Math 245B

Homework 4 (due: Fr, Jan. 29)

Problem 1: Let (X, \mathcal{A}, μ) be a measure space. Show that simple functions are dense in $L^{\infty}(\mu)$, i.e., if $f: X \to \mathbb{C}$ is an essentially bounded measurable function, then there exits a sequence $\{s_n\}$ of simple functions on X such that

$$||s_n - f||_{\infty} = \operatorname{ess\,sup}_{x \in X} |s_n(x) - f(x)| \to 0.$$

Problem 2: Establish the following fact that was used in the proof that $(L^1)^* = L^{\infty}$. If (X, \mathcal{A}, μ) is a measure space and $g: X \to \mathbb{C}$ an integrable function such that

$$\left| \int_{A} g \, d\mu \right| \le C\mu(A)$$

for all $A \in \mathcal{A}$, then $||g||_{\infty} \leq C$.

Problem 3: The purpose of this problem is to complete the proof of $L^{p}-L^{q}$ duality for σ -finite measures based on the case of finite measures.

Let $1 \leq p < \infty$ and q be the conjugate exponent of p. Suppose μ is a σ -finite measure on a measurable space (X, \mathcal{A}) and $\Phi: L^p(\mu) \to \mathbb{C}$ a bounded linear functional. Then we can find measurable sets E_n with $E_n \nearrow X$ and $\mu(E_n) < \infty$ for $n \in \mathbb{N}$.

a) Let $n \in \mathbb{N}$. Use the finite measure $\mu | E_n$ to show that there exists a function $g_n \in L^q(\mu)$ with $g_n | E_n^c = 0$ and $||g_n||_q \leq ||\Phi||$ such that

$$\Phi(f) = \int f g_n \, d\mu$$

for all $f \in L^p(\mu)$ with f = 0 μ -a.e. on E_n^c .

- b) Show that if $n \leq k$, then we have $g_n = g_k \mu$ -a.e. on E_n for the functions constructed in (b).
- c) Show that $g = \lim_{n \to \infty} g_n$ exists μ -a.e. on $X, g \in L^q(\mu), ||g||_q = ||\Phi||$, and that

$$\Phi(f) = \int fg \, d\mu$$

for all $f \in L^p(\mu)$.

Problem 4:

a) Let X be a normed vector space and $M \neq X$ be a closed subspace. Show that then there exists a non-zero functional $f \in X^*$ such that f|M = 0. Hint: Pick $x \in X \setminus M$, consider the span of M and x, and apply the Hahn-Banach Theorem.

- b) Let X be a normed vector space. Suppose there exist vectors x_n for $n \in \mathbb{N}$ whose span is dense in X. Show that then X is separable, i.e., there exists a countable dense subset in X.
- c) Let X be a normed vector space and X^* be its dual space. Show that if X^* is separable, then X is also separable.

Hint: Let $\{f_n : n \in \mathbb{N}\}$ be a countable dense subset in X^* . Then we can find $x_n \in X$ with $||x_n|| \leq 1$ such that $|f_n(x_n)| \geq \frac{1}{2} ||f_n||$. Remark: Part (c) is Problem 6 from the Analysis Qual, Fall 2014 (the

Remark: Part (c) is Problem 6 from the Analysis Qual, Fall 2014 (the hint was not given).