Math 245B

Homework 5 (due: Fr, Feb. 5)

Problem 1:

a) Let (X, \mathcal{A}, μ) be a σ -finite measure space, 1 , and <math>q be the conjugate exponent of p. Show that if $f: (X, \mathcal{A}) \to [0, \infty]$ is a measurable function, then

$$||f||_p = \sup\left\{\int fg \,d\mu : g \colon X \to [0,\infty] \text{ measurable, } ||g||_q \le 1\right\} \in [0,\infty].$$

Hint: This does not directly follow from $L^{p}-L^{q}$ -duality, because we allow $||f||_{p} = \infty$ here and pair f only with *non-negative* functions g.

b) Prove Minkowski's inequality for integrals: Let $1 \le p < \infty$. Suppose that (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces and

$$h: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \to [0, \infty]$$

is measurable. Then

$$\left(\int \left(\int h(x,y) \, d\nu(y)\right)^p d\mu(x)\right)^{1/p} \leq \int \left(\int h(x,y)^p \, d\mu(x)\right)^{1/p} d\nu(y).$$

c) Show how derive the usual Minkowski inequality $||f + g||_p \le ||f||_p + ||g||_p$ from the integral version in (b).

Problem 2: Show that the L^1 -boundedness of the Hardy-Littlewood maximal function fails: If $f \in L^1(\mathbb{R}^n)$ is an arbitrary non-zero integrable function on \mathbb{R}^n , then $Mf \notin L^1(\mathbb{R}^n)$. Hint: Find a lower bound for Mf that implies $\int Mf = +\infty$.

Problem 3: Let (X, d) be a metric space. A Borel measure μ on X is called *doubling* if there exists a constant $C \ge 0$ such that

$$\mu(2B) \le C\mu(B)$$

for all (open) balls B in X. To rule out trivial cases we also assume that there exists a ball B_0 in X such that $0 < \mu(B_0) < \infty$.

- a) Show that if μ is a doubling measure μ on X, then $0 < \mu(B) < \infty$ for all balls B in X.
- b) Suppose μ is a doubling measure on X and $f: X \to \mathbb{C}$ is Borel measurable. We define the maximal function $Mf: X \to [0, \infty]$ of f as

$$(Mf)(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_{B} |f| d\mu \quad \text{for } x \in X,$$

where the supremum is taken over all balls B in X that contain x.

Show that Mf is measurable and that if $f \in L^1(\mu)$, then

$$\mu\{Mf > \alpha\} \le C_0 \frac{\|f\|_1}{\alpha} \quad \text{for all } \alpha > 0 ,$$

where $C_0 \ge 0$ is a constant independent of f.

Problem 4: (Analysis Qual 2010) Let T be a linear transformation on the space $C_c(\mathbb{R}^n)$ of continuous functions on \mathbb{R}^n with compact support. Suppose that $||Tf||_{\infty} \leq ||f||_{\infty}$ for all $f \in C_c(\mathbb{R}^n)$ and

$$|\{|Tf| > \lambda\}| \le \frac{\|f\|_1}{\lambda}$$

for all $\lambda > 0$ and $f \in C_c(\mathbb{R}^n)$, where |A| denotes Lebesgue measure of a measurable set $A \subseteq \mathbb{R}^n$. Show that then there exists a constant $C \ge 0$ such that

$$\int |Tf|^2 \le C \int |f|^2 \quad \text{for all } f \in C_c(\mathbb{R}^n).$$

Here integration is with respect to Lebesgue measure.