Math 245B

Homework 2 (due: Fr, Jan. 19)

Problem 1: Let (X, \mathcal{A}) be a measurable space. We denote by \mathcal{M} the set of all finite signed measures on (X, \mathcal{A}) .

a) If $a, b \in \mathbb{R}$ and $\mu, \nu \in \mathcal{M}$, we define

 $(a\mu + b\nu)(A) = a\mu(A) + b\nu(A)$

for $A \in \mathcal{A}$. Show that $a\mu + b\nu \in \mathcal{M}$ and that \mathcal{M} is a vector space over \mathbb{R} with this linear structure.

- b) For $\mu \in \mathcal{M}$ define $\|\mu\| = |\mu|(X)$. Show that $\mu \in \mathcal{M} \mapsto \|\mu\|$ defines a norm on \mathcal{M} .
- c) Show that the vector space \mathcal{M} equipped with the norm defined in (b) is a Banach space.

Problem 2: Let ν be a complex measure on a measurable space (X, \mathcal{A}) .

- a) Let $\nu_r = \nu_r^+ \nu_r^-$ and $\nu_i = \nu_i^+ \nu_i^-$ be the Jordan decompositions of the real part ν_r and the imaginary part ν_i of ν . Show that if $|\nu|$ denotes the total variation of ν , then $\nu_r^+, \nu_r^-, \nu_i^+, \nu_i^- \leq |\nu|$.
- b) We say that a measurable function f on (X, \mathcal{A}) is ν -integrable if it is integrable with respect to $|\nu|$. So if we denote the space of these functions f by $L^1(\nu)$, then $L^1(\nu) = L^1(|\nu|)$. Show that if $f \in L^1(\nu)$, then f is integrable with respect to each of the measures $\nu_r^+, \nu_r^-, \nu_i^+, \nu_i^-$ and so

$$\int f \, d\nu \coloneqq \int f \, d\nu_r^+ - \int f \, d\nu_r^- + i \int f \, d\nu_i^+ - i \int f \, d\nu_i^-$$

is well-defined.

c) Suppose μ is a σ -finite positive measure on (X, \mathcal{A}) such that $\nu \ll \mu$ and let $g = d\nu/d\mu$ be the Radon-Nikodym derivative of ν with respect to μ . Show that if $f \in L^1(\nu)$, then $fg \in L^1(\mu)$ and

$$\int f \, d\nu = \int f g \, d\mu.$$

Problem 3:

a) Let $f: \mathbb{R}^n \to \mathbb{C}$ and $g: \mathbb{R}^n \to \mathbb{C}$ be Borel measurable functions on \mathbb{R}^n . Show that the function $F: \mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ defined as

$$F(x,y) = f(x-y)g(y)$$
 for $x, y \in \mathbb{R}^n$

is also Borel measurable.

b) Let $f: \mathbb{R}^n \to \mathbb{C}$ and $g: \mathbb{R}^n \to \mathbb{C}$ be (Lebesgue) integrable functions. Show that then the *convolution* of f and g given by

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y) \, d\lambda_n(y)$$

is well-defined for almost every $x \in \mathbb{R}^n$ and that

$$||f * g||_1 \le ||f||_1 \cdot ||g||_1.$$

c) Show that if $f \colon \mathbb{R}^n \to \mathbb{C}$ and $g \colon \mathbb{R}^n \to \mathbb{C}$ are integrable functions, then

(f * g)(x) = (g * f)(x) for almost every $x \in \mathbb{R}^n$.

Problem 4: Let X be a topological space, and $f: X \to X$ be a continuous map. A Borel measure μ on X is called *f*-invariant if $f_*\mu = \mu$, or equivalently, if $\mu(f^{-1}(B)) = \mu(B)$ for all Borel sets $B \subseteq X$.

Consider two *f*-invariant Borel probability measures ν and μ on *X* and let $\nu = \nu_s + \nu_a$ be the Lebesgue decomposition of ν with respect to μ , where $\nu_s \perp \mu$ and $\nu_a \ll \mu$. Show that then ν_s and ν_a are also *f*-invariant.