Homework 3 (due: Fr, Jan. 22)

Problem 1: Let ν be a complex measure on a measurable space (X, \mathcal{A}) .

- a) Let $\nu_r = \nu_r^+ \nu_r^-$ and $\nu_i = \nu_i^+ \nu_i^-$ be the Jordan decompositions of the real part ν_r and the imaginary part ν_i of ν . Show that if $|\nu|$ denotes the total variation of ν , then $\nu_r^+, \nu_r^-, \nu_i^+, \nu_i^- \leq |\nu|$.
- b) We say that a measurable function f on (X, \mathcal{A}) is ν -integrable if it is integrable with respect to $|\nu|$. So if we denote the space of these functions f by $L^1(\nu)$, then $L^1(\nu) = L^1(|\nu|)$. Show that if $f \in L^1(\nu)$, then f is integrable with respect to each of the measures $\nu_r^+, \nu_r^-, \nu_i^+, \nu_i^-$ and so

$$\int f \, d\nu \coloneqq \int f \, d\nu_r^+ - \int f \, d\nu_r^- + i \int f \, d\nu_i^+ - i \int f \, d\nu_i^-$$

is well-defined.

c) Suppose μ is a σ -finite positive measure on (X, \mathcal{A}) such that $\nu \ll \mu$ and let $g = d\nu/d\mu$ be the Radon-Nikodym derivative of ν with respect to μ . Show that if $f \in L^1(\nu)$, then $fg \in L^1(\mu)$ and

$$\int f \, d\nu = \int f g \, d\mu.$$

Problem 2: A *bump function* on \mathbb{R}^n is a C^{∞} -smooth function φ on \mathbb{R}^n with compact support such $\varphi \geq 0$ and $\varphi \not\equiv 0$. The purpose of this problem is to show the existence of certain bump functions.

- a) Define $f(x) = \exp(-1/x^2)$ for x > 0 and f(x) = 0 for $x \le 0$. Show that f is C^{∞} -smooth on \mathbb{R} . Hint: Show that $f^{(n)}$ exists by induction on n. For this it helps to find a general type of expression that represents $f^{(n)}$.
- b) Show that if f is as in (a) and $a, b \in \mathbb{R}$ with a < b, then $x \in \mathbb{R} \mapsto g(x) = f(x-a)f(b-x)$ defines a bump function on \mathbb{R} with support in the interval [a, b].
- c) Show that if $a, b \in \mathbb{R}$ with a < b, then there exists a C^{∞} -smooth function h on \mathbb{R} with $0 \le h \le 1$ such that h(x) = 1 for $x \le a$ and h(x) = 0 for $x \ge b$.
- d) Let 0 < r < R. Show that there exists a C^{∞} -smooth function φ on \mathbb{R}^n with $0 \leq \varphi \leq 1$ such that $\varphi(x) = 1$ for $x \in \mathbb{R}^n$ with $|x| \leq r$ and $\varphi(x) = 0$ for $x \in \mathbb{R}^n$ with $|x| \geq R$.

Problem 3: Let f and g be a functions on \mathbb{R}^n . Suppose f is locally integrable and g is C^{∞} -smooth with compact support. Show that then the convolution h(x) = (f * g)(x) is defined for each $x \in \mathbb{R}^n$. Moreover, h is C^{∞} -smooth and if \mathscr{D} denotes any partial derivative of any order, then $f * \mathscr{D}g$ is everywhere defined and

$$\mathscr{D}h = f * \mathscr{D}g.$$

Problem 4:

a) Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on \mathbb{R}^n . Show that then these norm are *equivalent*, i.e., there exists a constant $C \geq 1$ such that

$$\frac{1}{C} \|x\|_1 \le \|x\|_2 \le C \|x\|_1$$

for each $x \in \mathbb{R}^n$.

b) Let X be a normed real vector space and $T \colon \mathbb{R}^n \to X$ be a linear map. Show that T is bounded.