If t > 0 we define

$$\varphi_t(x) = \frac{1}{t^n} \varphi(x/t), \quad x \in \mathbb{R}^n.$$

If $f \in L^1_{loc}(\mathbb{R}^n)$, we consider the *t*-mollification of f defined as

$$(f * \varphi_t)(x) = \int f(x - y)\varphi_t(y) \, d\lambda_n(y), \quad x \in \mathbb{R}^n$$

Show that $(f * \varphi_t)(x) \to f(x)$ as $t \to 0$ for almost every $x \in \mathbb{R}^n$. c) Let $g, h \in L^1_{loc}(\mathbb{R}^n)$ and suppose that

$$\int fg \, d\lambda_n = \int fh \, d\lambda_n$$

for all $f \in C_c^{\infty}(\mathbb{R}^n)$. Show that then g = h almost everywhere on \mathbb{R}^n .