Math 245B

Exercises

Problem 1:

- a) Let \mathcal{O} be the family of all sets $U \subseteq \mathbb{R}$ such that $U = \emptyset$ or $\mathbb{R} \setminus U$ is a countable set. Show that \mathcal{O} is a topology on \mathbb{R} .
- b) Find a simple necessary and sufficient condition for a sequence $\{x_n\}$ in \mathbb{R} to converge to a point $x \in \mathbb{R}$ in the topological space $(\mathbb{R}, \mathcal{O})$.
- c) Show that in $(\mathbb{R}, \mathcal{O})$ not every set is closed, but every set $M \subseteq \mathbb{R}$ has the following property: if $\{x_n\}$ is a sequence in M and $x_n \to x$, then $x \in M$.

Problem 2:

- a) Show that in a Hausdorff space X every convergent net has a unique limit; in other words, if $\{x_{\alpha}\}_{\alpha \in A}$ is a net in X with $x_{\alpha} \to x$ and $x_{\alpha} \to y$, then x = y.
- b) Show that for nets in \mathbb{C} similar computational rules hold as for sequences: if $\{z_{\alpha}\}_{\alpha \in A}$ and $\{w_{\alpha}\}_{\alpha \in A}$ are nets in \mathbb{C} (indexed by the same directed set A!) and $z_{\alpha} \to z$ and $w_{\alpha} \to w$, then $z_{\alpha} + w_{\alpha} \to z + w$ and $z_{\alpha}w_{\alpha} \to zw$.

Problem 3: A topology on a space is uniquely determined by its convergent nets and their limits: Let X be a set with two topologies \mathcal{O}_1 and \mathcal{O}_2 . Suppose that with respect to these topologies convergent nest are the same with identical limits; more precisely, assume that for every net $\{x_{\alpha}\}_{\alpha \in A}$ in X and every point $x \in X$ we have $x_{\alpha} \to x$ in (X, \mathcal{O}_1) if and only if $x_{\alpha} \to x$ in (X, \mathcal{O}_2) . Show that then $\mathcal{O}_1 = \mathcal{O}_2$.

Problem 4: Let X_i , $i \in I$, be a family of topological spaces indexed by a set I. Let $X = \prod_{i \in I} X_i$ be the product of these spaces equipped with the product topology and $p_j: X \to X_j$ for $j \in I$ be the natural projection map that sends each $x = (x_i)_{i \in I} \in X$ to its *j*-th component x_j .

Show that a net $\{x_{\alpha}\}_{\alpha \in A}$ in X converges if and only if the net $\{p_j(x_{\alpha})\}_{\alpha \in A}$ in X_j converges for each $j \in I$.

Problem 5: Let X be a Banach space equipped with its weak topology.

- a) Show that X is a Hausdorff space.
- b) Prove that vector addition is continuous in the weak topology: Consider the map $A: X \times X \to X$ given by A((x, y)) = x + y for $(x, y) \in X \times X$. Show that A is continuous. Here $X \times X$ carries the product topology induced by the weak topology on each factor.

Problem 6:

a) Let X be a Banach space and suppose that $\{x_n\}$ is a sequence in X that converges in the weak topology to the limit $x \in X$. Show that then

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

Hint: Hahn-Banach.

b) Find an example of a space X and a sequence $\{x_n\}$ as in (a), where $||x_n|| = 1$ for all $n \in \mathbb{N}$, but x = 0. Hint: Consider suitable L^p -spaces X.