Homework 2 (due: Fr, Jan. 15)

Problem 1: Let (X, \mathcal{A}) be a measurable space.

- a) Let μ be a signed measure on (X, \mathcal{A}) and $\mu = \mu^+ \mu^-$ be its Jordan decomposition. Show that if λ and ν are positive measures on (X, \mathcal{A}) with $\mu = \lambda \nu$, then $\lambda \ge \mu^+$ and $\nu \ge \mu^-$, i.e., $\lambda(A) \ge \mu^+(A)$ and $\nu(A) \ge \mu^-(A)$ for all $A \in \mathcal{A}$.
- b) Let μ be a signed measure on (X, \mathcal{A}) and $|\mu|$ be its total variation. Show that

$$|\mu|(A) = \sup\left\{\sum_{n \in \mathbb{N}} |\mu(B_n)| : B_n \in \mathcal{A} \text{ pairwise disjoint for } n \in \mathbb{N} \text{ and } \bigcup_{n \in \mathbb{N}} B_n = A\right\}$$

for each $A \in \mathcal{A}$.

c) Let μ and ν be signed measure on (X, \mathcal{A}) that both omit $+\infty$ or $-\infty$. Show that then $\mu + \nu$ is a signed measure on (X, \mathcal{A}) with $|\mu + \nu| \le |\mu| + |\nu|$.

Problem 2: Let (X, \mathcal{A}) be a measurable space. We denote by \mathcal{M} the set of all finite signed measures on (X, \mathcal{A}) .

a) If $a, b \in \mathbb{R}$ and $\mu, \nu \in \mathcal{M}$, we define

$$(a\mu + b\nu)(A) = a\mu(A) + b\nu(A)$$

for $A \in \mathcal{A}$. Show that $a\mu + b\nu \in \mathcal{M}$ and that \mathcal{M} is a vector space over \mathbb{R} with this linear structure.

- b) For $\mu \in \mathcal{M}$ define $\|\mu\| = |\mu|(X)$. Show that $\mu \in \mathcal{M} \mapsto \|\mu\|$ defines a norm on \mathcal{M} .
- c) Show that the vector space \mathcal{M} equipped with the norm defined in (b) is a Banach space.

Problem 3:

a) Let $f: \mathbb{R}^n \to \mathbb{C}$ and $g: \mathbb{R}^n \to \mathbb{C}$ be Borel measurable functions on \mathbb{R}^n . Show that the function $F: \mathbb{R}^{2n} \to \mathbb{C}$ defined as

$$F(x,y) = f(x-y)g(y)$$
 for $x, y \in \mathbb{R}^n$

is also Borel measurable.

b) Let $f: \mathbb{R}^n \to \mathbb{C}$ and $g: \mathbb{R}^n \to \mathbb{C}$ be (Lebesgue) integrable functions. Show that then the *convolution* of f and g given by

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y) \, d\lambda_n(y)$$

is well-defined for almost every $x \in \mathbb{R}^n$ and that

$$||f * g||_1 \le ||f||_1 \cdot ||g||_1.$$

c) Show that if $f : \mathbb{R}^n \to \mathbb{C}$ and $g : \mathbb{R}^n \to \mathbb{C}$ are integrable functions, then (f * g)(x) = (g * f)(x) for almost every $x \in \mathbb{R}^n$.

Problem 4: (Analysis Qual, Spring 2012)

a) Suppose $f: [0,1) \to \mathbb{C}$ is integrable with respect to Lebesgue measure on [0,1). For $n \in \mathbb{N}$ define

$$f_n(x) = n \int_{(k-1)/n}^{k/n} f(t) dt$$
 if $x \in [(k-1)/n, k/n)$ for $k = 1, \dots n$.

Show that $f_n \to f$ in L^1 .

b) Let S be the set of all complex-valued integrable functions f on \mathbb{R}^3 with $f \in L^2$ and $\int f d\lambda_3 = 0$. Show that S is dense in L^2 .